期刊文献+
共找到54篇文章
< 1 2 3 >
每页显示 20 50 100
Advanced Machine Learning Methods for Prediction of Blast-Induced Flyrock Using Hybrid SVR Methods
1
作者 Ji Zhou Yijun Lu +3 位作者 Qiong Tian Haichuan Liu Mahdi Hasanipanah Jiandong Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1595-1617,共23页
Blasting in surface mines aims to fragment rock masses to a proper size.However,flyrock is an undesirable effect of blasting that can result in human injuries.In this study,support vector regression(SVR)is combined wi... Blasting in surface mines aims to fragment rock masses to a proper size.However,flyrock is an undesirable effect of blasting that can result in human injuries.In this study,support vector regression(SVR)is combined with four algorithms:gravitational search algorithm(GSA),biogeography-based optimization(BBO),ant colony optimization(ACO),and whale optimization algorithm(WOA)for predicting flyrock in two surface mines in Iran.Additionally,three other methods,including artificial neural network(ANN),kernel extreme learning machine(KELM),and general regression neural network(GRNN),are employed,and their performances are compared to those of four hybrid SVR models.After modeling,the measured and predicted flyrock values are validated with some performance indices,such as root mean squared error(RMSE).The results revealed that the SVR-WOA model has the most optimal accuracy,with an RMSE of 7.218,while the RMSEs of the KELM,GRNN,SVR-GSA,ANN,SVR-BBO,and SVR-ACO models are 10.668,10.867,15.305,15.661,16.239,and 18.228,respectively.Therefore,combining WOA and SVR can be a valuable tool for accurately predicting flyrock distance in surface mines. 展开更多
关键词 flyrock induced by blasting optimization algorithms SVR GRNN
在线阅读 下载PDF
A Comparative Study of Two Tree-Based Models for Predicting Flyrock Velocity at Open Pit Bench Mining
2
作者 Ezatullah Rawnaq Bassir Esmatyar +2 位作者 Akihiro Hamanaka Takashi Sasaoka Hideki Shimada 《Open Journal of Applied Sciences》 2024年第2期267-287,共21页
Blasting is a cost-effective technique to break hard rock volumes by using explosives in the mining and civil engineering realms. Moreover, although blasting is a designed process and plays an indispensable role in th... Blasting is a cost-effective technique to break hard rock volumes by using explosives in the mining and civil engineering realms. Moreover, although blasting is a designed process and plays an indispensable role in these industries, it can also have multiple adverse environmental impacts. One such effect is flyrock, which poses risks to nearby machinery, and residential structures, and can even lead to injuries or fatalities. To optimize blasting efficiency as well as restrict side effects, prediction of the blast aftereffects is vital. Therefore, the present work focuses on using two machine learning methods to predict the velocity of flyrock in the open pit mine. To address this issue, a comprehensive dataset was gathered from the open pit mine. Then, Decision Tree and Random Forest