The purpose of this study was to evaluate the physical properties and bioactivity potential of epoxy-based dental sealers modified with synthesized bioactive glass(BAG),hydroxyapatite(HA)and fluorine substituted hydro...The purpose of this study was to evaluate the physical properties and bioactivity potential of epoxy-based dental sealers modified with synthesized bioactive glass(BAG),hydroxyapatite(HA)and fluorine substituted hydroxyapatite(FHA)nanoparticles.The synthesized powders were incorporated at 10%and 20%into the epoxy-based dental sealer.The setting time,flow and solubility and microhardness of the modified and unmodified samples were examined.The bioactivity was evaluated using FESEM-EDX and elemental mapping,ATR-FTIR and XRD.The flow value of all of the experimental groups except the FHA modified samples,was greater than 20 mm.Concerning solubility,no specimens exhibited more than 1%weight loss.The solubility value of the FHA groups was statistically significant lower than other groups(p≤0.001).The mean hardness values of all of the modified samples were significantly higher than the unmodified group(p≤0.001).Regarding bioactivity,in vitro study revealed that after 3 days immersion in SBF a compact and continuous calcium phosphate layer formed on the surface of epoxy sealers containing BAG and HA nanoparticles.Based on these results,the addition of BAG and HA nanoparticles did not adversely alter the physical properties of epoxy sealers.Additionally,they improved the in vitro bioactivity of the epoxy sealer.展开更多
Hydroxyapatite nanoparticles(HAP NPs)were synthesized by a one‐step hydrothermal method.The surface of HAP NPs was grafted-SH and-COOH chelating groups via in situ surface‐modification with iminodiacetic acid(IDA)an...Hydroxyapatite nanoparticles(HAP NPs)were synthesized by a one‐step hydrothermal method.The surface of HAP NPs was grafted-SH and-COOH chelating groups via in situ surface‐modification with iminodiacetic acid(IDA)and 3‐mercaptopropyl trimethoxysilane(MPS)to afford dual surface‐capped nano‐amendment HAPIDA/MPS.The structure of HAP‐IDA/MPS was characterized,and its adsorption performance for Hg^(2+),Cu^(2+),Zn^(2+),Ni^(2+),Co^(2+),and Cd^(2+)was evaluated.The total adsorption capacity of 0.10 g HAP‐IDA/MPS nano‐amendment for Hg^(2+),Cu^(2+),Zn^(2+),Ni^(2+),Co^(2+),and Cd^(2+)with an initial mass concentration of 20 mg·L^(-1) reached 13.7 mg·g^(-1),about 4.3 times as much as that of HAP.Notably,HAP‐IDA/MPS nano‐amendment displayed the highest immobilization rate for Hg^(2+),possibly because of its chemical reaction with-SH to form sulfide,possessing the lowest solubility product constant among a variety of metal sulfides.展开更多
Hydroxyapatite (HA) is widely explored as a biocompatible filler to enhance the mechanical and functional properties of glass ionomer cements (GICs). HA of particle sizes 15 µm and 30 µm were added as a fill...Hydroxyapatite (HA) is widely explored as a biocompatible filler to enhance the mechanical and functional properties of glass ionomer cements (GICs). HA of particle sizes 15 µm and 30 µm were added as a filler into a matrix, composed of calcium aluminosilicate GICs and Poly-acrylic acid (PAA) in varying ratios. The tested ratios were Glass:PAA = 2:1 and Glass:HA:PAA = 2:0.5:1 to improve the mechanical strength of a conventional GIC. Mechanical properties, including compressive, flexural, and diametral tensile strength were studied at different setting times. The compressive strength (CS) was improved with hydroxyapatite addition and prolonged setting time while diametral tensile strength (DTS) did not follow any specific trend. The flexural strength (FS) of the composite cement was increased with increasing setting time regardless of the particle size of hydroxyapatite. The FTIR spectra of hydroxyapatite of particle sizes 15 μm and 30 μm are similar but for HA-GIC composites, the FTIR spectra, the peak around 1460 cm−1 are due to C-H and the peak at 1553 cm−1 is due to calcium carboxylate with calcium in a bridging mode which would be an excellent material that chemically bonds to the tooth structure, making it effective for both restorative procedures and cavity fillings. Scanning electron microscopy (SEM) microstructural study revealed that the glass particles were wrenched out, which was a cohesive fracture. The X-ray diffraction (XRD) pattern showed that the hydroxyapatite has a crystalline single-phase, hexagonal structure. The sharp peaks between the 2-theta range of 30 - 40 degrees are the same as in enamel powder. The spectra indicate the pure set cement as amorphous since there is no prominent peak, but with the addition of hydroxyapatite filler, the peak in the 2-theta range of 20 - 35 degrees is ascribed to crystalline apatite structure. The results indicate that incorporating hydroxyapatite into GIC significantly enhances its mechanical properties and structural integrity, suggesting its potential as an improved material for dental and restorative applications.展开更多
