Municipal solid waste incineration fly ash(MSWI)is considered as one of the hazardous wastes and requires to be well disposed to reduce the contaminant to the environment.Reference to the production of coal fly ash(FA...Municipal solid waste incineration fly ash(MSWI)is considered as one of the hazardous wastes and requires to be well disposed to reduce the contaminant to the environment.Reference to the production of coal fly ash(FA)bricks,MSWI and FA were utilized to prepare autoclaved MSWI-FA block samples.Ultrasonic-assisted hydrothermal synthesis technology was used for production to explore the effect of ultrasonic pre-treatment.Compressive strength,dry density,and water absorption tests were conducted to determine the optimal ultrasonic parameters.Ultrasonic pre-treating mechanisms were investigated by SEM,FT-IR,particle size analysis,and BET.Furthermore,the micro-analyses of block samples were conducted.The heavy metal leaching concentration was studied to assess the environmental safety.The experimental results show that the ultrasonic pre-treating time,water bath temperature,and ultrasonic power of 3 h,30℃,and 840 W are the optimal,under which the compressive strength,dry density,and water absorption were 8.14 MPa,1417.48 kg/m^(3),and 0.38,respectively.It is shown that ultrasound destroys the surface structure of raw materials and smaller FA particles embed into MSWI.The particle size distribution of pre-treated raw materials mixture is wider and total pore volume is decreased by 6.3%.During hydrothermal processing,more Al-substituted tobermorite crystals are generated,which is the main source of higher strength and smaller pore volume of prepared block samples.The solidification/stabilization rates of Cu,Pb,and Zn increased by 30.77%,4.76%,and 35.29%,respectively.This study shows a feasible way to utilize MSWI as raw material for construction.展开更多
Recycling rare earth elements(REEs)from waste is necessary for an environmentally sustainable reuse and wastewater management approach.Na-A zeolite was synthesized from coal fly ash(CFA)and applied for Ce^(3+)adsorpti...Recycling rare earth elements(REEs)from waste is necessary for an environmentally sustainable reuse and wastewater management approach.Na-A zeolite was synthesized from coal fly ash(CFA)and applied for Ce^(3+)adsorption.Fourier transform infrared(FTIR)spectra show peaks at 790,500 and 467 cm^(-1),which are bond vibrations of Si-O-Si,Si with Al-O and Si-O-.The surface area is 15.88 m^(2)/g,with a pore size of 2.14 nm.SEM images show a cubic shape,which indicates the formation of zeolite.Field emission and energy disperse spectroscopy(EDS)shows the formation of Si,Al,Na,and O.Na-A zeolite was applied for Ce^(3+)adsorption.The optimum conditions for Ce^(3+)adsorption are 50 ppm concentration,360 min,and pH 6.The maximum adsorption capacity is 176.49 mg/g.Based on the results,it is found that the adsorption of Ce^(3+)by Na-A zeolite is pseudo-second-order.The desorption test using HNO_(3) is more effective than using HCl and H_(2)SO_(4).A desorption efficiency of 97.22%is obtained at 4 cycles.Adsorption test using real sample wastewater demonstrates an adsorption efficiency of 83.35%.展开更多
Three types of activators such as sodium hydroxide,calcium oxide and triethanolamine(TEA)are used to establish different activation environments to address the problems associated with the process of activating fly as...Three types of activators such as sodium hydroxide,calcium oxide and triethanolamine(TEA)are used to establish different activation environments to address the problems associated with the process of activating fly ash paste.We conducted mechanical tests and numerical simulations to understand the evolution of microstructure,and used environmental scanning electron microscopy(ESEM)and energy dispersive spectroscopy(EDS)techniques to analyze the microenvironments of the samples.The mechanical properties of fly ash paste under different activation conditions and the changes in the microstructure and composition were investigated.The results revealed that under conditions of low NaOH content(1%-3%),the strength of the sample increased significantly.When the content exceeded 4%,the rate of increase in strength decreased.Based on the results,the optimal NaOH content was identified,which was about 4%.A good activation effect,especially for short-term activation(3-7 d),was achieved using TEA under high doping conditions.The activation effect was poor for long-term strength after 28 days.The CaO content did not significantly affect the degree of activation achieved.The maximum effect was exerted when the content of CaO was 2%.The virtual cement and concrete testing laboratory(VCCTL)was used to simulate the hydration process,and the results revealed that the use of the three types of activators accelerated the formation of Ca(OH)_(2) in the system.The activators also corroded the surface of the fly ash particles,resulting in a pozzolanic reaction.The active substances in fly ash were released efficiently,and hydration was realized.The pores were filled with hydration products,and the microstructure changed to form a new frame of paste filling that helped improve the strength of fly ash paste.展开更多
In order to study the characteristics of pure fly ash-based geopolymer concrete(PFGC)conveniently,we used a machine learning method that can quantify the perception of characteristics to predict its compressive streng...In order to study the characteristics of pure fly ash-based geopolymer concrete(PFGC)conveniently,we used a machine learning method that can quantify the perception of characteristics to predict its compressive strength.In this study,505 groups of data were collected,and a new database of compressive strength of PFGC was constructed.In order to establish an accurate prediction model of compressive strength,five different types of machine learning networks were used for comparative analysis.The five machine learning models all showed good compressive strength prediction performance on PFGC.Among them,R2,MSE,RMSE and MAE of decision tree model(DT)are 0.99,1.58,1.25,and 0.25,respectively.While R2,MSE,RMSE and MAE of random forest model(RF)are 0.97,5.17,2.27 and 1.38,respectively.The two models have high prediction accuracy and outstanding generalization ability.In order to enhance the interpretability of model decision-making,we used importance ranking to obtain the perception of machine learning model to 13 variables.These 13 variables include chemical composition of fly ash(SiO_(2)/Al_(2)O_(3),Si/Al),the ratio of alkaline liquid to the binder,curing temperature,curing durations inside oven,fly ash dosage,fine aggregate dosage,coarse aggregate dosage,extra water dosage and sodium hydroxide dosage.Curing temperature,specimen ages and curing durations inside oven have the greatest influence on the prediction results,indicating that curing conditions have more prominent influence on the compressive strength of PFGC than ordinary Portland cement concrete.The importance of curing conditions of PFGC even exceeds that of the concrete mix proportion,due to the low reactivity of pure fly ash.展开更多
