期刊文献+
共找到222,390篇文章
< 1 2 250 >
每页显示 20 50 100
Nutrient Limiting Factor and Agronomic Efficiency of Wheat in Fluvo-aquic Soil District in Northwest of Shandong Province 被引量:1
1
作者 马征 魏建林 +4 位作者 郭洪海 张柏松 董晓霞 徐长英 崔荣宗 《Agricultural Science & Technology》 CAS 2013年第8期1191-1194,共4页
[Objective] This study aimed to provide basis for rational fertilizer application of wheat in fluvo-aquic soil in the northwest of Shandong Province.[Method] In this paper,the treatments of reduced N,P and K were set ... [Objective] This study aimed to provide basis for rational fertilizer application of wheat in fluvo-aquic soil in the northwest of Shandong Province.[Method] In this paper,the treatments of reduced N,P and K were set in order to explore the effects of fertilizer recommendation based on ASI systematic approach on wheat yield,agronomic efficiency and recovery rate of nutrients.[Result] Nitrogen was the main limiting factor for wheat production in that area,followed by phosphorus,and the third was potassium.Compared with the optimum treatment (OPT),the reduction of N,P and K reduced the grain yield obviously,which came up to 22.4%,14.4% and 13.4% respectively.There were no obvious differences in grain yield among Farmer's Fertilization Practice (FP),60% OPT-N and OPT treatment.[Conclusion] Agronomic efficiency of N,P and K was 6.3,12.9 and 10 kg/kg respectively.The recovery rates of N,P and K in wheat season were 16.41%,17.27% and 27.27% respectively. 展开更多
关键词 WHEAT fluvo-aquic soil YIELD Nutrient limiting factor Agronomic efficiency
在线阅读 下载PDF
Atrazine Adsorption Behavior on a Fluvo-Aquic Soil as Influenced by Contact Periods 被引量:2
2
作者 DENG Jian-Cai JIANG Xin +3 位作者 LU Xin YU Gui-Fen Wang Fang ZHANG Bin 《Pedosphere》 SCIE CAS CSCD 2007年第6期786-791,共6页
A batch experiment was performed to investigate nonequilibrium adsorption behavior of atrazine (2-chloro-4-ethylamino-6-isopropylamlno-1,3,5-triazlne) on a fluvo-aquic soil. The amount of atrazine sorbed increased w... A batch experiment was performed to investigate nonequilibrium adsorption behavior of atrazine (2-chloro-4-ethylamino-6-isopropylamlno-1,3,5-triazlne) on a fluvo-aquic soil. The amount of atrazine sorbed increased with increasing adsorption contact periods. For a range of initial atrazlne concentrations, the percentage of atrazine sorbed within 24 h ranged from 24% to 77% of the observed total amount sorbed for the longest contact period; when adsorption contact periods were more than 72 h, the deviations in curves fitted using a nonlinear Freundllch equation gradually became less. The opposite trend was observed for the atrazine concentrations in solution. The effect of adsorption contact periods on atrazine adsorption behavior was evaluated by interpreting the temporal variations in linear and nonlinear Freundlich equation parameters obtained from the phase-distribution relationships. As the adsorption contact period increased, the nonlinear Freundlich capacity coefficient kf showed a significant linear increase (r^2 = 0.9063, P 〈 0.001). However, a significant negative linear correlation was observed for the nonlinear coefficient n, a dimensionless parameter (r^2 = 0.5666, P 〈 0.05). Furthermore, the linear distribution coefficient kd ranged from 0.38 to 1.44 and exhibited a significant linear correlation to the adsorption contact period (r^2 = 0.72, P 〈 0.01). The parameters kf and n obtained from a time-dependent isotherm rather than the distribution coefficient kd estimated using the linear Freundlich equation were more appropriate to predict the herbicide residue in the field and thus more meaningful for environmental assessment. 展开更多
关键词 adsorption contact periods ATRAZINE fluvo-aquic soil Freundlich equation parameters
在线阅读 下载PDF
Long-term organic and inorganic fertilizations enhanced basic soil productivity in a fluvo-aquic soil 被引量:8
3
作者 ZHA Yan WU Xue-ping +5 位作者 GONG Fu-fei XU Ming-gang ZHANG Hui-min CHEN Li-ming HUANG Shao-min CAI Dian-xiong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第12期2477-2489,共13页
The improvement of soil productivity depends on a rational input of water and nutrients, optimal field management, and the increase of basic soil productivity(BSP). In this study, BSP is defined as the productive ca... The improvement of soil productivity depends on a rational input of water and nutrients, optimal field management, and the increase of basic soil productivity(BSP). In this study, BSP is defined as the productive capacity of a farmland soil with its own physical and chemical properties for a specific crop season under local field management. Based on 19-yr data of the long-term agronomic experiments(1989–2008) on a fluvo-aquic soil in Zhengzhou, Henan Province, China, the decision support system for agrotechnology transfer(DSSAT ver. 4.0) crop growth model was used to simulate yields by BSP of winter wheat(Triticum aestivium L.) and summer maize(Zea mays L.) to examine the relationship between BSP and soil organic carbon(SOC) under long-term fertilization. Five treatments were included:(1) no fertilization(control),(2) nitrogen, phosphorus and potassium fertilizers(NPK),(3) NPK plus manure(NPKM),(4) 1.5 times of NPKM(1.5NPKM), and(5) NPK plus straw(NPKS). After 19 yr of treatments, the SOC stock increased 16.7, 44.2, 69.9, and 25.2% under the NPK, NPKM, 1.5NPKM, and NPKS, respectively, compared to the initial value. Among various nutrient factors affecting contribution percentage of BSP to winter wheat and summer maize, SOC was a major affecting factor for BSP in the fluvo-aquic soil. There were significant positive correlations between SOC stock and yields by BSP of winter wheat and summer maize(P〈0.01), and yields by BSP of winter wheat and summer maize increased 154 and 132 kg ha^(–1) when SOC stock increased 1 t C ha^(–1). Thus, increased SOC accumulation is a crucial way for increasing BSP in fluvo-aquic soil. The manure or straw combined application with chemical fertilizers significantly enhanced BSP compared to the application of chemical fertilizers alone. 展开更多