algorithms were employed to predict flyrock velocity. The Random Forest model demonstrated superior performance compared to the Decision Tree model. Nonetheless, the performance of the Decision Tree model was deemed satisfactory, as evidenced by its coefficient of determination value of 0.83, mean squared error (MSE) of 4.2, and mean absolute percentage error (MAPE) of 5.6%. Considering these metrics, it is reasonable to conclude that tree-based algorithms can be effective in predicting flyrock velocity. 展开更多
关键词 flyrock Machine Learning Bench Blasting Coefficient of Determination
在线阅读 下载PDF
Prediction of flyrock distance induced by mine blasting using a novel Harris Hawks optimization-based multi-layer perceptron neural network 被引量:13
3
作者 Bhatawdekar Ramesh Murlidhar Hoang Nguyen +4 位作者 Jamal Rostami XuanNam Bui Danial Jahed Armaghani Prashanth Ragam Edy Tonnizam Mohamad 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1413-1427,共15页
In mining or construction projects,for exploitation of hard rock with high strength properties,blasting is frequently applied to breaking or moving them using high explosive energy.However,use of explosives may lead t... In mining or construction projects,for exploitation of hard rock with high strength properties,blasting is frequently applied to breaking or moving them using high explosive energy.However,use of explosives may lead to the flyrock phenomenon.Flyrock can damage structures or nearby equipment in the surrounding areas and inflict harm to humans,especially workers in the working sites.Thus,prediction of flyrock is of high importance.In this investigation,examination and estimation/forecast of flyrock distance induced by blasting through the application of five artificial intelligent algorithms were carried out.One hundred and fifty-two blasting events in three open-pit granite mines in Johor,Malaysia,were monitored to collect field data.The collected data include blasting parameters and rock mass properties.Site-specific weathering index(WI),geological strength index(GSI) and rock quality designation(RQD)are rock mass properties.Multi-layer perceptron(MLP),random forest(RF),support vector machine(SVM),and hybrid models including Harris Hawks optimization-based MLP(known as HHO-MLP) and whale optimization algorithm-based MLP(known as WOA-MLP) were developed.The performance of various models was assessed through various performance indices,including a10-index,coefficient of determination(R^(2)),root mean squared error(RMSE),mean absolute percentage error(MAPE),variance accounted for(VAF),and root squared error(RSE).The a10-index values for MLP,RF,SVM,HHO-MLP and WOA-MLP are 0.953,0.933,0.937,0.991 and 0.972,respectively.R^(2) of HHO-MLP is 0.998,which achieved the best performance among all five machine learning(ML) models. 展开更多
关键词 flyrock Harris hawks optimization(HHO) Multi-layer perceptron(MLP) Random forest(RF) Support vector machine(SVM) Whale optimization algorithm(WOA)
在线阅读 下载PDF