Microwave-curing and mechanical grinding of fly ash have both beenadopted as effective methods for improving the early-age strength of alkali-activated fly ash(AAFA)binders.This study combined these two approaches by ...Microwave-curing and mechanical grinding of fly ash have both beenadopted as effective methods for improving the early-age strength of alkali-activated fly ash(AAFA)binders.This study combined these two approaches by synthesizing AAFA using original,medium-fine,and ultrafine fly ash as precursors,and then specimens were cured with a five-stage temperature-controlled microwave.The compressive strength results indicate that the original AAFA develops the highest strength initially during microwave-curing,reaching 28 MPa at stage 2.Medium-fine AAFA exhibits the highest strength of 60 MPa when cured to stage 4-I,which is 26%higher than the peak strength of original AAFA.It is attributed to the significant rise in their specific surface area,which accelerates the dissolution of Si and Al from the precursor and facilitates the subsequent formation of N-A-S-H gels.Additionally,nanoscale zeolite crystals formed as secondary products fill the tiny gaps between amorphous products,thereby significantly improving their microstructure.In contrast,ultrafine fly ash,primarily composed of fragmented particles,necessitated a substantial amount of water,which adversely affects the absorption efficiency for microwave of AAFA specimens.Thus,ultrafine AAFA specimens consistently exhibit the lowest compressive strength.Specifically,at the end of curing,the compressive strength of these three specimens with microwave-curing is approximately 32%,59%,and 172%higher than that of the steam-cured sample,respectively.These findings demonstrate the compatibility of microwave-curing and fly ash refinement in enhancing the early compressive strength development of AAFA.展开更多
This study was part of the framework that contributed not only to the improvement of thermal comfort in housing but also to the decarbonization of the construction and building materials industry. For this purpose, te...This study was part of the framework that contributed not only to the improvement of thermal comfort in housing but also to the decarbonization of the construction and building materials industry. For this purpose, terracotta brick seems to meet these needs. Thus, the objective of this work was to evaluate the influence of the incorporation of coal fly ash from a thermal power plant on the physical and mechanical properties of fired bricks from grey clay in the Thicky area of Senegal. The coal fly ash was incorporated into the raw clay material in proportions of 0, 5, 10, and 15 % by weight. These two raw materials were first characterized by X-ray fluorescence spectroscopy (XRF). The XRF analyses showed that the most abundant oxides in clay were SiO2 (55.034%) and Fe2O3 (10.155%). In coal fly ash, SiO2 (38.574%) is predominant. The ash also contained Al2O3 (7.717%) and alicano-earthy melting oxides such as CaO (9.271%) and MgO (7.298%) etc. These melting oxides were necessary to facilitate the formation of the liquid phase when baking platelets. The latter, when burned at a temperature of 880°C, were characterized by determining the number of physico-mechanical parameters, such as linear shrinkage during cooking, water absorption, fire loss and compressive strength. A Hierarchical Ascending Classification of these different parameters was performed and three classes were obtained. Class 1 with better compressive strength (6.358 MPa), was in sample A (5%). Class 2 consisted of sample D (reference) and had a higher plasticity index (28.51%) and water absorption rate (11.19%). Finally, class 3, which included samples B (10%) and C (15%), had very high shrinkage and fire losses compared to other platelets. These results highlighted the possibility of using up to 5% of the coal fly ash in the production of new fired bricks with good performance.展开更多
The present study investigates the engineering properties of submerged organic silt(orSi)stabilized with F-class fly ash(FA),with and without the addition of an activator(CaO).The utilization of F-class FA for soil im...The present study investigates the engineering properties of submerged organic silt(orSi)stabilized with F-class fly ash(FA),with and without the addition of an activator(CaO).The utilization of F-class FA for soil improvement is an important aspect of sustainable and environmentally-conscious geotechnical engineering when marginal usage of lime and concrete is of great interest to engineers and societies.Currently,discussion is predominantly focused on the positive aspects of using the F-class FA,with a paucity of emphasis on the negative aspects.To explore these features more thoroughly,a series of strength and compressibility tests was conducted.The sample preparation and curing methodology were chosen to replicate the in situ conditions where soil is surcharged and submerged in water.It was found that the incorporation of F-class FA without an activator reduces the undrained shear strength of submerged orSi by about 20%–25%and permanently prevents any thixotropic strength restoration.An increase in undrained shear strength is observed when lime(3%–6%)is added to the soil–FA mixture or when only lime(in the same amount of 3%–6%)is used.Consequently,F-class FA can be successfully used as a filler for slurries with minimum lime content in soil mixing methods.The F-class FA(with or without an activator)shifts the so-called“creep delay”in time,consequently reducing the total creep settlements.The shift of“creep delay”is more considerable for orSi stabilized with lime or with FA and lime as an activator,than for orSi stabilized with pure F-class FA.展开更多
The effects of isocyanate(IA)incorporation on the toughness and volume stability of AAFS were systematically investigated.Various IA dosages were introduced into AAFS,and their influence on mechanical properties,micro...The effects of isocyanate(IA)incorporation on the toughness and volume stability of AAFS were systematically investigated.Various IA dosages were introduced into AAFS,and their influence on mechanical properties,microstructure,and shrinkage behavior was evaluated.The experimental results indicate that,with the incorporation of 5%IA,the 28-day compressive strength reaches 48.6 MPa,the 56-day drying shrinkage decreases by 35.91%,and minimal cracking is observed in the ring test.Microstructural analyses using SEM,XRD,and FTIR reveal that IA reacts with water to form urethane and biuret,which crosslinks into a durable network structure.This network fills pores,reducing internal stresses and improving both toughness and volume stability.These findings offer new insights into optimizing alkali-activated materials for construction applications and provide a potential pathway for the development of more durable and stable geopolymers.展开更多
Phenolic foam(PF)has attracted growing attention in plugging areas due to its lightweight,flame retardancy and high fillability,yet its friable character and high reaction temperature severely weaken its potentials to...Phenolic foam(PF)has attracted growing attention in plugging areas due to its lightweight,flame retardancy and high fillability,yet its friable character and high reaction temperature severely weaken its potentials toward practical coal mining applications.Herein,a novel phenolic composite material filled with modified fly ash(MFA)geopolymer has been proposed to address the above issues.By modifying fly ash(FA)particles with siloxanes,robust interfacial bonding between the organic PF polymer and inorganic geopolymer network has been established,which enables modulation of their micro-morphologies to optimize their macro performances.The foam structure of PF evolves from an open-cell to a closed-cell morphology with the incorporation of MFA,leading to a decreased pulverization ratio(41%)while enhanced mechanical properties(15%).Compared with neat PF,the composite exhibits faster gelation dynamics during curing,with a maximum reaction temperature as low as only 40°C.PF/MFA composite show high reliability against gas leakage during a laboratory designed coal mine plugging test.Furthermore,the formation of a silica hybrid char layer with higher graphitization degree and a multiple continuous closed-cell structure following the combustion of PF/MFA effectively inhibits the release of combustible volatiles and toxic gases.It is provided that this strategy of geopolymer filled polymer cross-linking networks with tunable morphology opens up an avenue for advanced mining phenolic filling materials.展开更多