关键词 soil organic carbon basic soil productivity long-term fertilization DSSAT model fluvo-aquic soil wheat-maize rotation
在线阅读 下载PDF
Characteristics of Magnesium Release from Fluvo-Aquic Soil and Relative Availability of Magnesium to Plants 被引量:1
4
作者 WANGHONG CHUTIANDUO 《Pedosphere》 SCIE CAS CSCD 2000年第3期281-288,共8页
Experiments including two in laboratory and one in greenhouse were carried out to study non- exchangeable magnesium release from fluvo-aquic soils sampled from Daxing and changping counties located in the suburbs of B... Experiments including two in laboratory and one in greenhouse were carried out to study non- exchangeable magnesium release from fluvo-aquic soils sampled from Daxing and changping counties located in the suburbs of Beijing and Mg relative availability of the two soils to plants. In a batch experiment in laboratory the soils were incubated under wet conditions and alternation of dry and wet conditions and determined for amount of Mg released at the 4th, 8th and 12th week, respectively, after extraction of exchangeable Mg with 1 mol L-1 NH4Ac. The amount of Mg released from the soil of Daxing was higher than from the soil of Changping, which was in accordance with the fact that the soil of Daxing had higher contents of all forms of Mg than that of Changping. There was little difference in Mg release from soils between wet conditions and alternation of dry and wet conditions. About 1%~2% of the total non-exchangeable Mg might be released within 12 weeks of incubation, restoring about 30%~35% of the original soil exchangeable Mg. Results of the experiment on kinetics of Mg release from the soils through continuous extractions with 0.5 mol L-1 NH4Ac (pH 7.0) on a continuous flow apparatus in laboratory showed that Mg released rapidly in the beginning, decreased sharply with time and kept stable at 60 and 240 min for the soils of Changping and Daxing, respectively. Among the five mathematical models used to describe the kinetics of Mg release, the parabolic diffusion equation best fitted the cumulative Mg release, indicating that diffusion of Mg out of the soils might be the controlling process. The experiment of exhaustive cropping with 1 crop of tomato (Lycopersicon esculentum Mill.) followed by six crops of corn (Zea mays L.) in greenhouse showed that soil exchangeable Mg decreased remarkably with cropping. After three crops, the percentage of the total plant Mg uptake that came from soil non-exchangeable Mg was 29.5% for the soil from Changping and 35% for the soil from Daxing. About 50% of the total Mg uptake by plants in the six crops was believed to come from the soil non-exchangeable Mg form. 展开更多
关键词 fluvo-aquic soil KINETICS magnesium availabiliy magnesium relea
在线阅读 下载PDF
Effects of Conservation Tillage on the Content of Carbon, Nitrogen in Fluvo-aquic Soil 被引量:1
5
作者 陈文超 梁晓辉 +3 位作者 徐生 马宏卫 何建桥 刘建明 《Agricultural Science & Technology》 CAS 2016年第2期379-384,共6页
In order to verify organic carbon cycle under conservation tillage condition and the promotion mechanism of soil fertility and offer scientific theory support for the popularization and application of conservation til... In order to verify organic carbon cycle under conservation tillage condition and the promotion mechanism of soil fertility and offer scientific theory support for the popularization and application of conservation tillage technological, the research investigated effects of different tillage treatments on the content of total organic car- bon, total nitrogen and different components of them in fluvo-aquic soil based on a long-term experiment site of conservation tillage. The research revealed effects of conservation tillage on the content of carbon, nitrogen in fluvo-aquic soil by study the distribution of soil total organic carbon, total nitrogen, dissolved organic carbon, dissolved organic nitrogen, microbial biomass carbon, liable carbon in different soil depth under different tillage treatments. The results showed that compared to con- ventional tillage treatment, contents of soil total organic carbon under intermittent tillage (tillage once every 2 or 4 years) and no-tillage treatment improved by 1.81%, 6.43%, 14.04%, respectively and contents of soil total nitrogen went up by 0.80%, 10.04%, 7.93%, respectively. Contents of soil total organic carbon and total nitrogen in 10-20 cm soil layer under no-tillage treatment were significantly lower than the other treatments. Under the condition of straw returned, intermittent tillage and no- tillage could significantly improve the content of soil dissolved organic carbon and ni- trogen in 0-5 cm and 5-10 cm soil. Compared to conventional tillage treatment, content of soil microbial biomass carbon and liable carbon in 0-5 cm soil under in- termittent tillage and no-tillage were improved in varying degrees. Content of soil microbial biomass carbon in 10-20 cm soil layer under no-tillage treatment was sig- nificantly lower than the other treatments. Straw returning had improved the content of soil total organic carbon, total nitrogen, dissolved organic carbon and other com- ponents of active organic carbon in varying degrees. In general, conservation tillage measures could increase carbon and nitrogen storage in 0-5 cm soil layer, the negative effects of "nutrients enrichment in surface" under no-tillage condition could be ameliorated by intermittent tillage. 展开更多