The field of bone tissue engineering has experienced an increase in prevalence due to the inherent challenge of the natural regeneration of significant bone deformities.This investigation focused on the preparation of...The field of bone tissue engineering has experienced an increase in prevalence due to the inherent challenge of the natural regeneration of significant bone deformities.This investigation focused on the preparation of Three-Dimensional(3D)-printed Polycaprolactone(PCL)scaffolds with varying proportions of Nanohydroxyapatite(NHA)and Nanoclay(NC),and their physiochemical and biological properties were assessed.The mechanical properties of PCL are satisfactory;however,its hydrophobic nature and long-term degradation hinder its use in scaffold fabrication.NHA and NC have been employed to improve the hydrophilic characteristics,mechanical strength,adhesive properties,biocompatibility,biodegradability,and osteoconductive behavior of PCL.The morphology results demonstrated 3D-printed structures with interconnected rectangular macropores and proper nanoparticle distribution.The sample containing 70 wt%NC showed the highest porosity(65.98±2.54%),leading to an increased degradation rate.The compressive strength ranged from 10.65±1.90 to 84.93±9.93 MPa,which is directly proportional to the compressive strength of cancellous bone(2–12 MPa).The wettability,water uptake,and biodegradability of PCL scaffolds considerably improved as the amount of NC increased.The results of the cellular assays exhibited increased proliferation,viability,and adhesion of MG-63 cells due to the addition of NHA and NC to the scaffolds.Finally,according to the in vitro results,it can be concluded that 3D-printed samples with higher amounts of NC can be regarded as a suitable scaffold for expediting the regeneration process of bone defects.展开更多
The dry reforming of methane(DRM)reaction can directly convert methane(CH_(4))and carbon dioxide(CO_(2))into syngas(H_(2)+CO),which is a promising method for achieving carbon neutralization.In this study,a series of 3...The dry reforming of methane(DRM)reaction can directly convert methane(CH_(4))and carbon dioxide(CO_(2))into syngas(H_(2)+CO),which is a promising method for achieving carbon neutralization.In this study,a series of 3Ni-xCo/Mg1HAP alloy catalysts with different ratio were synthesized by the coprecipitation method,and the optimum Ni-Co ratio for the DRM reaction was studied.A series of characterization methods revealed that after Co was added,the formation of Ni-Co alloys increased the interactions between metals.However,an excess of Co inhibits the entry of Ni into the lattice of Mg_(1)HAP,resulting in metal accumulation on the surface of the support.In addition,the introduction of Co improves the dispersion of Ni metal,which endows the catalyst with better catalytic activity and stability.Raman spectroscopy of the catalyst after the stability test showed that the addition of Co reduced the proportion of graphitic carbon,which was also the main reason for its improved stability.展开更多
Hydroxyapatite(HA)nanoparticles impart outstanding mechanical properties to organicinorganic nanocomposites in bone.Inspired by the composite structure of HA nanoparticles and collagen in bone,a high performance HA/ge...Hydroxyapatite(HA)nanoparticles impart outstanding mechanical properties to organicinorganic nanocomposites in bone.Inspired by the composite structure of HA nanoparticles and collagen in bone,a high performance HA/gelatin nanocomposite was first developed.The nanocomposites have much better mechanical properties(elongation at break 29.9%,tensile strength 90.7 MPa,Young’s modulus 5.24 GPa)than pure gelatin films(elongation at break 9.3%,tensile strength 90.8 MPa,Young’s modulus 2.5 GPa).In addition,the composite films keep a high transmittance in visible wavelength range from 0%to 60%of the HA solid content.These differences in properties are attributed to the homogeneous distribution of HA nanoparticles in the gelatin polymer matrix and the strong interaction between the particle surfaces and the gelatin molecules.This protocol should be promising for HA-based nanocomposites with enhanced mechanical properties for biomedical applications.展开更多