Prediction of flyrock in open pit blasting operation using machine learning method 被引量:12
4
作者 Manoj Khandelwal M. Monjezi 《International Journal of Mining Science and Technology》 SCIE EI 2013年第3期313-316,共4页
Flyrock is one of the most hazardous events in blasting operation of surface mines. There are several empirical methods to predict flyrock. Low performance of such models is due to the complexity of flyrock analysis. ... Flyrock is one of the most hazardous events in blasting operation of surface mines. There are several empirical methods to predict flyrock. Low performance of such models is due to the complexity of flyrock analysis. Existence of various effective parameters and their unknown relationships are the main reasons for inaccuracy of the empirical models. Presently, the application of new approaches such as artificial intelligence is highly recommended. In this paper, an attempt has been made to predict flyrock in blasting operations of Soungun Copper Mine, Iran incorporating rock properties and blast design parameters using support vector machine (SVM) method. To investigate the suitability of this approach, the predictions by SVM have been compared with multivariate regression analysis (MVRA), too. Coefficient of determination (CoD) and mean absolute error (MAE) were taken as performance measures. It was found that CoD between measured and predicted flyrock was 0.948 and 0.440 by SVM and MVRA, respectively, whereas MAE between measured and predicted flyrock was 3.11 and 7.74 by SVM and MVRA, respectively. 展开更多
关键词 Blasting Soungun Copper Mine flyrock Support vector machine MVRA
在线阅读 下载PDF
Prediction of flyrock induced by mine blasting using a novel kernel-based extreme learning machine 被引量:4
5
作者 Mehdi Jamei Mahdi Hasanipanah +2 位作者 Masoud Karbasi Iman Ahmadianfar Somaye Taherifar 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1438-1451,共14页
Blasting is a common method of breaking rock in surface mines.Although the fragmentation with proper size is the main purpose,other undesirable effects such as flyrock are inevitable.This study is carried out to evalu... Blasting is a common method of breaking rock in surface mines.Although the fragmentation with proper size is the main purpose,other undesirable effects such as flyrock are inevitable.This study is carried out to evaluate the capability of a novel kernel-based extreme learning machine algorithm,called kernel extreme learning machine(KELM),by which the flyrock distance(FRD) is predicted.Furthermore,the other three data-driven models including local weighted linear regression(LWLR),response surface methodology(RSM) and boosted regression tree(BRT) are also developed to validate the main model.A database gathered from three quarry sites in Malaysia is employed to construct the proposed models using 73 sets of spacing,burden,stemming length and powder factor data as inputs and FRD as target.Afterwards,the validity of the models is evaluated by comparing the corresponding values of some statistical metrics and validation tools.Finally,the results verify that the proposed KELM model on account of highest correlation coefficient(R) and lowest root mean square error(RMSE) is more computationally efficient,leading to better predictive capability compared to LWLR,RSM and BRT models for all data sets. 展开更多