关键词 Conservation tillage fluvo-aquic soil Total nitrogen Active carbon
在线阅读 下载PDF
Effects of Long-term Located Fertilization on Evolution of Available Phosphorus and Phosphorus Pool in Shandong Fluvo-aquic Soil 被引量:1
6
作者 Yingpeng ZHANG Gang DUAN +6 位作者 Cuiping SUN Ziwen ZHONG Ming SUN Yongping JING Jiafa LUO Luji BO Yan LI 《Agricultural Biotechnology》 CAS 2018年第2期74-80,共7页
This study was conducted to investigate the effects of long-term located fertilization on soil phosphorus,the changes of soil available phosphorus(OlsenP),the evolution of soil total phosphorus(TP)and the ratio change... This study was conducted to investigate the effects of long-term located fertilization on soil phosphorus,the changes of soil available phosphorus(OlsenP),the evolution of soil total phosphorus(TP)and the ratio change of Olsen-P to TP(PAC)by 33-year fertilization experiments in winter wheat-summer maize rotation system in Shandong fluvo-aquic soil.Eight treatments were designed as no fertilization(CK),nitrogen fertilizer(N),nitrogen and phosphate fertilizer(NP),nitrogen and potassium fertilizer(NK),phosphate and potassium fertilizer(PK),nitrogen-phosphate-potassium fertilizer(NPK),reduced NPK fertilizer(N(15)PK),and increased NPK fertilizer(N_(25)PK).Meanwhile,eight organic fertilizer-added treatments were designed based on the application of inorganic fertilizer the same as the above ones.The results showed that TP,Olsen-P and PAC of treatments added with organic fertilizer were higher than those without organic fertilizer,and those of the treatments applied with phosphate fertilizer were higher than those of no phosphate fertilizer.With the increase of years,soil P pool decreased due to crop absorption,nutrient loss and morphological transformation and other causes under the treatments of without and only phosphate fertilizer,while remained stable under the treatments added with organic fertilizer.The PAC values were generally lower in fluvo-aquic soil,and it could be improved by the application of organic fertilizer.On the whole,the application of chemical phosphate fertilizer combined with organic fertilizer could improve the phosphorus content in soil and ensure the supply of phosphorus nutrition.This study would provide scientific basis for fertilization management and soil fertility in fluvo-aquic soil. 展开更多
关键词 Long-term located fertilization fluvo-aquic soil Total phosphorus Available phosphorus Phosphorus pool Activity coefficient
在线阅读 下载PDF
Research on Effects of Remediation by Fertilization on Off-Balanced Fluvo-aquic Soils in Nutrient 被引量:2
7
作者 黄绍敏 宝德俊 +1 位作者 张水清 郭斗斗 《Agricultural Science & Technology》 CAS 2010年第9期126-129,135,共5页
[Objective] The research aimed to study the effects of fertilization on soil remediation.[Method]Pot fertilizer tests were conducted to remedy the soils which had off-balanced in nutrients resulted by long-term unreas... [Objective] The research aimed to study the effects of fertilization on soil remediation.[Method]Pot fertilizer tests were conducted to remedy the soils which had off-balanced in nutrients resulted by long-term unreasonable fertilization.[Result]The results showed that applying NPK fertilizers with manure was the best method to restore the soil nutrients and increase soil fertility and crop yield;NPK and NP fertilizers could balance soil fertility and increase crop yields,the effects were the same and next to MNPK.Phosphate and nitrogen respectively had the similar restoring effect with NPK fertilizers on soil from long-term NK and PK treatments.[Conclusion]Crops in soil with long-term applying NPK fertilizers had strong dependence on fertilizers.The yields of corn and wheat decreased by 78.6% and 52.8% respectively after stopping applying fertilizers.Meanwhile,The yields of corn and wheat increased by 112% and 182% respectively after stopping applying fertilizers in NK treatment as well as 15.1% and 59% in PK treatment.Manure had strong and last effect on increasing yield. 展开更多
关键词 FERTILIZATION Off-balance in soil nutrients REMEDIATION Effect
在线阅读 下载PDF
Response of soil Olsen-P to P budget under different long-term fertilization treatments in a fluvo-aquic soil 被引量:8
8
作者 ZHANG Wei-wei ZHAN Xiao-ying +2 位作者 ZHANG Shu-xiang Khalid Hamdan Mohamed Ibrahima XU Ming-gang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第3期667-676,共10页