The effects of various fly ash(FA)contents on the durability and mechanical properties of recycled fine aggregate high ductility cementitious composites(RFA-HDCC)prepared with recycled fine aggregates(RFA)to fully rep...The effects of various fly ash(FA)contents on the durability and mechanical properties of recycled fine aggregate high ductility cementitious composites(RFA-HDCC)prepared with recycled fine aggregates(RFA)to fully replace natural fine aggregates was investigated.The results indicated that a 50% FA content significantly increased the compressive strength of RFA-HDCC by 13.93%.However,a?further increase in FA content led to a drastic decrease.The increased fly ash content substantially reduced the flexural and tensile strength;however,it markedly increased the matrix strain capacity,resulting in a 53.73% increase in the peak strain when FA was raised to 70%.Regarding durability,the increase in FA content negatively affected the chloride ion permeability and carbonation resistance.However,the increase in FA content initially improved the frost resistance of RFA-HDCC,peaking at 50% FA and deteriorating at 60% and 70% FA content.展开更多
Bioleaching is confronted with problems,such as low efficiency,long production cycle length,and vegetation destruction.In order to solve problems above,fly ash and low-grade copper sulfide ores were used to investigat...Bioleaching is confronted with problems,such as low efficiency,long production cycle length,and vegetation destruction.In order to solve problems above,fly ash and low-grade copper sulfide ores were used to investigate bioleaching behaviors and bacterial community succession.Results showed that copper recovery,bacterial concentration,total proportion of main leaching bacteria including Acidithiobacillus ferrooxidans,Acidibacillus ferrooxidans,and Leptospirillum ferriphilum,were improved through using appropriate dosage of fly ash.The maximum copper recovery of 79.87%and bacterial concentration of 7.08×10^(7)cells·mL^(-1)were obtained after us-ing 0.8 g·L^(-1)fly ash.Exclusive precipitation including Zn(Fe_(3)(SO_(4))_(2)(OH)_(6))_(2)and Mg(Fe_(3)(SO_(4))_(2)(OH)_(6))_(2)was found in sample added 0.8 g·L^(-1)fly ash,which reduced the effect of hazardous ions on bacteria and thus contributing to bacterial proliferation.Bacterial com-munity structure was differentiated,which indicated difference between original inoculation and sample used 0.8 g·L^(-1)fly ash was less than others.Total proportion of the three microorganism above accounted for more than 95%in all tests,especially in sample with 0.8 g·L^(-1)fly ash up to 99.81%.Cl^(-)and Ag^(+)contained in fly ash can act as catalytic agent,which contributed to conversion from smooth and dense passivation layer to sparse and scattered one,and therefore improving contact between ores,lixiviant,and bacteria.Using appropri-ate dosage of fly ash showed prospects in bioleaching.展开更多
To explore high value-added utilization pathways of fly ash,the mesoporous structure of silicon dioxide extracted from fly ash(FA-SiO_(2))was utilized to restrict the dicyandiamide(DCDA)thermal degradation process.Thi...To explore high value-added utilization pathways of fly ash,the mesoporous structure of silicon dioxide extracted from fly ash(FA-SiO_(2))was utilized to restrict the dicyandiamide(DCDA)thermal degradation process.This produced chemically bonded interacting composite photocatalysts of FA-SiO,and graphitic-phase carbon nitride(g-C_(3)N_(4)).Compared with the spherical silicon dioxide prepared using tetraethyl orthosilicate(TEOS-SiO_(2)),the mesoporous structure of FA-SiO_(2),allowed DCDA to react in a smaller space,which facilitated the transformation of DCDA to melamine by the thermal degradation kinetics of FA-C_(3)N_(4)/DCDA.This ultimately boosted the formation of an N-atom-removed triazine ring structure and a multistage structure combining lumps and rods in the composite photocatalysts of g-C_(3)N_(4),and FA-SiO_(2),which led to a higher visible-light utilization efficiency,a suitable valence-band position,and the photocatalytic activity for methylene blue reaching 3.56 times that of g-C_(3)N_(4).The findings indicate that mesoporous FA-SiO,has the potential to improve the structural and photocatalytic properties of g-C_(3)N_(4),-based materials.展开更多
High alumina fly ash(FAHAl)is a kind of bulk solid waste unique to China,whose availability of high-value aluminum and the threat to the environment makes its high-value utilization urgent.In this work,the alumina con...High alumina fly ash(FAHAl)is a kind of bulk solid waste unique to China,whose availability of high-value aluminum and the threat to the environment makes its high-value utilization urgent.In this work,the alumina containing leaching solution obtained from Na_(2)CO_(3) roasting and HCl leaching of FAHAl was used as the mother liquor to prepare layered boehmite in situ.The preparation process with AlCl_(3) as the raw material was also compared.The formation process and mechanism of boehmite,the choice of solvent,along with the adsorption capability of Congo red were analyzed by X-ray diffraction,scanning electron microscopy,Fourier transform infrared spectroscopy,Brunauer-Emmett-Teller method and adsorption experiments.Results showed that during the preparation of layered boehmite,the precursor Al(OH)_(3) from the reaction of Al^(3+) and OH-is transformed into boehmiteγ-AlOOH.The existence of ethanol is beneficial to regulate and promote the growth of boehmite crystal effectively.When water and ethanol are mixed with a volume ratio of 2:1 and used as the solvent,the maximum specific surface area of the boehmite is obtained at 135.7 m^(2)·g^(-1),and 99.16%of Congo red can be absorbed after 10 min when AlCl3 is used as a raw material.As purified leaching solution is used as the mother liquid,the crystallinity of boehmite decreases slightly when the pH value decreases from 12.5 to 11.When pH is 11,the removal efficiency of Congo red reaches a maximum of 72.25%.This process not only achieves the extraction of aluminum and high-value utilization of FAHAl but also provides a thought to prepare layered boehmite with adsorption properties.展开更多
Coal gasification fly ash(CGFA)is an industrial solid waste from the coal circulating fluidized bed(CFB)gasification process,and it needs to be effectively disposed to achieve sustainable development of the environmen...Coal gasification fly ash(CGFA)is an industrial solid waste from the coal circulating fluidized bed(CFB)gasification process,and it needs to be effectively disposed to achieve sustainable development of the environment.To realize the application of CGFA as a precursor of porous carbon materials,the physicochemical properties of three kinds of CGFA from industrial CFB gasifiers are analyzed.Then,the activation potential of CGFA is acquired via steam activation experiments in a tube furnace reactor.Finally,the fluidization activation technology of CGFA is practiced in a bench-scale CFB test rig,and its advantages are highlighted.The results show that CGFA is characterized by a high carbon content in the range of 54.06%–74.09%,an ultrafine particle size(d50:16.3–26.1 μm),and a relatively developed pore structure(specific surface area SSA:139.29–551.97 m^(2)·g^(-1)).The proportion of micropores in CGFA increases gradually with the coal rank.Steam activation experiments show that the pore development of CGFA mainly includes three stages:initial pore development,dynamic equilibrium between micropores and mesopores and pore collapse.The SSA of lignite fly ash(LFA),subbituminous fly ash(SBFA)and anthracite fly ash(AFA)is maximally increased by 105%,13%and 72%after steam activation;the order of the largest carbon reaction rate and decomposition ratio of steam among the three kinds of CGFA is SBFA>LFA>AFA.As the ratio of oxygen to carbon during the fluidization activation of LFA is from 0.09 to 0.19,the carbon conversion ratio increases from 14.4%to 26.8%and the cold gas efficiency increases from 6.8%to 10.2%.The SSA of LFA increases by up to 53.9%during the fluidization activation process,which is mainly due to the mesoporous development.Relative to steam activation in a tube furnace reactor,fluidization activation takes an extremely short time(seconds)to achieve the same activation effect.It is expected to further improve the activation effect of LFA by regulating the carbon conversion ratio range of 27%–35%to create pores in the initial development stage.展开更多