Using a titration setup to accurately control the reaction conditions and in situ monitor the reaction,we showed that fluoride exhibited negligible effects on the ion association process of calcium and phosphate and t...Using a titration setup to accurately control the reaction conditions and in situ monitor the reaction,we showed that fluoride exhibited negligible effects on the ion association process of calcium and phosphate and the formation of ACP nanospheres in a buffer solution with constant ionic strength.However,the stability of ACP increased with increasing fluoride concentration,which was ascribed to the inhibitory effect of fluoride on the aggregation of ACP nanospheres and the nucleation of nanocrystals on the surface of ACP nanospheres.Furthermore,fluoride could inhibit the lateral growth of HAP nanosheets and promote the formation of rod-like crystals.These results further improve our understanding of the crystallization pathway of HAP crystals and the regulatory effects of fluoride.展开更多
The synthesis of methacrylic acid from biomass-derived itaconic acid is a green route,for it can get rid of the dependence on fossil resource.In order to solve the problems on this route such as use of a preciousmetal...The synthesis of methacrylic acid from biomass-derived itaconic acid is a green route,for it can get rid of the dependence on fossil resource.In order to solve the problems on this route such as use of a preciousmetal catalyst and a corrosive homogeneous alkali,we prepared a series of hydroxyapatite catalysts by an ionic liquid-assisted hydrothermal method and evaluated their catalytic performance.The results showed that the ionic liquid[Bmim]BF_(4) can affect the crystal growth of hydroxyapatite,provide fluoride ion for fluorination of hydroxyapatite,and adjust the surface acidity and basicity,morphology,textural properties,crystallinity,and composition of hydroxyapatite.The[Bmim]BF4 dosage and hydrothermal temperature can affect the fluoride ion concentration in the hydrothermal system,thus changing the degree of fluoridation of hydroxyapatite.High fluoride-ion concentration can lead to the formation of CaF_(2) and thus significantly decrease the catalytic performance of hydroxyapatite.The hydrothermal time mainly affects the growth of hydroxyapatite crystals on the c axis,leading to different catalytic performance.The suitable conditions for the preparation of this fluoridized hydroxyapatite are as follows:a mass ratio of[Bmim]BF4 to calcium salt=0.2:1,a hydrothermal time of 12 h,and a hydrothermal temperature of 130℃.A maximal methacrylic acid yield of 54.7%was obtained using the fluoridized hydroxyapatite under relatively mild reaction conditions(250℃ and 2 MPa of N_(2))in the absence of a precious-metal catalyst and a corrosive homogeneous alkali.展开更多
As a material with good biocompatibility,hydroxyapatite(HAP)can have optical properties after doping with various rare earth ions.As a biocompatible fluorescent material,doped HAP could have broad applications in biol...As a material with good biocompatibility,hydroxyapatite(HAP)can have optical properties after doping with various rare earth ions.As a biocompatible fluorescent material,doped HAP could have broad applications in biological probes,drug delivery,optoelectronic materials,fluorescence anti-counterfeiting,and other aspects.In this paper,we put forward the preparation of HAP doped with terbium(Ⅲ)ions(Tb^(3+))by hydrothermal co-precipitation.By controlling the Tb^(3+)doping content in reaction and the reaction time,the changes in HAP's structure,morphology,and luminescence properties under different conditions were studied.When the doping amount of Tb^(3+)reached an optimal value,the dipole-quadrupole would occur and the concentration would be quenched.The control experiment showed that the optimal Tb3+content was 7.5×10^(-5)mol,which showed the best fluorescence performance.HAP,a non-luminous material,was rarely used in the field of fluorescent anti-counterfeiting and photoelectric devices.We proposed to prepare a luminescent aramid/polyphenylene sulfide(ACFs/PPS)fiber paper and a new light-emitting diode(LED)using the Tb-doped HAP phosphor.The composite sample exhibited an excellent stability and fluorescence performance,which also demonstrated a possibility of HAP applications in anticounterfeiting and photoelectric.The introduction of Tb3+dopant HAP was done to give HAP optical properties and broaden the application range of HAP.展开更多