The concentration of soil Olsen-P is rapidly increasing in many parts of China, where P budget(P input minus P output) is the main factor influencing soil Olsen-P. Understanding the relationship between soil Olsen-P a... The concentration of soil Olsen-P is rapidly increasing in many parts of China, where P budget(P input minus P output) is the main factor influencing soil Olsen-P. Understanding the relationship between soil Olsen-P and P budget is useful in estimating soil Olsen-P content and conducting P management strategies. To address this, a long-term experiment(1991–2011) was performed on a fluvo-aquic soil in Beijing, China, where seven fertilization treatments were used to study the response of soil Olsen-P to P budget. The results showed that the relationship between the decrease in soil Olsen-P and P deficit could be simulated by a simple linear model. In treatments without P fertilization(CK, N, and NK), soil Olsen-P decreased by 2.4, 1.9, and 1.4 mg kg^(–1) for every 100 kg ha^(–1) of P deficit, respectively. Under conditions of P addition, the relationship between the increase in soil Olsen-P and P surplus could be divided into two stages. When P surplus was lower than the range of 729–884 kg ha^(–1), soil Olsen-P fluctuated over the course of the experimental period with chemical fertilizers(NP and NPK), and increased by 5.0 and 2.0 mg kg^(–1), respectively, when treated with chemical fertilizers combined with manure(NPKM and 1.5 NPKM) for every 100 kg ha^(–1) of P surplus. When P surplus was higher than the range of 729–884 kg ha^(–1), soil Olsen-P increased by 49.0 and 37.0 mg kg^(–1) in NPKM and 1.5 NPKM treatments, respectively, for every 100 kg ha^(–1) P surplus. The relationship between the increase in soil Olsen-P and P surplus could be simulated by two-segment linear models. The cumulative P budget at the turning point was defined as the "storage threshold" of a fluvo-aquic soil in Beijing, and the storage thresholds under NPKM and 1.5 NPKM were 729 and 884 kg ha^(–1)P for more adsorption sites. According to the critical soil P values(CPVs) and the relationship between soil Olsen-P and P budget, the quantity of P fertilizers for winter wheat could be increased and that of summer maize could be decreased based on the results of treatments in chemical fertilization. Additionally, when chemical fertilizers are combined with manures(NPKM and 1.5 NPKM), it could take approximately 9–11 years for soil Olsen-P to decrease to the critical soil P values of crops grown in the absence of P fertilizer. 展开更多
关键词 long-term FERTILIZATION fluvo-aquic soil OLSEN-P P BUDGET critical soil P value
在线阅读 下载PDF
Effects of straw addition on increased greenhouse vegetable yield and reduced antibiotic residue in fluvo-aquic soil 被引量:4
9
作者 ZHANG Zhi-qiang WANG Xiu-bin +4 位作者 LI Chun-hua HUANG Shao-wen GAO Wei TANG Ji-wei JIN Ji-yun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第7期1423-1433,共11页
Organic manure application is an important measure for high yield and good quality vegetable production, whereas organic manure is also a main source of residual antibiotic in soils. A 3-yr experiment was conducted on... Organic manure application is an important measure for high yield and good quality vegetable production, whereas organic manure is also a main source of residual antibiotic in soils. A 3-yr experiment was conducted on a fluvo-aguic soil in Tianjin of northern China. The objective of this study was to investigate the effects of different fertilization patterns on yield of six-sea- son vegetables with celery and tomato rotation, and dynamic change of tetracyclines residues in the soil during the sixth growing season (tomato season). The field experiment comprised six treatments depending on the proportion of nitrogen of each type of fertilizer: 4/4 CN (CN, nitrogen in chemical fertilizer), 3/4 CN+1/4 MN (MN, nitrogen in pig manure), 2/4 CN+2/4 MN, 1/4 CN+3/4 MN, 2/4 CN+1/4 MN+I/4 SN (SN, nitrogen in corn straw), and CF (conventional fertilization, the amounts of nitrogen application were 943 and 912 kg N ha-1 for celery and tomato season, respectively). In addition to CF treatment, the amount of nitrogen application in other treatments was greatly reduced and equal (450 and 450 kg N ha-1 for celery and tomato season, respectively). Results showed that the combined application of 3/4 CN+1/4 MN achieved the highest yield and economic benefit in the first four seasons, but addition of straw (2/4 CN+1/4 MN+I/4 SN treatment) performed better in the subsequent two seasons, and the average yields of 2/4 CN+1/4 MN+I/4 SN treatment were respectively higher by 9.9 and 12.8% than those of 4/4 CN treatment, and by 5.6 and 10.5% than those of CF treatment. The residual chlortet- racycline (CTC) in manure-amended soil for three consecutive years increased along with the increase of applied amount of pig manure. Under the same amount of pig manure application, content of CTC in straw-amended soil was obviously decreased compared with no straw-amended soil (3/4 CN+1/4 MN treatment), and averagely decreased by 41.9% for four sampling periods in the sixth season. Addition of crop straw facilitated the degradation of CTC in manure-amended soil. As a whole, the conventional fertilization was not the desirable pattern based on yield, economic benefit and environment, the optimal fertilization pattern with the highest yield and profit and the least soil chlortetracycline residue was the treatment of 2/4 CN+1/4 MN+I/4 SN under this experimental condition. 展开更多
关键词 greenhouse vegetable organic manure STRAW yield soil chlortetracycline
在线阅读 下载PDF