The long-term strength retrogression of silica-enriched oil well cement poses a significant threat to wellbore integrity in deep and ultra-deep wells, which is a major obstacle for deep petroleum and geothermal energy...The long-term strength retrogression of silica-enriched oil well cement poses a significant threat to wellbore integrity in deep and ultra-deep wells, which is a major obstacle for deep petroleum and geothermal energy development. Previous attempts to address this problem has been unsatisfactory because they can only reduce the strength decline rate. This study presents a new solution to this problem by incorporating fly ash to the traditional silica-cement systems. The influences of fly ash and silica on the strength retrogression behavior of oil well cement systems directly set and cured under the condition of 200°C and 50 MPa are investigated. Test results indicate that the slurries containing only silica or fly ash experience severe strength retrogression from 2 to 30 d curing, while the slurries containing both fly ash and silica experience strength enhancement from 2 to 90 d. The strength test results are corroborated by further evidences from permeability tests as well as microstructure analysis of set cement. Composition of set cement evaluated by quantitative X-ray diffraction analyses with partial or no known crystal structure(PONKCS) method and thermogravimetry analyses revealed that the conversion of amorphous C-(A)-S-H to crystalline phases is the primary cause of long-term strength retrogression.The addition of fly ash can reduce the initial amount of C-(A)-S-H in the set cement, and its combined use with silica can prevent the crystallization of C-(A)-S-H, which is believed to be the working mechanism of this new admixture in improving long-term strength stability of oil well cement systems.展开更多
In this decade,coal fly ash(CFA)is considered a potential secondary source of rare earth elements(REEs).However,most REEs in coal fly ash are encapsulated in aluminosilicate glass,making it challenging to recover them...In this decade,coal fly ash(CFA)is considered a potential secondary source of rare earth elements(REEs).However,most REEs in coal fly ash are encapsulated in aluminosilicate glass,making it challenging to recover them through acid leaching.In this study,a sequential alkaline-organic acid leaching was developed for the recovery of REEs from CFA.The effect of alkaline leaching using NaOH solution on the destructive ability of aluminosilicate glass,as well as the mineralogy and morphology changes of the resulting coal fly ash,was first studied.Furthermore,the effectiveness of alkaline leaching on the recovery ability of REEs through organic acid leaching was evaluated.The results show that the maximum leaching efficiency for Si and Al,which was obtained at the optimum alkaline leaching conditions,namely NaOH concentration of 10 mol/L,reaction temperature of 65℃,liquid/solid(L/S)ratio of 10 mL/g,and reaction time of 90 min,is 28%and 32%,respectively.The digestion reaction with NaOH lixiviants also causes coal fly ash to become more porous,making it advantageous in the organic acid-leaching process at the REEs recovery stage.The utilization of the desilicated residue produced from the digestion process in acid leaching effectively increases the overall REEs recovery from 32.2%to 77.6%.展开更多
Using fly ash as a raw material,porous ceramic particles with an apparent density of 1.21 g/cm^(3),a visible porosity of 51.03%,and a specific surface area of 4.26 m^(2)/g were prepared and used as biofilter materials...Using fly ash as a raw material,porous ceramic particles with an apparent density of 1.21 g/cm^(3),a visible porosity of 51.03%,and a specific surface area of 4.26 m^(2)/g were prepared and used as biofilter materials for wastewater treatment.Through SEM,XRD analysis,and heavy metal leaching analysis,it was found that porous ceramsite were porous materials with rough surfaces.After calcination,the newly formed mineral was silicate calcium feldspar.The heavy metal concentration in the leaching solution of porous ceramsite met the national surface water quality requirements.The treatment of domestic sewage showed that the volumetric loads of COD Cr,NH_(4)^(+)-N,and TN removed by the aerated biofilter were 5.23,0.98,and 0.35 kg/(m^(3)·d),respectively,with removal rates of 85.46%,96.13%,and 32.31%.展开更多
Although coal fly ash(CFA)contains a high content of rare earth elements(REEs),the related extraction methods have limitations because of their low efficiencies,high levels of energy consumption,and other drawbacks.To...Although coal fly ash(CFA)contains a high content of rare earth elements(REEs),the related extraction methods have limitations because of their low efficiencies,high levels of energy consumption,and other drawbacks.To address these problems,in this study,we examined the coextraction of REEs and Al_(2)O_(3)from two types of Al_(2)O_(3)-rich CFA,pulverized CFA(PCFA)and circulating fluidized bed fly ash(CFBFA)using low-temperature calcination in the presence of K_(2)S_(2)O_(7).The total REEs,heavy REEs(HREEs),and light REEs(LREEs)extraction efficiencies were determined using different K_(2)S_(2)O_(7)/Al_(2)O_(3) molar ratios and calcination temperatures and correlated with the Al_(2)O_(3) extraction efficiency using Pearson correlation coefficient analysis.The REEs are concentrated within CFA particles encapsulated in an aluminosilicate glass phase,and the REEs extraction efficiency is related to the form of Al in CFA.The extraction efficiencies of Al_(2)O_(3) and REEs increase as the K_(2)S_(2)O_(7)/Al_(2)O_(3) molar ratio and calcination temperature increase,and the extraction selectivity of the more industrially valuable HREEs from CFBFA is higher.At high K_(2)S_(2)O_(7)/Al_(2)O_(3) molar ratios,the extraction of REEs from PCFA is more efficient than that from CFBFA with the regeneration of the highly active Al-O-Si bonds in CFBFA.The Al_(2)O_(3) extraction efficiencies of PCFA as well as CFBFA correlate strongly with the total REEs,HREEs,and LREEs extraction efficiencies.The developed extraction technology has the potential to promote CFA valorization and expand REEs resources,thus mitigating the bottlenecks of REEs procurement.展开更多
High concentrations of copper ions(Cu(Ⅱ)) in water will pose health risks to humans and the ecological environment. Therefore, this study aims to utilize ultrasonic-cured modified municipal solid waste incineration(M...High concentrations of copper ions(Cu(Ⅱ)) in water will pose health risks to humans and the ecological environment. Therefore, this study aims to utilize ultrasonic-cured modified municipal solid waste incineration(MSWI) fly ash for Cu(Ⅱ) adsorption to achieve the purpose of “treating waste by waste.” The effects of p H, adsorption time, initial concentration, and temperature on the modified MSWI fly ash’s adsorption efficiency were systematically studied in this article. The adsorption performance of the modified MSWI fly ash can be enhanced by the ultrasonic modification. At pH = 2, 3 and 4, the adsorption capacity of the modified MSWI fly ash for Cu(Ⅱ) increased by 2.7, 1.9 and 1.2 times, respectively. Furthermore, it was suggested that the adsorption process of the modified MSWI fly ash can be better simulated by the pseudo-second-order kinetic model, with a maximum adsorption capacity calculated by the Langmuir model of 24.196 mg.g-1. Additionally, the adsorption process is spontaneous,endothermic, and chemisorption-dominated from the thermodynamic studies(ΔH and ΔS > 0, ΔG < 0).Finally, the enhanced adsorption performance of the modified MSWI fly ash for Cu(Ⅱ) may be attributed to electrostatic interaction and chelation effects.展开更多