Hydroxyapatite(HA)is a bio ceramic commonly utilized in bone tissue engineering due to its bioactive and osteoconductive properties.Crab shells are usually disregarded as waste material despite their significant CaCO_...Hydroxyapatite(HA)is a bio ceramic commonly utilized in bone tissue engineering due to its bioactive and osteoconductive properties.Crab shells are usually disregarded as waste material despite their significant CaCO_(3) content,and have not been widely utilized in the synthesis of HA.This study aims to synthesize and analyze HA derived from crab shells using the hydrothermal method with different durations of holding time.This study utilized precipitated calcium carbonate(PCC)derived from crab shells.With a hydrothermal reactor set at 160℃ and varying holding times of 14(HA_14),16(HA_16),and 18(HA_18)h,a PCC and(NH4)2HPO4 mixture was used to synthesize HA.The synthesis results were analyzed using scanning electron microscopy(SEM),fourier transform infrared spectroscopy(FTIR),and X-ray diffraction(XRD)tests.This study has accomplished the synthesis of HA from crab shells.Nonetheless,the final product of synthesis still contained CaCO_(3) as an impurity.The prolonged hydrothermal holding time of 14 to 18 h resulted in a reduction of impurities while increasing the percentage of crystal weight and crystallite size of HA.Specimen CH_18 is the best-quality product generated in this study.This specimen produced HA with the highest percentage of crystal weight and crystallite size compared to the other specimens.Furthermore,specimen CH_18 exhibited the lowest concentration of impurities.The Ca/P ratio in this specimen was also the closest to 1.67.The Ca/P ratio,crystallite size,and crystal weight percentage of this specimen are 1.54,19.06 nm,and 99.1%,respectively.展开更多
Integrating titanium-based implants with the surrounding bone tissue remains challenging.This study aims to explore the impact of different anodization voltages(20−80 V)on the surface topography of two-phase(α/β)Ti ...Integrating titanium-based implants with the surrounding bone tissue remains challenging.This study aims to explore the impact of different anodization voltages(20−80 V)on the surface topography of two-phase(α/β)Ti alloys and to produce TiO_(2) films with enhanced bone formation abilities.Scanning electron microscopy coupled with energy dispersive spectroscopy(SEM−EDS)and atomic force microscopy(AFM)were applied to investigate the morphological,chemical,and surface topography of the prepared alloys and to confirm the growth of hydroxyapatite(HA)on their surfaces.Results disclosed that the surface roughness of TiO_(2) films formed on Ti−6Al−7Nb alloys was superior to that of Ti−6Al−4V alloys.Ti−6Al−7Nb alloy anodized at 80 V had the highest yields of HA after immersion in simulated body fluid with enhanced HA surface coverage.The developed HA layer had a mean thickness of(128.38±18.13)μm,suggesting its potential use as an orthopedic implantable material due to its promising bone integration and,hence,remarkable stability inside the human body.展开更多
The mesoporous hydroxyapatite (HA) was synthesized by hydrothermal method utilizing cationic surfactant cetyltrimethylammonium bromide (CTAB) as template. The crystalline phase, morphology and porous structure wer...The mesoporous hydroxyapatite (HA) was synthesized by hydrothermal method utilizing cationic surfactant cetyltrimethylammonium bromide (CTAB) as template. The crystalline phase, morphology and porous structure were characterized respectively by different detecting techniques. The results reveal that the particles are highly crystalline hydroxyapatite phase. The surfactant has little influence on the morphology of the crystals, but affects the porous structure obviously. The sample without CTAB has a low surface area not exceeding 33 m^2/g, and no distinct pores can be observed by TEM. While the samples obtained with the surfactant get better parameters. Numerous open-ended pores centered at 2-7 nm spread unequally on the surface of the hydroxyapatite nanorods. The N2 adsorption-desorption experiments show type IV isotherms with distinct hysteresis loops, illustrating the presence of mesoporous structure. When the mole ratio of CTAB to HA is 1:2, the sample has the largest surface area of 97.1 m^2/g and pore volume of 0.466 cm^3/g.展开更多