Effect of Continuous Vegetable Cultivation on Phosphorus Levels of Fluvo-Aquic Soils 被引量:20
10
作者 WANGXin-Min HOUYan-Lin 《Pedosphere》 SCIE CAS CSCD 2004年第2期171-176,共6页
Soil P status, inorganic P fractions, and P sorption properties were studiedusing sandy fluvo-aquic horticultural soils, which are high in organic matter content for vegetableproduction in comparison with a soil used ... Soil P status, inorganic P fractions, and P sorption properties were studiedusing sandy fluvo-aquic horticultural soils, which are high in organic matter content for vegetableproduction in comparison with a soil used for grain crop production in Zhengzhou, Henan Province,China P fractions, Olsen-P, and OM were determined at different depths in the soil profile andsorption isotherm experiments were performed Most P in excess of plant requirements accumulated inthe topsoil and decreased with soildepth. Total P, inorganic P, and OM concentrations increased withcontinued horticultural use Olsen-P concentrations in the 0-20 cm depth of horticultural soils were9 to 25 times higher than those of the grain crop soil. A linear transformation of the Langmuirequation showed that the P adsorption maximum (491.3 mg P kg^(-1)) and the maximum phosphatebuffering capacity (162.1 L kg^(-1)) for 80--100 cm were greater in the grain crop soil than thehorticultural soils. Thus, the most immediate concern with excess P were in areas where heavy Pfertilizer was used for vegetable crops and where soil P sorption capacities were low due to sandysoils and high organic matter content. 展开更多
关键词 FRACTIONS horticultural soils phosphorus status SORPTION
在线阅读 下载PDF
K^+ Adsorption Kinetics of Fluvo-Aquic and Cinnamon Soil Under Different Temperature
11
作者 LONGHuai-yu LIYun-zhu +1 位作者 ZHANGWei-li JIANGYi-chao 《Agricultural Sciences in China》 CAS CSCD 2004年第8期612-621,共10页
The K+ adsorption kinetics of fluvo-aquic soil and cinnamon soil under different temperatureswere studied. The results showed: 1) The first order equations were the most suitable forfitting the adsorption under variou... The K+ adsorption kinetics of fluvo-aquic soil and cinnamon soil under different temperatureswere studied. The results showed: 1) The first order equations were the most suitable forfitting the adsorption under various temperature levels with constant K+ concentration indisplacing fluid. With temperature increasing, the fitness of Elovich equation increased,while those of power equation and parabolic diffusion equation decreased; 2)the apparentadsorption rate constant ka and the product of ka multiplied by the apparent equilibriumadsorption qincreased when temperature increased, while the apparent equilibrium adsorptionqreduced; 3)temperature influenced hardly the reaction order, the order of concentrationand adsorpton site were always 1 under various temperatures, if they were taken intoaccount simultaneously, the adsorption should be a two-order reaction process; 4)theGibbs free energy change △G of potassium adsorption were negative, ranged from -4444.56to -2450.63Jmol-1,and increased with temperature increasing, while enthalpy change △H,entropy change △S, apparent adsorption activation Ea, adsorption activation energy E1and desorption activation energy E2 were temperature-independent; 5)the adsorption wasspontaneous process with heat releasing and entropy dropping, fluvo-aquic soil releasedmore heat than cinnamon soil. 展开更多
关键词 Temperature Adsorption kinetics Potassium Thermodynamic fluvo-aquic soil Cinnamon soil
在线阅读 下载PDF
多因素土壤墒情预测模型DA-LSTM-soil构建 被引量:1
12
作者 车银超 郑光 +3 位作者 熊淑萍 张明天 马新明 席磊 《河南农业大学学报》 北大核心 2025年第4期698-710,共13页
【目的】针对土壤墒情预测时特征因素复杂、预测精度不佳的问题,构建多因素土壤墒情预测模型DA-LSTM-soil,提高土壤墒情预测精度。【方法】以包含10个特征的气象和土壤时序数据作为输入,采用LSTM网络为基本单元,构建Encoder-Decoder网... 【目的】针对土壤墒情预测时特征因素复杂、预测精度不佳的问题,构建多因素土壤墒情预测模型DA-LSTM-soil,提高土壤墒情预测精度。【方法】以包含10个特征的气象和土壤时序数据作为输入,采用LSTM网络为基本单元,构建Encoder-Decoder网络结构,分别引入特征和时间两个注意力模块。利用河南省许昌市2020—2021年冬小麦生长过程中物联网监测站的气象、土壤数据集,对DA-LSTM-soil模型进行训练和测试。同时,利用DA-LSTM-soil模型对河南省4个不同土壤类型的小麦种植区的数据集进行预测。【结果】对比试验表明,相较于LSTM、CNN-LSTM、CNN-LSTM-attention、LSTM-attention等深度学习模型,DA-LSTM-soil模型在S_(RME)、S_(ME)、A_(ME)、R^(2)评价指标更优,分别达到0.1764、0.0311、0.0466、0.9938。消融试验显示,时间注意力对模型性能的提升高于特征注意力。对时间步的试验显示,用过往3000 min的数据进行预测时,模型性能最佳;模型精度随着预测时长的增加有所下降,然而在5000 min内,决定系数R2仍保持在0.7以上。【结论】利用注意力机制,DA-LSTMsoil模型在Encoder前计算不同气象和土壤因素对墒情影响的权重,在Decoder前计算数据的时序对墒情预测的权重,双阶段注意力机制在特征提取和权重分配方面的作用显著,使模型具有更好的预测性能和泛化能力,可以为田块尺度麦田土壤墒情预测提供技术依据。 展开更多
关键词 麦田 土壤墒情预测 时序数据 长短期记忆网络 注意力机制
在线阅读 下载PDF
Microscale heterogeneity of soil bacterial communities under long-term fertilizations in fluvo-aquic soils 被引量:1
13
作者 Haojie Feng Hong Pan +1 位作者 Chengliang Li Yuping Zhuge 《Soil Ecology Letters》 CAS 2022年第4期337-347,共11页