A novel process was proposed for synergistic extraction and separation of valuable elements from high-alumina fly ash.A thermodynamic analysis revealed that to achieve effective carbochlorination,it is crucial to cond...A novel process was proposed for synergistic extraction and separation of valuable elements from high-alumina fly ash.A thermodynamic analysis revealed that to achieve effective carbochlorination,it is crucial to conduct carbochlorination of the fly ash within the temperature range from 700 to 1000℃.The experimental results demonstrated that under the optimal conditions,the carbochlorination efficiency for Al,Si,Ca,Ti,and Mg exceeded 81.18%,67.62%,58.87%,82.15%,and 59.53%,respectively.The XRD patterns indicated that Al and Si in the mullite phase(Al_(6)Si_(2)O_(13))were chlorinated during the carbochlorination process,resulting in the formation of mullite mesophases(Al_(4.75)Si_(1.25)O_(9.63) and Al_(1.83)Si_(1.08)O_(4.85)).After the carbochlorination process,Al was accumulated as AlCl_(3) in the condenser,while SiCl_(4) and TiCl_(4) were enriched in the exhaust gas,and CaCl_(2),MgCl_(2),and unreacted oxides remained in the residue for further recycling.展开更多
基金Funded by the National Natural Science Foundation of China(No.52178241)the National Key Research and Development Program of China during the Fourteenth Five-Year Plan Period(No.2021YFB3802001)+1 种基金the Shanghai Science and Technology Innovation Action Plan(No.23D21201401)the Key Research and Development of the Shaanxi Province of China(No.2022GY-163)。
文摘Municipal solid waste incineration fly ash(MSWI)is considered as one of the hazardous wastes and requires to be well disposed to reduce the contaminant to the environment.Reference to the production of coal fly ash(FA)bricks,MSWI and FA were utilized to prepare autoclaved MSWI-FA block samples.Ultrasonic-assisted hydrothermal synthesis technology was used for production to explore the effect of ultrasonic pre-treatment.Compressive strength,dry density,and water absorption tests were conducted to determine the optimal ultrasonic parameters.Ultrasonic pre-treating mechanisms were investigated by SEM,FT-IR,particle size analysis,and BET.Furthermore,the micro-analyses of block samples were conducted.The heavy metal leaching concentration was studied to assess the environmental safety.The experimental results show that the ultrasonic pre-treating time,water bath temperature,and ultrasonic power of 3 h,30℃,and 840 W are the optimal,under which the compressive strength,dry density,and water absorption were 8.14 MPa,1417.48 kg/m^(3),and 0.38,respectively.It is shown that ultrasound destroys the surface structure of raw materials and smaller FA particles embed into MSWI.The particle size distribution of pre-treated raw materials mixture is wider and total pore volume is decreased by 6.3%.During hydrothermal processing,more Al-substituted tobermorite crystals are generated,which is the main source of higher strength and smaller pore volume of prepared block samples.The solidification/stabilization rates of Cu,Pb,and Zn increased by 30.77%,4.76%,and 35.29%,respectively.This study shows a feasible way to utilize MSWI as raw material for construction.
基金Project supported by Rumah Program 2023 and Net Zero Emission Program(1507/Ⅱ.7/HK.01.00/6/2023)a research facility from the National Research and Innovation Agency of Republic of Indonesia。
文摘Recycling rare earth elements(REEs)from waste is necessary for an environmentally sustainable reuse and wastewater management approach.Na-A zeolite was synthesized from coal fly ash(CFA)and applied for Ce^(3+)adsorption.Fourier transform infrared(FTIR)spectra show peaks at 790,500 and 467 cm^(-1),which are bond vibrations of Si-O-Si,Si with Al-O and Si-O-.The surface area is 15.88 m^(2)/g,with a pore size of 2.14 nm.SEM images show a cubic shape,which indicates the formation of zeolite.Field emission and energy disperse spectroscopy(EDS)shows the formation of Si,Al,Na,and O.Na-A zeolite was applied for Ce^(3+)adsorption.The optimum conditions for Ce^(3+)adsorption are 50 ppm concentration,360 min,and pH 6.The maximum adsorption capacity is 176.49 mg/g.Based on the results,it is found that the adsorption of Ce^(3+)by Na-A zeolite is pseudo-second-order.The desorption test using HNO_(3) is more effective than using HCl and H_(2)SO_(4).A desorption efficiency of 97.22%is obtained at 4 cycles.Adsorption test using real sample wastewater demonstrates an adsorption efficiency of 83.35%.
基金Supported by Yunnan Major Scientific and Technological Projects(No.202403AA080001)National Natural Science Foundation of China(No.52074137)Yunnan Fundamental Research Projects(No.202201AT070151)。
文摘Three types of activators such as sodium hydroxide,calcium oxide and triethanolamine(TEA)are used to establish different activation environments to address the problems associated with the process of activating fly ash paste.We conducted mechanical tests and numerical simulations to understand the evolution of microstructure,and used environmental scanning electron microscopy(ESEM)and energy dispersive spectroscopy(EDS)techniques to analyze the microenvironments of the samples.The mechanical properties of fly ash paste under different activation conditions and the changes in the microstructure and composition were investigated.The results revealed that under conditions of low NaOH content(1%-3%),the strength of the sample increased significantly.When the content exceeded 4%,the rate of increase in strength decreased.Based on the results,the optimal NaOH content was identified,which was about 4%.A good activation effect,especially for short-term activation(3-7 d),was achieved using TEA under high doping conditions.The activation effect was poor for long-term strength after 28 days.The CaO content did not significantly affect the degree of activation achieved.The maximum effect was exerted when the content of CaO was 2%.The virtual cement and concrete testing laboratory(VCCTL)was used to simulate the hydration process,and the results revealed that the use of the three types of activators accelerated the formation of Ca(OH)_(2) in the system.The activators also corroded the surface of the fly ash particles,resulting in a pozzolanic reaction.The active substances in fly ash were released efficiently,and hydration was realized.The pores were filled with hydration products,and the microstructure changed to form a new frame of paste filling that helped improve the strength of fly ash paste.
基金Funded by the Natural Science Foundation of China(No.52109168)。
文摘In order to study the characteristics of pure fly ash-based geopolymer concrete(PFGC)conveniently,we used a machine learning method that can quantify the perception of characteristics to predict its compressive strength.In this study,505 groups of data were collected,and a new database of compressive strength of PFGC was constructed.In order to establish an accurate prediction model of compressive strength,five different types of machine learning networks were used for comparative analysis.The five machine learning models all showed good compressive strength prediction performance on PFGC.Among them,R2,MSE,RMSE and MAE of decision tree model(DT)are 0.99,1.58,1.25,and 0.25,respectively.While R2,MSE,RMSE and MAE of random forest model(RF)are 0.97,5.17,2.27 and 1.38,respectively.The two models have high prediction accuracy and outstanding generalization ability.In order to enhance the interpretability of model decision-making,we used importance ranking to obtain the perception of machine learning model to 13 variables.These 13 variables include chemical composition of fly ash(SiO_(2)/Al_(2)O_(3),Si/Al),the ratio of alkaline liquid to the binder,curing temperature,curing durations inside oven,fly ash dosage,fine aggregate dosage,coarse aggregate dosage,extra water dosage and sodium hydroxide dosage.Curing temperature,specimen ages and curing durations inside oven have the greatest influence on the prediction results,indicating that curing conditions have more prominent influence on the compressive strength of PFGC than ordinary Portland cement concrete.The importance of curing conditions of PFGC even exceeds that of the concrete mix proportion,due to the low reactivity of pure fly ash.