In order to further improve the transfection efficiency of hydroxyapatite nanoparticle (HAp), arginine functionalized hydroxyapatite (HAp/Arg) was synthesized by hydrothermal synthesis. The morphology, crystallite...In order to further improve the transfection efficiency of hydroxyapatite nanoparticle (HAp), arginine functionalized hydroxyapatite (HAp/Arg) was synthesized by hydrothermal synthesis. The morphology, crystallite size and zeta potential of the HAp/Arg were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and zeta potential analyzer. The loading and protecting properties of HAp/Arg to DNA were tested by electrophoresis. Its cytotoxicity was also measured in Hela cells and HAEC cells by MTT and LDH, and its transfection efficiency was examined by fluorescence microscope and flow cytometry. The results reveal that HAp/Arg is short rod-like and nano single crystal, the mean diameter is 50-90 nm and zeta potential is 35.8 mV at pH 7.4. HAp/Arg to DNA can be condensed by electrostatic effect and protect DNA against degradation in DNase I, and shows high transfection efficiency without cytotoxicity. These results suggest that HAp/Arg can be a promising alternative as a novel gene delivery system.展开更多
The mixture of CaHPO 4·2H 2O and CaCO 3 was ground in an aqueous system under appropriate conditions to investigate the mechanochemical reaction for the synthesis of crystalline hydroxyapatite (HA) powder. Hyd...The mixture of CaHPO 4·2H 2O and CaCO 3 was ground in an aqueous system under appropriate conditions to investigate the mechanochemical reaction for the synthesis of crystalline hydroxyapatite (HA) powder. Hydroxyapatite of high crystallinity powder including trace Ca 10 (PO 4) 6CO 3(OH) and Ca 9HPO 4(PO 4) 6OH can be synthesized by mechanical activation without further thermal treatment at a high temperature. The synthesis reaction during the grinding process was almost completed within 1h. The as-ground powder exhibits a particle distribution of 20-100nm in size with a spherical or rodlike morphology. The composition and degree of crystallinity of the mechanochemical synthesized hydroxyapatite powders were coincident with the cement-type hydroxyapatite.展开更多
The arginine-modified and europium-doped hydroxyapatite nanoparticles(HAP-Eu) were synthesized by hydrothermal synthesis.The prepared nanoparticles were characterized by transmission electron microscopy(TEM),X-ray...The arginine-modified and europium-doped hydroxyapatite nanoparticles(HAP-Eu) were synthesized by hydrothermal synthesis.The prepared nanoparticles were characterized by transmission electron microscopy(TEM),X-ray diffractometry(XRD),Fourier transform infrared(FTIR) and zeta potential analyzer.The cell viability of HAP-Eu was tested by image flow cytometry.The results indicated that HAP-Eu is short column shapes and its size is approximately 100 nm,its zeta potential is about 30.10 mV at pH of 7.5,and shows no cytotoxicity in human epithelial cells and endothelial cells.展开更多
Objective:To investigate possible effects of nanophase powder of hydroxyapatite on proliferation of periodontal ligament cells. Methods: With sol-gel method, the nanophase hydroxyapatite powders were fabricated. These...Objective:To investigate possible effects of nanophase powder of hydroxyapatite on proliferation of periodontal ligament cells. Methods: With sol-gel method, the nanophase hydroxyapatite powders were fabricated. These powders were proved nanopaticles by transmission electron microscope. The effects on proliferation of periodontal ligament cell(PDLC) were observed in vitro with MTT [3-(4,5dimethylthiazo;-2-yl)-2,5-diphenytetralium bromide] method. Results: On the 2nd,3rd,4th day after treated with nanoparticles of hydroxyapatite, the proliferate activity of the PDLC increases significantly, compared with those with dense hydroxyaoatite and control but no significant difference could be found between the dense hydroxyapatite and the control. Conclusion: Nanophase hydroxyapatite can promote the regeneration of periodontal tissue.展开更多