Differently sized soil aggregates,with non-uniform distribution of space and nutrients,provide spatially heterogeneous microenvironments for microorganisms and are important for controlling microbial community ecology... Differently sized soil aggregates,with non-uniform distribution of space and nutrients,provide spatially heterogeneous microenvironments for microorganisms and are important for controlling microbial community ecology and biogeochemistry in soils.Here,we investigated the prokaryotic communities within different aggregate-size fractions:macroaggregate(>0.25 mm),microaggre-gate(0.053–0.25 mm)and silt+clay(<0.053 mm).These were isolated from fluvo-aquic soils under 39-year fertilization strategies:no fertilizer(CK),chemical fertilizer(NPK),manure fertilizer(M),and combination of manure and chemical fertilizers(MNPK).The results showed that the proportion of macroaggregate,soil aggregate-associated organic carbon(SOC)content and aggregate stability were all significantly increased by both manure and chemical fertilizations.Organic fertilizations(M and MNPK)more effectively boosted formation and stability of macroaggregates and enhanced SOC concentration than NPK.The distribution patterns of microorganisms in aggregates were primarily shaped by fertilization and aggregate size.They explained 76.9%of the variance in bacterial community compositions.Fertilizations,especially with organic fertilizers primarily transitioned bacterial communities from slow-growing oligotrophic groups(e.g.,Chloroflexi)dominance to fast-growing copiotrophic groups(e.g.,Proteobacteria and Bacteroidetes)dominance across all aggregate sizes.Macroaggregates possessed a more stable bacterial community and efficiency of resource transfer,while smaller aggregates increased antagonism and weakened mutualism among bacterial communities.Overall,combination of manure and chemical fertilizers was crucial for increasing SOC content and aggregation,leading to a clear shift in bacterial community structures at aggregate scale. 展开更多
关键词 Bacterial community soil aggregate Long-term fertilization soil organic carbon(SOC)
原文传递
Research progress on the environmental risk assessment and remediation technologies of heavy metal pollution in agricultural soil 被引量:8
14
作者 Xurui Mai Jing Tang +6 位作者 Juexuan Tang Xinyue Zhu Zhenhao Yang Xi Liu Xiaojie Zhuang Guang Feng Lin Tang 《Journal of Environmental Sciences》 2025年第3期1-20,共20页
Controlling heavy metal pollution in agricultural soil has been a significant challenge.These heavy metals seriously threaten the surrounding ecological environment and human health.The effective assessment and remedi... Controlling heavy metal pollution in agricultural soil has been a significant challenge.These heavy metals seriously threaten the surrounding ecological environment and human health.The effective assessment and remediation of heavy metals in agricultural soils are crucial.These two aspects support each other,forming a close and complete decisionmaking chain.Therefore,this review systematically summarizes the distribution characteristics of soil heavy metal pollution,the correlation between soil and crop heavy metal contents,the presence pattern and migration and transformation mode of heavy metals in the soil-crop system.The advantages and disadvantages of the risk evaluation tools and models of heavy metal pollution in farmland are further outlined,which provides important guidance for an in-depth understanding of the characteristics of heavymetal pollution in farmland soils and the assessment of the environmental risk.Soil remediation strategies involve multiple physical,chemical,biological and even combined technologies,and this paper compares the potential and effect of the above current remediation technologies in heavy metal polluted farmland soils.Finally,the main problems and possible research directions of future heavy metal risk assessment and remediation technologies in agricultural soils are prospected.This review provides new ideas for effective assessment and selection of remediation technologies based on the characterization of soil heavy metals. 展开更多
关键词 Source Migration transformation Risk assessment REMEDIATION Heavy metals Agricultural soils
原文传递
Utilizing On-the-Go Soil Sensors to Explore Correlations between Electrical Conductivity, Soil Reflectance, Slope, and Elevation of Mississippi Farm Soils 被引量:1
15
作者 Reginald S. Fletcher 《Agricultural Sciences》 2025年第1期112-122,共11页
Ten physical and environmental variables collected from an on-the-go soil sensor at two field sites (MF3E and MF11S) in Mississippi, USA, were analyzed to assess soil variability and the interrelationships among the m... Ten physical and environmental variables collected from an on-the-go soil sensor at two field sites (MF3E and MF11S) in Mississippi, USA, were analyzed to assess soil variability and the interrelationships among the measurements. At MF3E, moderate variability was observed in apparent electrical conductivity shallow (ECas), slope, and ECa ratio measurements, with coefficients of variation ranging from 20% to 27%. In contrast, MF11S exhibited higher variability, particularly in ECas and ECad (deep) measurements, which exceeded 30% in their coefficient of variation values, indicating significant differences in soil composition and moisture content. Correlation analysis revealed strong positive relationships between the near-infrared-to-red ratio and red reflectance (r = 0.897***) soil values at MF3E. MF11S demonstrated a strong negative correlation between ECas and ECad readings with the x-coordinate (r ***). Scatter plots and fitted models illustrated the complexity of relationships, with many showing nonlinear trends. These findings emphasize the need for continuous monitoring and advanced modeling to understand the dynamic nature of soil properties and their implications for agricultural practices. Future research should explore the underlying mechanisms driving variability in the soil characteristics to enhance soil management strategies at the study sites. 展开更多