关键词 BLASTING flyrock distance Kernel extreme learning machine(KELM) Local weighted linear regression(LWLR) Response surface methodology(RSM)
在线阅读 下载PDF
Prediction of blast-induced flyrock in Indian limestone mines using neural networks 被引量:11
6
作者 R.Trivedi T.N.Singh A.K.Raina 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第5期447-454,共8页
Frequency and scale of the blasting events are increasing to boost limestone production. Mines areapproaching close to inhabited areas due to growing population and limited availability of land resourceswhich has chal... Frequency and scale of the blasting events are increasing to boost limestone production. Mines areapproaching close to inhabited areas due to growing population and limited availability of land resourceswhich has challenged the management to go for safe blasts with special reference to opencast mining.The study aims to predict the distance covered by the flyrock induced by blasting using artificial neuralnetwork (ANN) and multi-variate regression analysis (MVRA) for better assessment. Blast design andgeotechnical parameters, such as linear charge concentration, burden, stemming length, specific charge,unconfined compressive strength (UCS), and rock quality designation (RQD), have been selected as inputparameters and flyrock distance used as output parameter. ANN has been trained using 95 datasets ofexperimental blasts conducted in 4 opencast limestone mines in India. Thirty datasets have been used fortesting and validation of trained neural network. Flyrock distances have been predicted by ANN, MVRA,as well as further calculated using motion analysis of flyrock projectiles and compared with the observeddata. Back propagation neural network (BPNN) has been proven to be a superior predictive tool whencompared with MVRA. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved. 展开更多
关键词 Artificial neural network(ANN) Blasting Opencast mining Burden Stemming Specific charge flyrock
在线阅读 下载PDF
A stacked multiple kernel support vector machine for blast induced flyrock prediction 被引量:1
7
作者 Ruixuan Zhang Yuefeng Li +2 位作者 Yilin Gui Danial Jahed Armaghani Mojtaba Yari 《Geohazard Mechanics》 2024年第1期37-48,共12页
As a widely used rock excavation method in civil and mining construction works, the blasting operations and theinduced side effects are always investigated by the existing studies. The occurrence of flyrock is regarde... As a widely used rock excavation method in civil and mining construction works, the blasting operations and theinduced side effects are always investigated by the existing studies. The occurrence of flyrock is regarded as one ofthe most important issues induced by blasting operations, since the