文摘Microwave-curing and mechanical grinding of fly ash have both beenadopted as effective methods for improving the early-age strength of alkali-activated fly ash(AAFA)binders.This study combined these two approaches by synthesizing AAFA using original,medium-fine,and ultrafine fly ash as precursors,and then specimens were cured with a five-stage temperature-controlled microwave.The compressive strength results indicate that the original AAFA develops the highest strength initially during microwave-curing,reaching 28 MPa at stage 2.Medium-fine AAFA exhibits the highest strength of 60 MPa when cured to stage 4-I,which is 26%higher than the peak strength of original AAFA.It is attributed to the significant rise in their specific surface area,which accelerates the dissolution of Si and Al from the precursor and facilitates the subsequent formation of N-A-S-H gels.Additionally,nanoscale zeolite crystals formed as secondary products fill the tiny gaps between amorphous products,thereby significantly improving their microstructure.In contrast,ultrafine fly ash,primarily composed of fragmented particles,necessitated a substantial amount of water,which adversely affects the absorption efficiency for microwave of AAFA specimens.Thus,ultrafine AAFA specimens consistently exhibit the lowest compressive strength.Specifically,at the end of curing,the compressive strength of these three specimens with microwave-curing is approximately 32%,59%,and 172%higher than that of the steam-cured sample,respectively.These findings demonstrate the compatibility of microwave-curing and fly ash refinement in enhancing the early compressive strength development of AAFA.
文摘This study was part of the framework that contributed not only to the improvement of thermal comfort in housing but also to the decarbonization of the construction and building materials industry. For this purpose, terracotta brick seems to meet these needs. Thus, the objective of this work was to evaluate the influence of the incorporation of coal fly ash from a thermal power plant on the physical and mechanical properties of fired bricks from grey clay in the Thicky area of Senegal. The coal fly ash was incorporated into the raw clay material in proportions of 0, 5, 10, and 15 % by weight. These two raw materials were first characterized by X-ray fluorescence spectroscopy (XRF). The XRF analyses showed that the most abundant oxides in clay were SiO2 (55.034%) and Fe2O3 (10.155%). In coal fly ash, SiO2 (38.574%) is predominant. The ash also contained Al2O3 (7.717%) and alicano-earthy melting oxides such as CaO (9.271%) and MgO (7.298%) etc. These melting oxides were necessary to facilitate the formation of the liquid phase when baking platelets. The latter, when burned at a temperature of 880°C, were characterized by determining the number of physico-mechanical parameters, such as linear shrinkage during cooking, water absorption, fire loss and compressive strength. A Hierarchical Ascending Classification of these different parameters was performed and three classes were obtained. Class 1 with better compressive strength (6.358 MPa), was in sample A (5%). Class 2 consisted of sample D (reference) and had a higher plasticity index (28.51%) and water absorption rate (11.19%). Finally, class 3, which included samples B (10%) and C (15%), had very high shrinkage and fire losses compared to other platelets. These results highlighted the possibility of using up to 5% of the coal fly ash in the production of new fired bricks with good performance.
基金supported by the Polish National Science Center(Grant No.2022/06/X/ST10/00320)received by Witold Tisler.
文摘The present study investigates the engineering properties of submerged organic silt(orSi)stabilized with F-class fly ash(FA),with and without the addition of an activator(CaO).The utilization of F-class FA for soil improvement is an important aspect of sustainable and environmentally-conscious geotechnical engineering when marginal usage of lime and concrete is of great interest to engineers and societies.Currently,discussion is predominantly focused on the positive aspects of using the F-class FA,with a paucity of emphasis on the negative aspects.To explore these features more thoroughly,a series of strength and compressibility tests was conducted.The sample preparation and curing methodology were chosen to replicate the in situ conditions where soil is surcharged and submerged in water.It was found that the incorporation of F-class FA without an activator reduces the undrained shear strength of submerged orSi by about 20%–25%and permanently prevents any thixotropic strength restoration.An increase in undrained shear strength is observed when lime(3%–6%)is added to the soil–FA mixture or when only lime(in the same amount of 3%–6%)is used.Consequently,F-class FA can be successfully used as a filler for slurries with minimum lime content in soil mixing methods.The F-class FA(with or without an activator)shifts the so-called“creep delay”in time,consequently reducing the total creep settlements.The shift of“creep delay”is more considerable for orSi stabilized with lime or with FA and lime as an activator,than for orSi stabilized with pure F-class FA.
基金Funded by the National Key R&D Program of China(No.2022YFC3803400)。
文摘The effects of isocyanate(IA)incorporation on the toughness and volume stability of AAFS were systematically investigated.Various IA dosages were introduced into AAFS,and their influence on mechanical properties,microstructure,and shrinkage behavior was evaluated.The experimental results indicate that,with the incorporation of 5%IA,the 28-day compressive strength reaches 48.6 MPa,the 56-day drying shrinkage decreases by 35.91%,and minimal cracking is observed in the ring test.Microstructural analyses using SEM,XRD,and FTIR reveal that IA reacts with water to form urethane and biuret,which crosslinks into a durable network structure.This network fills pores,reducing internal stresses and improving both toughness and volume stability.These findings offer new insights into optimizing alkali-activated materials for construction applications and provide a potential pathway for the development of more durable and stable geopolymers.
基金supported by the National Natural Science Foundation of China(No.U22A20151)Taiyuan Major Science and Technology Project in 2021.
文摘Phenolic foam(PF)has attracted growing attention in plugging areas due to its lightweight,flame retardancy and high fillability,yet its friable character and high reaction temperature severely weaken its potentials toward practical coal mining applications.Herein,a novel phenolic composite material filled with modified fly ash(MFA)geopolymer has been proposed to address the above issues.By modifying fly ash(FA)particles with siloxanes,robust interfacial bonding between the organic PF polymer and inorganic geopolymer network has been established,which enables modulation of their micro-morphologies to optimize their macro performances.The foam structure of PF evolves from an open-cell to a closed-cell morphology with the incorporation of MFA,leading to a decreased pulverization ratio(41%)while enhanced mechanical properties(15%).Compared with neat PF,the composite exhibits faster gelation dynamics during curing,with a maximum reaction temperature as low as only 40°C.PF/MFA composite show high reliability against gas leakage during a laboratory designed coal mine plugging test.Furthermore,the formation of a silica hybrid char layer with higher graphitization degree and a multiple continuous closed-cell structure following the combustion of PF/MFA effectively inhibits the release of combustible volatiles and toxic gases.It is provided that this strategy of geopolymer filled polymer cross-linking networks with tunable morphology opens up an avenue for advanced mining phenolic filling materials.
基金Funded by the Natural Science Foundation of Jiangsu Province(No.BK20220626)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX24_3174)Taizhou Science and Technology Support Programme(Social Development)Directive Project(No.TS202432)。
文摘The effects of various fly ash(FA)contents on the durability and mechanical properties of recycled fine aggregate high ductility cementitious composites(RFA-HDCC)prepared with recycled fine aggregates(RFA)to fully replace natural fine aggregates was investigated.The results indicated that a 50% FA content significantly increased the compressive strength of RFA-HDCC by 13.93%.However,a?further increase in FA content led to a drastic decrease.The increased fly ash content substantially reduced the flexural and tensile strength;however,it markedly increased the matrix strain capacity,resulting in a 53.73% increase in the peak strain when FA was raised to 70%.Regarding durability,the increase in FA content negatively affected the chloride ion permeability and carbonation resistance.However,the increase in FA content initially improved the frost resistance of RFA-HDCC,peaking at 50% FA and deteriorating at 60% and 70% FA content.