关键词 Mobile soil Sensors NEAR-INFRARED Correlation Nonlinear
在线阅读 下载PDF
Organic fertilizer enhances soil aggregate stability by altering greenhouse soil content of iron oxide and organic carbon 被引量:1
16
作者 Lijun Ren Han Yang +4 位作者 Jin Li Nan Zhang Yanyu Han Hongtao Zou Yulong Zhang 《Journal of Integrative Agriculture》 2025年第1期306-321,共16页
Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic ... Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic fertilizer is not well understood.In a 3-year field experiment, we aimed to investigate the factors which drive the stability of soil aggregates in greenhouse soil.To explore the impact of organic fertilizer on soil aggregates, we established four treatments:no fertilization (CK);inorganic fertilizer (CF);organic fertilizer (OF);and combined application of inorganic and organic fertilizers(COF).The application of organic fertilizer significantly enhanced the stability of aggregates, that is it enhanced the mean weight diameter, geometric mean diameter and aggregate content (%) of>0.25 mm aggregate fractions.OF and COF treatments increased the concentration of SOC, especially the aliphatic-C, aromatic-C and polysaccharide-C components of SOC, particularly in>0.25 mm aggregates.Organic fertilizer application significantly increased the content of free Fe(Fed), reactive Fe (Feo), and non-crystalline Fe in both bulk soil and aggregates.Furthermore, non-crystalline Fe showed a positive correlation with SOC content in both bulk soil and aggregates.Both non-crystalline Fe and SOC were significantly positively correlated with>2 mm mean weight diameter.Overall, we believe that the increase of SOC, aromatic-C, and non-crystal ine Fe concentrations in soil after the application of organic fertilizer is the reason for improving soil aggregate stability. 展开更多
关键词 organic fertilizer soil aggregates soil organic carbon iron oxides greenhouse soil
在线阅读 下载PDF
Effects of reductive soil disinfestation on potential pathogens and antibiotic resistance genes in soil 被引量:2
17
作者 Huijuan Duan Yue Yin +5 位作者 Yifei Wang Zhelun Liu Tiangui Cai Dong Zhu Chun Chen Guilan Duan 《Journal of Environmental Sciences》 2025年第4期373-384,共12页
Reductive soil disinfestation(RSD)is commonly employed for soil remediation in greenhouse cultivation.However,its influence on antibiotic resistance genes(ARGs)in soil remains uncertain.This study investigated the dyn... Reductive soil disinfestation(RSD)is commonly employed for soil remediation in greenhouse cultivation.However,its influence on antibiotic resistance genes(ARGs)in soil remains uncertain.This study investigated the dynamic changes in soil communities,potential bacterial pathogens,and ARG profiles under various organicmaterial treatments during RSD,including distillers’grains,potato peel,peanut vine,and peanut vine combined with charcoal.Results revealed that applying diverse organic materials in RSD significantly altered bacterial community composition and diminished the relative abundance of potential bacterial pathogens(P<0.05).The relative abundance of high-risk ARGs decreased by 10.7%-30.6%after RSD treatments,the main decreased ARG subtypeswere AAC(3)_Via,dfrA1,ErmB,lnuB,aadA.Actinobacteria was the primary host of ARGs and was suppressed by RSD.Soil physicochemical properties,such as total nitrogen,soil pH,total carbon,were crucial factors affecting ARG profiles.Our findings demonstrated that RSD treatment inhibited pathogenic bacteria and could be an option for reducing high-risk ARG proliferation in soil. 展开更多
关键词 Reductive soil disinfestation(RSD) Antibiotic resistance genes(ARGs) Bacterial communities Farmland soil Potential pathogens
原文传递
Antibiotics-heavy metals combined pollution in agricultural soils:Sources,fate,risks,and countermeasures 被引量:1
18
作者 Yuanxiang Shu Donghao Li +3 位作者 Tong Xie Ke Zhao Lu Zhou Fengxiang Li 《Green Energy & Environment》 2025年第5期869-897,共29页
Agricultural soil is related to food security and human health,antibiotics and heavy metals(HMs),as two typical pollutants,possess a high coexistence rate in the environmental medium,which is extremely prone to induci... Agricultural soil is related to food security and human health,antibiotics and heavy metals(HMs),as two typical pollutants,possess a high coexistence rate in the environmental medium,which is extremely prone to inducing antibiotic-HMs combined pollution.Recently,frequent human activities have led to more prominent antibiotics-HMs combined contamination in agricultural soils,especially the production and spread of antibiotic resistance genes(ARGs),heavy metal resistance genes(MRGs),antibiotic resistant bacteria(ARB),and antibiotics-HMs complexes(AMCs),which seriously threaten soil ecology and human health.This review describes the main sources(Intrinsic and manmade sources),composite mechanisms(co-selective resistance,oxidative stress,and Joint toxicity mechanism),environmental fate and the potential risks(soil ecological and human health risks)of antibiotics and HMs in agricultural soils.Finally,the current effective source blocking,transmission control,and attenuation strategies are classified for discussion,such as the application of additives and barrier materials,as well as plant and animal remediation and bioremediation,etc.,pointing out that future research should focus on the whole chain process of“source-processterminal”,intending to provide a theoretical basis and decision-making reference for future research. 展开更多