Hydroxyapatite (HA) nano-powder was synthesized via wet chemical technique in a used precipitation reaction, in which Ca(OH)2 and H3PO4 were used as precursors. Deionised water was used as a diluting media for the...Hydroxyapatite (HA) nano-powder was synthesized via wet chemical technique in a used precipitation reaction, in which Ca(OH)2 and H3PO4 were used as precursors. Deionised water was used as a diluting media for the reaction and ammonia was used to adjust the pH. The synthetic HA nano-powder has some medical applications such as a coating material in orthopaedic implants and in dental. HA powder has been studied at different temperatures from 100 to 800 ℃ to achieve the stoichiometric Ca/P ratio 1.667. The optimum temperature was found to be 600 ℃. Above this temperature, the HA powder decomposed to CaO. The crystallite size of HA powder was found to be in the range of 8.47-24.47 nm. The crystallographic properties were evaluated by X-ray diffraction, Fourier transform infrared spectroscopy, energy dispersive X- ray spectroscopy and scanning electron microscopy. The results show that, high purity of nano-hydroxyapatite powders could be obtained at low temperatures, and the crystallinity, crystallite size and Ca/P ratio of the resulting nanoparticles were found to be dependent on the calcination temperature. When Ca/P ratio exceeded 1.75, formation of CaO phase was observed.展开更多
Plasma-sprayed hydroxyapatite (HA) coatings have been widely utilized in load-bearing titanium alloy implants. In this study, Mg, Sr co-substituted HA ((Mg,Sr)-HA) nano-scale powders have been synthesized, which are f...Plasma-sprayed hydroxyapatite (HA) coatings have been widely utilized in load-bearing titanium alloy implants. In this study, Mg, Sr co-substituted HA ((Mg,Sr)-HA) nano-scale powders have been synthesized, which are further used to prepare (Mg,Sr)-HA coatings on Ti-6A1-4V alloys in order to improve the biological functions. The average size of (Mg,Sr)-HA nano particles is ~75nm. The average bonding strength for (Mg,Sr)-HA coating and samples after heat treatment at 500℃ or 600℃ for 3h are 26.17±2.11 MPa, 36.07±4.48 MPa and 37.07 ±2.95 MPa, respectively. There is a significantly increase of bonding strength likely due to low residual stress after heated treatment.MC3T3-E1 cells show a high proliferation rate when cultured with (Mg,Sr)-HA coating extract compared to the normal culture medium, which also exhibit large extension and depositi on of extracellular matrices when adhered on the coating surfaces. Thus, these (Mg,Sr)-HA coatings show high bonding strength and improved biological functions, which offer promising future applications in the fields of orthopedics and dentistry.展开更多
Objective:The purpose of this study was to investigate the effects of a zinc-substituted nano-hydroxyapatite(Zn-HA) coating,applied by an electrochemical process,on implant osseointegraton in a rabbit model.Methods:A ...Objective:The purpose of this study was to investigate the effects of a zinc-substituted nano-hydroxyapatite(Zn-HA) coating,applied by an electrochemical process,on implant osseointegraton in a rabbit model.Methods:A Zn-HA coating or an HA coating was deposited using an electrochemical process.Surface morphology was examined using field-emission scanning electron microscopy.The crystal structure and chemical composition of the coatings were examined using an X-ray diffractometer(XRD) and Fourier transform infrared spectroscopy(FTIR).A total of 78 implants were inserted into femurs and tibias of rabbits.After two,four,and eight weeks,femurs and tibias were retrieved and prepared for histomorphometric evaluation and removal torque(RTQ) tests.Results:Rod-like HA crystals appeared on both implant surfaces.The dimensions of the Zn-HA crystals seemed to be smaller than those of HA.XRD patterns showed that the peaks of both coatings matched well with standard HA patterns.FTIR spectra showed that both coatings consisted of HA crystals.The Zn-HA coating significantly improved the bone area within all threads after four and eight weeks(P<0.05),the bone to implant contact(BIC) at four weeks(P<0.05),and RTQ values after four and eight weeks(P<0.05).Conclusions:The study showed that an electrochemically deposited Zn-HA coating has potential for improving bone integration with an implant surface.展开更多
基金supported by International Campus of Tehran University of Medical Sciences(IC-TUMS)and health Services grant No.9423684001.