基金supported by China National Postdoctoral Program for Innovative Talents(No.BX20230041)China Postdoctoral Science Foundation(No.2024M750186)+1 种基金the Key Program of National Natural Science Foundation of China(No.52034001)Open Foundation of State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control(No.HB202303).
文摘Bioleaching is confronted with problems,such as low efficiency,long production cycle length,and vegetation destruction.In order to solve problems above,fly ash and low-grade copper sulfide ores were used to investigate bioleaching behaviors and bacterial community succession.Results showed that copper recovery,bacterial concentration,total proportion of main leaching bacteria including Acidithiobacillus ferrooxidans,Acidibacillus ferrooxidans,and Leptospirillum ferriphilum,were improved through using appropriate dosage of fly ash.The maximum copper recovery of 79.87%and bacterial concentration of 7.08×10^(7)cells·mL^(-1)were obtained after us-ing 0.8 g·L^(-1)fly ash.Exclusive precipitation including Zn(Fe_(3)(SO_(4))_(2)(OH)_(6))_(2)and Mg(Fe_(3)(SO_(4))_(2)(OH)_(6))_(2)was found in sample added 0.8 g·L^(-1)fly ash,which reduced the effect of hazardous ions on bacteria and thus contributing to bacterial proliferation.Bacterial com-munity structure was differentiated,which indicated difference between original inoculation and sample used 0.8 g·L^(-1)fly ash was less than others.Total proportion of the three microorganism above accounted for more than 95%in all tests,especially in sample with 0.8 g·L^(-1)fly ash up to 99.81%.Cl^(-)and Ag^(+)contained in fly ash can act as catalytic agent,which contributed to conversion from smooth and dense passivation layer to sparse and scattered one,and therefore improving contact between ores,lixiviant,and bacteria.Using appropri-ate dosage of fly ash showed prospects in bioleaching.
基金supported by the Medical Special Cultivation Project of Anhui University of Science and Technology(Nos.YZ2023H2B013 and YZ2023H2B012),China.
文摘To explore high value-added utilization pathways of fly ash,the mesoporous structure of silicon dioxide extracted from fly ash(FA-SiO_(2))was utilized to restrict the dicyandiamide(DCDA)thermal degradation process.This produced chemically bonded interacting composite photocatalysts of FA-SiO,and graphitic-phase carbon nitride(g-C_(3)N_(4)).Compared with the spherical silicon dioxide prepared using tetraethyl orthosilicate(TEOS-SiO_(2)),the mesoporous structure of FA-SiO_(2),allowed DCDA to react in a smaller space,which facilitated the transformation of DCDA to melamine by the thermal degradation kinetics of FA-C_(3)N_(4)/DCDA.This ultimately boosted the formation of an N-atom-removed triazine ring structure and a multistage structure combining lumps and rods in the composite photocatalysts of g-C_(3)N_(4),and FA-SiO_(2),which led to a higher visible-light utilization efficiency,a suitable valence-band position,and the photocatalytic activity for methylene blue reaching 3.56 times that of g-C_(3)N_(4).The findings indicate that mesoporous FA-SiO,has the potential to improve the structural and photocatalytic properties of g-C_(3)N_(4),-based materials.
基金supported by the National Natural Science Foundation of China(52174277,52204309 and 52374300).
文摘High alumina fly ash(FAHAl)is a kind of bulk solid waste unique to China,whose availability of high-value aluminum and the threat to the environment makes its high-value utilization urgent.In this work,the alumina containing leaching solution obtained from Na_(2)CO_(3) roasting and HCl leaching of FAHAl was used as the mother liquor to prepare layered boehmite in situ.The preparation process with AlCl_(3) as the raw material was also compared.The formation process and mechanism of boehmite,the choice of solvent,along with the adsorption capability of Congo red were analyzed by X-ray diffraction,scanning electron microscopy,Fourier transform infrared spectroscopy,Brunauer-Emmett-Teller method and adsorption experiments.Results showed that during the preparation of layered boehmite,the precursor Al(OH)_(3) from the reaction of Al^(3+) and OH-is transformed into boehmiteγ-AlOOH.The existence of ethanol is beneficial to regulate and promote the growth of boehmite crystal effectively.When water and ethanol are mixed with a volume ratio of 2:1 and used as the solvent,the maximum specific surface area of the boehmite is obtained at 135.7 m^(2)·g^(-1),and 99.16%of Congo red can be absorbed after 10 min when AlCl3 is used as a raw material.As purified leaching solution is used as the mother liquid,the crystallinity of boehmite decreases slightly when the pH value decreases from 12.5 to 11.When pH is 11,the removal efficiency of Congo red reaches a maximum of 72.25%.This process not only achieves the extraction of aluminum and high-value utilization of FAHAl but also provides a thought to prepare layered boehmite with adsorption properties.
基金financially supported by the Special Research Assistant Fund Project of Chinese Academy of Sciences.
文摘Coal gasification fly ash(CGFA)is an industrial solid waste from the coal circulating fluidized bed(CFB)gasification process,and it needs to be effectively disposed to achieve sustainable development of the environment.To realize the application of CGFA as a precursor of porous carbon materials,the physicochemical properties of three kinds of CGFA from industrial CFB gasifiers are analyzed.Then,the activation potential of CGFA is acquired via steam activation experiments in a tube furnace reactor.Finally,the fluidization activation technology of CGFA is practiced in a bench-scale CFB test rig,and its advantages are highlighted.The results show that CGFA is characterized by a high carbon content in the range of 54.06%–74.09%,an ultrafine particle size(d50:16.3–26.1 μm),and a relatively developed pore structure(specific surface area SSA:139.29–551.97 m^(2)·g^(-1)).The proportion of micropores in CGFA increases gradually with the coal rank.Steam activation experiments show that the pore development of CGFA mainly includes three stages:initial pore development,dynamic equilibrium between micropores and mesopores and pore collapse.The SSA of lignite fly ash(LFA),subbituminous fly ash(SBFA)and anthracite fly ash(AFA)is maximally increased by 105%,13%and 72%after steam activation;the order of the largest carbon reaction rate and decomposition ratio of steam among the three kinds of CGFA is SBFA>LFA>AFA.As the ratio of oxygen to carbon during the fluidization activation of LFA is from 0.09 to 0.19,the carbon conversion ratio increases from 14.4%to 26.8%and the cold gas efficiency increases from 6.8%to 10.2%.The SSA of LFA increases by up to 53.9%during the fluidization activation process,which is mainly due to the mesoporous development.Relative to steam activation in a tube furnace reactor,fluidization activation takes an extremely short time(seconds)to achieve the same activation effect.It is expected to further improve the activation effect of LFA by regulating the carbon conversion ratio range of 27%–35%to create pores in the initial development stage.