关键词 ANTIBIOTICS Heavy metals Agricultural soils Composite mechanisms Potential risks soil remediation
在线阅读 下载PDF
Different extractable pools of Cd and Pb in agricultural soil under amendments:Water-soluble concentration sensitively indicates metal availability 被引量:1
19
作者 Zidi Wang Wenyao Tang +8 位作者 Xiaodong Ding Qiang Dong Yingying Guo Guangliang Liu Yanwei Liu Yong Liang Yongguang Yin Yong Cai Guibin Jiang 《Journal of Environmental Sciences》 2025年第4期297-308,共12页
Identification of the most appropriate chemically extractable pool for evaluating Cd and Pb availability remains elusive,hindering accurate assessment on environmental risks and effectiveness of remediation strategies... Identification of the most appropriate chemically extractable pool for evaluating Cd and Pb availability remains elusive,hindering accurate assessment on environmental risks and effectiveness of remediation strategies.This study evaluated the feasibility of European Community Bureau of Reference(BCR)sequential extraction,Ca(NO_(3))_(2)extraction,and water extraction on assessing Cd and Pb availability in agricultural soil amended with slaked lime,magnesium hydroxide,corn stover biochar,and calcium dihydrogen phosphate.Moreover,the enriched isotope tracing technique(^(112)Cd and^(206)Pb)was employed to evaluate the aging process of newly introduced Cd and Pbwithin 56 days’incubation.Results demonstrated that extractable pools by BCR and Ca(NO_(3))_(2)extraction were little impacted by amendments and showed little correlation with soil pH.This is notable because soil pH is closely linked to metal availability,indicating these extraction methods may not adequately reflect metal availability.Conversely,water-soluble concentrations of Cd and Pb were markedly influenced by amendments and exhibited strong correlations with pH(Pearson’s r:-0.908 to-0.825,P<0.001),suggesting water extraction as a more sensitive approach.Furthermore,newly introduced metals underwent a more evident aging process as demonstrated by acid-soluble and water-soluble pools.Additionally,water-soluble concentrations of essential metals were impacted by soil amendments,raising caution on their potential effects on plant growth.These findings suggest water extraction as a promising and attractive method to evaluate Cd and Pb availability,which will help provide assessment guidance for environmental risks caused by heavy metals and develop efficient remediation strategies. 展开更多
关键词 Heavy metals Water-soluble concentrations Enriched stable isotopes soil amendments Sequential extraction soil pH
原文传递
Soil degradation:A global threat to sustainable use of black soils 被引量:3
20
作者 Rui LI Wenyou HU +8 位作者 Zhongjun JIA Hanqiang LIU Chao ZHANG Biao HUANG Shunhua YANG Yuguo ZHAO Yongcun ZHAO Manoj K.SHUKLA Miguel Angel TABOADA 《Pedosphere》 2025年第1期264-279,共16页
Black soils represent only one-sixth of the global arable land area but play an important role in maintaining world food security due to their high fertility and gigantic potential for food production.With the ongoing... Black soils represent only one-sixth of the global arable land area but play an important role in maintaining world food security due to their high fertility and gigantic potential for food production.With the ongoing intensification of agricultural practices and negative natural factors,black soils are confronting enhanced degradation.The holistic overview of black soil degradation and the underlying mechanisms for soil health improvement will be key for agricultural sustainability and food security.In this review,the current status and driving factors of soil degradation in the four major black soil regions of the world are summarized,and effective measures for black soil conservation are proposed.The Northeast Plain of China is the research hotspot with 41.5%of the published studies related to black soil degradation,despite its relatively short history of agricultural reclamation,followed by the East European Plain(28.3%),the Great Plains of North America(20.7%),and the Pampas of South American(7.9%).Among the main types of soil degradation,soil erosion and soil fertility decline(especially organic matter loss)have been reported as the most common problems,with 27.6%and 39.4%of the published studies,respectively.In addition to the natural influences of climate and topography,human activities have been reported to have great influences on the degradation of black soils globally.Unsustainable farming practices and excess in agrochemical applications are common factors reported to accelerate the degradation process and threaten the sustainable use of black soils.Global efforts for black soil conservation and utilization should focus on standardizing evaluation criteria including real-time monitoring and the measures of prevention and restoration for sustainable management.International cooperation in technology and policy is crucial for overcoming the challenges and thus achieving the protection,sustainable use,and management of global black soil resources. 展开更多
关键词 food security soil erosion sustainable agriculture sustainable management unsustainable farming practices
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部