文摘The purpose of this study was to evaluate the physical properties and bioactivity potential of epoxy-based dental sealers modified with synthesized bioactive glass(BAG),hydroxyapatite(HA)and fluorine substituted hydroxyapatite(FHA)nanoparticles.The synthesized powders were incorporated at 10%and 20%into the epoxy-based dental sealer.The setting time,flow and solubility and microhardness of the modified and unmodified samples were examined.The bioactivity was evaluated using FESEM-EDX and elemental mapping,ATR-FTIR and XRD.The flow value of all of the experimental groups except the FHA modified samples,was greater than 20 mm.Concerning solubility,no specimens exhibited more than 1%weight loss.The solubility value of the FHA groups was statistically significant lower than other groups(p≤0.001).The mean hardness values of all of the modified samples were significantly higher than the unmodified group(p≤0.001).Regarding bioactivity,in vitro study revealed that after 3 days immersion in SBF a compact and continuous calcium phosphate layer formed on the surface of epoxy sealers containing BAG and HA nanoparticles.Based on these results,the addition of BAG and HA nanoparticles did not adversely alter the physical properties of epoxy sealers.Additionally,they improved the in vitro bioactivity of the epoxy sealer.
文摘Hydroxyapatite nanoparticles(HAP NPs)were synthesized by a one‐step hydrothermal method.The surface of HAP NPs was grafted-SH and-COOH chelating groups via in situ surface‐modification with iminodiacetic acid(IDA)and 3‐mercaptopropyl trimethoxysilane(MPS)to afford dual surface‐capped nano‐amendment HAPIDA/MPS.The structure of HAP‐IDA/MPS was characterized,and its adsorption performance for Hg^(2+),Cu^(2+),Zn^(2+),Ni^(2+),Co^(2+),and Cd^(2+)was evaluated.The total adsorption capacity of 0.10 g HAP‐IDA/MPS nano‐amendment for Hg^(2+),Cu^(2+),Zn^(2+),Ni^(2+),Co^(2+),and Cd^(2+)with an initial mass concentration of 20 mg·L^(-1) reached 13.7 mg·g^(-1),about 4.3 times as much as that of HAP.Notably,HAP‐IDA/MPS nano‐amendment displayed the highest immobilization rate for Hg^(2+),possibly because of its chemical reaction with-SH to form sulfide,possessing the lowest solubility product constant among a variety of metal sulfides.
文摘Hydroxyapatite (HA) is widely explored as a biocompatible filler to enhance the mechanical and functional properties of glass ionomer cements (GICs). HA of particle sizes 15 µm and 30 µm were added as a filler into a matrix, composed of calcium aluminosilicate GICs and Poly-acrylic acid (PAA) in varying ratios. The tested ratios were Glass:PAA = 2:1 and Glass:HA:PAA = 2:0.5:1 to improve the mechanical strength of a conventional GIC. Mechanical properties, including compressive, flexural, and diametral tensile strength were studied at different setting times. The compressive strength (CS) was improved with hydroxyapatite addition and prolonged setting time while diametral tensile strength (DTS) did not follow any specific trend. The flexural strength (FS) of the composite cement was increased with increasing setting time regardless of the particle size of hydroxyapatite. The FTIR spectra of hydroxyapatite of particle sizes 15 μm and 30 μm are similar but for HA-GIC composites, the FTIR spectra, the peak around 1460 cm−1 are due to C-H and the peak at 1553 cm−1 is due to calcium carboxylate with calcium in a bridging mode which would be an excellent material that chemically bonds to the tooth structure, making it effective for both restorative procedures and cavity fillings. Scanning electron microscopy (SEM) microstructural study revealed that the glass particles were wrenched out, which was a cohesive fracture. The X-ray diffraction (XRD) pattern showed that the hydroxyapatite has a crystalline single-phase, hexagonal structure. The sharp peaks between the 2-theta range of 30 - 40 degrees are the same as in enamel powder. The spectra indicate the pure set cement as amorphous since there is no prominent peak, but with the addition of hydroxyapatite filler, the peak in the 2-theta range of 20 - 35 degrees is ascribed to crystalline apatite structure. The results indicate that incorporating hydroxyapatite into GIC significantly enhances its mechanical properties and structural integrity, suggesting its potential as an improved material for dental and restorative applications.