accurate prediction of which is crucial fordelineating safety zone. For this purpose, this study developed a flyrock prediction model based on 234 sets ofblasting data collected from Sugun Copper Mine site. A stacked multiple kernel support vector machine (stackedMK-SVM) model was proposed for flyrock prediction. The proposed stacked structure can effectively improve themodel performance by addressing the importance level of different features. For comparison purpose, 6 othermachine learning models were developed, including SVM, MK-SVM, Lagragian Twin SVM (LTSVM), ArtificialNeural Network (ANN), Random Forest (RF) and M5 Tree. This study implemented a 5-fold cross validationprocess for hyperparameters tuning purpose. According to the evaluation results, the proposed stacked MK-SVMmodel achieved the best overall performance, with RMSE of 1.73 and 1.74, MAE of 0.58 and 1.08, VAF of 98.95and 99.25 in training and testing phase, respectively. 展开更多
关键词 Multiple kernel learning Support vector machine Stacked model flyrock prediction
在线阅读 下载PDF
Machine learning based prediction of flyrock distance in rock blasting:A safe and sustainable mining approach
8
作者 Blessing Olamide Taiwo Yewuhalashet Fissha +8 位作者 Shahab Hosseini Mohammad Khishe Esma Kahraman Babatunde Adebayo Mohammed Sazid Patrick Adeniyi Adesida Oluwaseun Victor Famobuwa Joshua Oluwaseyi Faluyi Adams Abiodun Akinlabi 《Green and Smart Mining Engineering》 2024年第3期346-361,共16页
Flyrock is a significant environmental and safety concern in mining and construction.It arises from various geological and blast design factors,posing risks to workers,machinery,and nearby structures.This study examin... Flyrock is a significant environmental and safety concern in mining and construction.It arises from various geological and blast design factors,posing risks to workers,machinery,and nearby structures.This study examined how these factors affect the rate and distance of flyrock projections caused by blasts.To address this issue,advanced machine learning(ML)models were used to predict flyrock distances in the Akoko Edo dolomite quarries.The models examined included bidirectional recurrent neural networks(BRNNs),support vector regression(SVR)with different kernels(SVR-S,SVR-RBF,SVR-L,SVR-P),long short-term memory(LSTM)networks,and random forest(RF)algorithms.A case study was conducted using 258 blasting data samples to develop these models.Key factors influencing flyrock were identified:blast hole burden distance,maximum instantaneous charge,and rock brittleness index.Using these factors,a flyrock possibility assessment chart was created to enhance the safety of small-scale mining operations.The model’s prediction accuracy was evaluated using correlation coefficients and four performance metrics.The LSTM model stood out,achieving the highest coefficient of correlation(R2=0.99)for both training and testing datasets.This indicates that the LSTM model accurately predicts blast-induced flyrock distance.The study also revealed that the Gaussian-RBF kernel SVR has high prediction accuracy when compared to other SVR variants(SVR-S,SVR-L,and SVR-P).In conclusion,the study compared various ML models for flyrock reduction and found that the LSTM model was the most effective in estimating blast-induced flyrock distances. 展开更多