基金National Natural Science Foundation of China(No.51974352 and No.52288101)China University of Petroleum(East China)(No.2018000025 and No.2019000011)。
文摘The long-term strength retrogression of silica-enriched oil well cement poses a significant threat to wellbore integrity in deep and ultra-deep wells, which is a major obstacle for deep petroleum and geothermal energy development. Previous attempts to address this problem has been unsatisfactory because they can only reduce the strength decline rate. This study presents a new solution to this problem by incorporating fly ash to the traditional silica-cement systems. The influences of fly ash and silica on the strength retrogression behavior of oil well cement systems directly set and cured under the condition of 200°C and 50 MPa are investigated. Test results indicate that the slurries containing only silica or fly ash experience severe strength retrogression from 2 to 30 d curing, while the slurries containing both fly ash and silica experience strength enhancement from 2 to 90 d. The strength test results are corroborated by further evidences from permeability tests as well as microstructure analysis of set cement. Composition of set cement evaluated by quantitative X-ray diffraction analyses with partial or no known crystal structure(PONKCS) method and thermogravimetry analyses revealed that the conversion of amorphous C-(A)-S-H to crystalline phases is the primary cause of long-term strength retrogression.The addition of fly ash can reduce the initial amount of C-(A)-S-H in the set cement, and its combined use with silica can prevent the crystallization of C-(A)-S-H, which is believed to be the working mechanism of this new admixture in improving long-term strength stability of oil well cement systems.
基金Project supported by the Ministry of Research,Technology and Higher Education,Republic of Indonesia(0386/E4/BP/2021)Universitas Gadjah Mada(1501407/UN1.FTK/SK/HK/2022)。
文摘In this decade,coal fly ash(CFA)is considered a potential secondary source of rare earth elements(REEs).However,most REEs in coal fly ash are encapsulated in aluminosilicate glass,making it challenging to recover them through acid leaching.In this study,a sequential alkaline-organic acid leaching was developed for the recovery of REEs from CFA.The effect of alkaline leaching using NaOH solution on the destructive ability of aluminosilicate glass,as well as the mineralogy and morphology changes of the resulting coal fly ash,was first studied.Furthermore,the effectiveness of alkaline leaching on the recovery ability of REEs through organic acid leaching was evaluated.The results show that the maximum leaching efficiency for Si and Al,which was obtained at the optimum alkaline leaching conditions,namely NaOH concentration of 10 mol/L,reaction temperature of 65℃,liquid/solid(L/S)ratio of 10 mL/g,and reaction time of 90 min,is 28%and 32%,respectively.The digestion reaction with NaOH lixiviants also causes coal fly ash to become more porous,making it advantageous in the organic acid-leaching process at the REEs recovery stage.The utilization of the desilicated residue produced from the digestion process in acid leaching effectively increases the overall REEs recovery from 32.2%to 77.6%.
文摘Using fly ash as a raw material,porous ceramic particles with an apparent density of 1.21 g/cm^(3),a visible porosity of 51.03%,and a specific surface area of 4.26 m^(2)/g were prepared and used as biofilter materials for wastewater treatment.Through SEM,XRD analysis,and heavy metal leaching analysis,it was found that porous ceramsite were porous materials with rough surfaces.After calcination,the newly formed mineral was silicate calcium feldspar.The heavy metal concentration in the leaching solution of porous ceramsite met the national surface water quality requirements.The treatment of domestic sewage showed that the volumetric loads of COD Cr,NH_(4)^(+)-N,and TN removed by the aerated biofilter were 5.23,0.98,and 0.35 kg/(m^(3)·d),respectively,with removal rates of 85.46%,96.13%,and 32.31%.
基金Project supported by the Liaoning Education Department(LJKZ0348,LJKMZ20220682)Liaoning Science and Technology Department(2021JH1/10400018)the National Key Research and Development Program of China(2019YFC1803800)。
文摘Although coal fly ash(CFA)contains a high content of rare earth elements(REEs),the related extraction methods have limitations because of their low efficiencies,high levels of energy consumption,and other drawbacks.To address these problems,in this study,we examined the coextraction of REEs and Al_(2)O_(3)from two types of Al_(2)O_(3)-rich CFA,pulverized CFA(PCFA)and circulating fluidized bed fly ash(CFBFA)using low-temperature calcination in the presence of K_(2)S_(2)O_(7).The total REEs,heavy REEs(HREEs),and light REEs(LREEs)extraction efficiencies were determined using different K_(2)S_(2)O_(7)/Al_(2)O_(3) molar ratios and calcination temperatures and correlated with the Al_(2)O_(3) extraction efficiency using Pearson correlation coefficient analysis.The REEs are concentrated within CFA particles encapsulated in an aluminosilicate glass phase,and the REEs extraction efficiency is related to the form of Al in CFA.The extraction efficiencies of Al_(2)O_(3) and REEs increase as the K_(2)S_(2)O_(7)/Al_(2)O_(3) molar ratio and calcination temperature increase,and the extraction selectivity of the more industrially valuable HREEs from CFBFA is higher.At high K_(2)S_(2)O_(7)/Al_(2)O_(3) molar ratios,the extraction of REEs from PCFA is more efficient than that from CFBFA with the regeneration of the highly active Al-O-Si bonds in CFBFA.The Al_(2)O_(3) extraction efficiencies of PCFA as well as CFBFA correlate strongly with the total REEs,HREEs,and LREEs extraction efficiencies.The developed extraction technology has the potential to promote CFA valorization and expand REEs resources,thus mitigating the bottlenecks of REEs procurement.
基金supported by the key program of the National Natural Science Foundation of China(52236008).
文摘High concentrations of copper ions(Cu(Ⅱ)) in water will pose health risks to humans and the ecological environment. Therefore, this study aims to utilize ultrasonic-cured modified municipal solid waste incineration(MSWI) fly ash for Cu(Ⅱ) adsorption to achieve the purpose of “treating waste by waste.” The effects of p H, adsorption time, initial concentration, and temperature on the modified MSWI fly ash’s adsorption efficiency were systematically studied in this article. The adsorption performance of the modified MSWI fly ash can be enhanced by the ultrasonic modification. At pH = 2, 3 and 4, the adsorption capacity of the modified MSWI fly ash for Cu(Ⅱ) increased by 2.7, 1.9 and 1.2 times, respectively. Furthermore, it was suggested that the adsorption process of the modified MSWI fly ash can be better simulated by the pseudo-second-order kinetic model, with a maximum adsorption capacity calculated by the Langmuir model of 24.196 mg.g-1. Additionally, the adsorption process is spontaneous,endothermic, and chemisorption-dominated from the thermodynamic studies(ΔH and ΔS > 0, ΔG < 0).Finally, the enhanced adsorption performance of the modified MSWI fly ash for Cu(Ⅱ) may be attributed to electrostatic interaction and chelation effects.
基金the National Natural Science Foundation of China (Nos.52304364,U1710257)the financial support of the National Key Research and Development Program of China (No.2022YFB3504502)。
文摘A novel process was proposed for synergistic extraction and separation of valuable elements from high-alumina fly ash.A thermodynamic analysis revealed that to achieve effective carbochlorination,it is crucial to conduct carbochlorination of the fly ash within the temperature range from 700 to 1000℃.The experimental results demonstrated that under the optimal conditions,the carbochlorination efficiency for Al,Si,Ca,Ti,and Mg exceeded 81.18%,67.62%,58.87%,82.15%,and 59.53%,respectively.The XRD patterns indicated that Al and Si in the mullite phase(Al_(6)Si_(2)O_(13))were chlorinated during the carbochlorination process,resulting in the formation of mullite mesophases(Al_(4.75)Si_(1.25)O_(9.63) and Al_(1.83)Si_(1.08)O_(4.85)).After the carbochlorination process,Al was accumulated as AlCl_(3) in the condenser,while SiCl_(4) and TiCl_(4) were enriched in the exhaust gas,and CaCl_(2),MgCl_(2),and unreacted oxides remained in the residue for further recycling.