关键词 BLASTING flyrock Safety chart Mine production reliability Long short-term memory networks
在线阅读 下载PDF
复杂环境高陡边坡爆破安全防护技术
9
作者 张涛 王雪林 +1 位作者 庞小泞 曹稳 《现代矿业》 2025年第4期238-242,共5页
针对复杂环境高边坡下临近建(构)筑物的爆破施工,为保证重要保护对象的安全,宁波舟山港基础设施重点项目QS基地开山爆破工程Ⅱ标段施工过程中,在踏勘分析周边环境后,结合同类型工程安全防护经验,对爆破振动、飞石、滚石、冲击波采取了... 针对复杂环境高边坡下临近建(构)筑物的爆破施工,为保证重要保护对象的安全,宁波舟山港基础设施重点项目QS基地开山爆破工程Ⅱ标段施工过程中,在踏勘分析周边环境后,结合同类型工程安全防护经验,对爆破振动、飞石、滚石、冲击波采取了针对性安全防护措施,取得了良好效果,解决了高边坡高强度爆破施工时,爆破进度与安全之间的矛盾,为类似项目提供了相关参考经验。 展开更多
关键词 高陡边坡 爆破振动 爆破飞石 安全防护
在线阅读 下载PDF
露天矿山爆破工程有害效应防治对策探讨
10
作者 覃玉忠 《能源与节能》 2025年第10期204-207,共4页
为探讨露天矿山爆破工程有害效应产生原因及有效防治对策,采用现场数据分析、理论验算等方法,以花秋镇露天矿山工程为例,分析了不同爆破参数设计对有害效应的影响。研究结果表明,科学优化爆破设计参数、采用先进设备与技术、加强施工管... 为探讨露天矿山爆破工程有害效应产生原因及有效防治对策,采用现场数据分析、理论验算等方法,以花秋镇露天矿山工程为例,分析了不同爆破参数设计对有害效应的影响。研究结果表明,科学优化爆破设计参数、采用先进设备与技术、加强施工管理和监控、引入智能化监测与控制系统等综合性防治对策的应用,能降低爆破对环境和安全的负面影响,有利于实现露天矿山爆破工程的安全与可持续发展。 展开更多
关键词 露天矿山 有害效应 爆破振动 飞石现象
在线阅读 下载PDF
露天开采爆破飞石安全影响研究
11
作者 张科 胡子浩 沙胜军 《有色金属(矿山部分)》 2025年第3期86-92,共7页
爆破飞石问题是露天矿山作业中需要面对的灾害之一。为了研究露天矿山爆破飞石对周围安全影响,以惠州市大亚湾区霞涌晓联建筑用花岗岩矿露天开采爆破工程为背景,通过理论分析结合数值模拟手段,研究120 mm与150 mm两种孔径炮孔逐孔爆破... 爆破飞石问题是露天矿山作业中需要面对的灾害之一。为了研究露天矿山爆破飞石对周围安全影响,以惠州市大亚湾区霞涌晓联建筑用花岗岩矿露天开采爆破工程为背景,通过理论分析结合数值模拟手段,研究120 mm与150 mm两种孔径炮孔逐孔爆破时飞石危害。研究发现:经过理论计算,炮孔孔径为120、150 mm时飞石飞散距离均小于飞散物安全允许范围值;数值模拟分析抛掷的飞石最大横向位移仅为90 m;有效填塞下爆破冲孔的飞石最大距离仅为21 m。结果表明:基于晓联建筑用花岗岩矿背景,采用120 mm与150 mm两种孔径分区逐孔爆破,产生飞石对周围建筑无危害,采用爆破填塞后大大降低飞石危害。并提出安全建议:加强孔网参数控制和覆盖防护,保持良好的炮孔堵塞,均能有效降低爆破飞石危害。 展开更多
关键词 露天开采 爆破飞石 数值模拟 炮孔填塞 飞散距离
在线阅读 下载PDF
露天爆破飞石距离智能预测研究 被引量:2
12
作者 周红敏 赵玉杰 +1 位作者 张宪堂 王洪立 《安全与环境学报》 CAS CSCD 北大核心 2024年第7期2554-2564,共11页
为了在露天爆破中更准确地预测出飞石的抛掷距离,研究引入多科得分的概念,利用多科得分思维进化算法(Multidisciplinary Score Mind Evolutionary Algorithm,MSMEA)对BP神经网络(Back-Propagation Neural Network)进行优化并建立模型来... 为了在露天爆破中更准确地预测出飞石的抛掷距离,研究引入多科得分的概念,利用多科得分思维进化算法(Multidisciplinary Score Mind Evolutionary Algorithm,MSMEA)对BP神经网络(Back-Propagation Neural Network)进行优化并建立模型来预测飞石距离。通过分析隐含层神经元个数、种群规模、子种群规模、优胜及临时子种群个数建立了64个多科得分思维进化算法优化BP神经网络模型(Back-Propagation Neural Network Optimized by Multidisciplinary Score Mind Evolutionary Algorithm,MSMEA BP),并选取了其中最优的MSMEA BP模型。为了验证预测模型的有效性,分别用MSMEA BP模型、思维进化算法优化BP神经网络模型(Back-Propagation Neural Network Optimized by Mind Evolutionary Algorithm,MEA BP)和BP神经网络模型对10组爆破飞石距离进行预测。结果显示,MSMEA BP模型得到的预测结果与真实值之间的平均相对误差、决定系数、均方根误差、均方根百分比误差分别达到3.67%、0.9808、7.3571、1.33%,依次优于MEA BP模型和BP神经网络模型,表明在相同训练条件下,采用多科得分思维进化算法对BP神经网络模型进行优化,可以克服BP神经网络易陷入局部最优解的问题,进而显著提高模型的预测精度。该方法为预测爆破飞石距离提供了一个新思路。 展开更多
关键词 安全工程 爆破安全距离 飞石 思维进化算法 神经网络
原文传递
爆破飞石致人死亡案例分析 被引量:19
13
作者 高文乐 毕卫国 +1 位作者 张金泉 赵锦桥 《爆破》 CSCD 2002年第3期77-78,共2页
根据爆破飞石在空气中的抛掷规律及岩石结构的物理性质 ,对爆破飞石致人死亡典型案例进行分析 ,为法院定案提供了科学依据。
关键词 爆破飞石 岩石结构 死亡事故 原因分析 矿山爆破 安全
在线阅读 下载PDF
钢筋混凝土立柱爆破破坏过程及个别飞散物试验研究 被引量:9
14
作者 黄小武 谢先启 +3 位作者 贾永胜 姚颖康 孙金山 韩宇 《爆破》 CSCD 北大核心 2020年第1期13-18,共6页
爆破拆除实践中存在保守设计、过度防护的现象,其根源是不能确定炸药能量“供”与“求”的平衡点。为研究多药包共同作用下钢筋混凝土立柱爆破破坏及个别飞散物运动过程,在野外爆破试验场开展了多组立柱爆破试验。高速摄影观测及破碎碎... 爆破拆除实践中存在保守设计、过度防护的现象,其根源是不能确定炸药能量“供”与“求”的平衡点。为研究多药包共同作用下钢筋混凝土立柱爆破破坏及个别飞散物运动过程,在野外爆破试验场开展了多组立柱爆破试验。高速摄影观测及破碎碎块分析结果表明:高段位孔内雷管的名义延期时间的误差影响立柱的爆破破坏过程;爆破个别飞散物在100 ms的观测时间内的运动速度与时间呈线性关系,抛掷速度为10~20 m/s,抛掷方向以水平方向为主。在工程实践中,建议将爆破对象外围构件作为防护重点,以柔性防护为主、刚性防护为辅,提高项目经济效益与施工效率。 展开更多
关键词 钢筋混凝土立柱 爆破拆除 个别飞散物 高速摄影
在线阅读 下载PDF
爆破飞石预测公式的量纲分析法 被引量:13
15
作者 吴春平 刘连生 +1 位作者 窦金龙 张光权 《工程爆破》 北大核心 2012年第2期26-28,共3页
在爆破飞石距离的研究方面,目前还没有一个普遍接受的爆破飞石预测公式。量纲分析法不涉及物理问题的数量方程,可以简化数学分析过程,减少相关参数,因此特别适合用于爆破理论分析。用量纲分析法对爆破飞石的产生过程进行了研究,将其分... 在爆破飞石距离的研究方面,目前还没有一个普遍接受的爆破飞石预测公式。量纲分析法不涉及物理问题的数量方程,可以简化数学分析过程,减少相关参数,因此特别适合用于爆破理论分析。用量纲分析法对爆破飞石的产生过程进行了研究,将其分为炸药爆炸和飞石抛掷两个过程,得出特定情况下爆破飞石抛掷距离的通用预测公式。 展开更多
关键词 工程爆破 飞石 量纲分析 π定理 相似理论
在线阅读 下载PDF
69.8m高冷却塔定向爆破拆除 被引量:5
16
作者 贾永胜 谢先启 +3 位作者 罗启军 韩传伟 程良奎 刘昌邦 《工程爆破》 北大核心 2010年第1期59-62,共4页
介绍了一座双曲线钢筋混凝土筒式结构冷却塔的定向爆破拆除。阐述了冷却塔结构特点、爆破难点、总体拆除方案、设计参数的选择及飞石防护措施等。爆破取得预期效果,可为同类工程提供参考。
关键词 拆除爆破 筒式结构 冷却塔 飞石防护
在线阅读 下载PDF
某铅锌矿爆破有害效应分析及安全评估 被引量:4
17
作者 唐海 林大能 陈文昭 《中国安全科学学报》 CAS CSCD 2008年第9期93-98,共6页
以某铅锌矿爆破施工为背景,在现场试验的基础上,对测得的振动速度进行回归分析,得到场地爆破振动衰减规律,并结合爆破主频率,确定了周围民房的容许振动速度为2cm/s。同时,对爆破冲击波和噪声进行研究,结果表明:爆破振动、冲击波和噪声... 以某铅锌矿爆破施工为背景,在现场试验的基础上,对测得的振动速度进行回归分析,得到场地爆破振动衰减规律,并结合爆破主频率,确定了周围民房的容许振动速度为2cm/s。同时,对爆破冲击波和噪声进行研究,结果表明:爆破振动、冲击波和噪声均与爆心距、炸药量有关。当爆心距相同时,噪声对建筑物和人员的影响最大,空气冲击波次之,爆破振动较小。主要从控制最大段药量和爆源距安全原则考虑,提出了防爆破振动、噪声和冲击波及飞石的安全距离。另外,还提出了硐口悬挂3层麻袋、堵塞炮泥和控制起爆网络中段间微差等安全措施,并对有害效应进行评估,其结果对后续爆破设计和施工具有实用价值和指导意义。 展开更多
关键词 现场试验 爆破振动 衰减规律 冲击波 噪声 爆破飞石
在线阅读 下载PDF
基于灰色Elman神经网络的爆破飞石距离预测研究 被引量:5
18
作者 陈建宏 彭耀 邬书良 《爆破》 CSCD 北大核心 2015年第1期151-156,共6页
针对单一神经网络预测方法存在一些不足,将建立灰色关联分析法与Elman神经网络的耦合模型,对爆破飞石最大飞散距离进行预测研究。首先,利用灰色关联分析方法对数据进行预处理,确定各影响因素与爆破飞石距离之间的关联度;然后,根据关联... 针对单一神经网络预测方法存在一些不足,将建立灰色关联分析法与Elman神经网络的耦合模型,对爆破飞石最大飞散距离进行预测研究。首先,利用灰色关联分析方法对数据进行预处理,确定各影响因素与爆破飞石距离之间的关联度;然后,根据关联度的大小,选择关联度较大的影响因素作为Elman神经网络的输入层数据;最后,用神经网络的功能对数据进行训练和预测。研究结果表明:利用灰色关联分析方法确定主要影响因素作为输入层,比单一使用Elman神经网络的预测精度更高,达到95%以上。 展开更多
关键词 爆破飞石 飞散距离 影响因素 灰色关联分析法 ELMAN神经网络
在线阅读 下载PDF
露天矿边坡在爆破中的飞石距离研究 被引量:4
19
作者 崔铁军 马云东 王来贵 《安全与环境学报》 CAS CSCD 北大核心 2016年第6期70-74,共5页
露天矿边坡爆破产生的飞石对周围人机系统造成破坏,基于颗粒流理论研究了爆破后飞石的飞出距离。以海州矿某边坡为例,在边坡上设置了3种药量TNT的15个爆破点,对计算平衡后模型中颗粒飞出的散落情况进行了研究。结果表明,细观过程可分为... 露天矿边坡爆破产生的飞石对周围人机系统造成破坏,基于颗粒流理论研究了爆破后飞石的飞出距离。以海州矿某边坡为例,在边坡上设置了3种药量TNT的15个爆破点,对计算平衡后模型中颗粒飞出的散落情况进行了研究。结果表明,细观过程可分为3个阶段:爆炸冲击起主导作用的阶段、重力占优势的上覆岩层塌落阶段、颗粒下滑局部调整至平衡阶段。最大飞石距离小于450 m;A1到A15的飞石距离逐渐减小;1 kg TNT使岩石松动滑落,5 kg TNT飞石距离在250 m以内,10 kg TNT的飞石距离随爆破点的位置不同而不同。同时,飞石的距离与上覆岩层的完整性有很大关系。 展开更多
关键词 安全工程 矿业工程 露天矿边坡 爆破 飞石距离 颗粒流 模拟
原文传递
控制硐室爆破飞石安全问题措施探讨 被引量:3
20
作者 万希岭 李红杰 许永胜 《爆破》 CSCD 2003年第4期101-103,共3页
 硐室大爆破产生个别飞石的原因,主要有测量不准确、地质条件不清楚、药包布置不合适、爆破参数选择不当、装药堵塞不按设计要求施工、人为操作失误等。重点探讨控制硐室大爆破飞石应采取的措施,并以湖北郧西30万方级配石料开采硐室大...  硐室大爆破产生个别飞石的原因,主要有测量不准确、地质条件不清楚、药包布置不合适、爆破参数选择不当、装药堵塞不按设计要求施工、人为操作失误等。重点探讨控制硐室大爆破飞石应采取的措施,并以湖北郧西30万方级配石料开采硐室大爆破为例,证明应用这些安全措施,成功地将爆破飞石控制在200m的范围之内。 展开更多
关键词 硐室爆破 飞石控制 爆破安全 空气冲击波 起爆网路 爆破参数
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部