文摘The field of bone tissue engineering has experienced an increase in prevalence due to the inherent challenge of the natural regeneration of significant bone deformities.This investigation focused on the preparation of Three-Dimensional(3D)-printed Polycaprolactone(PCL)scaffolds with varying proportions of Nanohydroxyapatite(NHA)and Nanoclay(NC),and their physiochemical and biological properties were assessed.The mechanical properties of PCL are satisfactory;however,its hydrophobic nature and long-term degradation hinder its use in scaffold fabrication.NHA and NC have been employed to improve the hydrophilic characteristics,mechanical strength,adhesive properties,biocompatibility,biodegradability,and osteoconductive behavior of PCL.The morphology results demonstrated 3D-printed structures with interconnected rectangular macropores and proper nanoparticle distribution.The sample containing 70 wt%NC showed the highest porosity(65.98±2.54%),leading to an increased degradation rate.The compressive strength ranged from 10.65±1.90 to 84.93±9.93 MPa,which is directly proportional to the compressive strength of cancellous bone(2–12 MPa).The wettability,water uptake,and biodegradability of PCL scaffolds considerably improved as the amount of NC increased.The results of the cellular assays exhibited increased proliferation,viability,and adhesion of MG-63 cells due to the addition of NHA and NC to the scaffolds.Finally,according to the in vitro results,it can be concluded that 3D-printed samples with higher amounts of NC can be regarded as a suitable scaffold for expediting the regeneration process of bone defects.
基金supported by the Guangxi Natural Science Foundation(2020GXNSFDA297007)the National Natural Science Foundation of China(22078074)the Special Funding for‘Guangxi Bagui Scholars’.
文摘The dry reforming of methane(DRM)reaction can directly convert methane(CH_(4))and carbon dioxide(CO_(2))into syngas(H_(2)+CO),which is a promising method for achieving carbon neutralization.In this study,a series of 3Ni-xCo/Mg1HAP alloy catalysts with different ratio were synthesized by the coprecipitation method,and the optimum Ni-Co ratio for the DRM reaction was studied.A series of characterization methods revealed that after Co was added,the formation of Ni-Co alloys increased the interactions between metals.However,an excess of Co inhibits the entry of Ni into the lattice of Mg_(1)HAP,resulting in metal accumulation on the surface of the support.In addition,the introduction of Co improves the dispersion of Ni metal,which endows the catalyst with better catalytic activity and stability.Raman spectroscopy of the catalyst after the stability test showed that the addition of Co reduced the proportion of graphitic carbon,which was also the main reason for its improved stability.
基金Funded by the Natural Science Foundation of Hubei Province(No.2018CFB710)the Opening Fund of Hubei Provincial Key Laboratory of Green Materials for Light Industry(No.202107B07)Hubei University of Technology。
文摘Hydroxyapatite(HA)nanoparticles impart outstanding mechanical properties to organicinorganic nanocomposites in bone.Inspired by the composite structure of HA nanoparticles and collagen in bone,a high performance HA/gelatin nanocomposite was first developed.The nanocomposites have much better mechanical properties(elongation at break 29.9%,tensile strength 90.7 MPa,Young’s modulus 5.24 GPa)than pure gelatin films(elongation at break 9.3%,tensile strength 90.8 MPa,Young’s modulus 2.5 GPa).In addition,the composite films keep a high transmittance in visible wavelength range from 0%to 60%of the HA solid content.These differences in properties are attributed to the homogeneous distribution of HA nanoparticles in the gelatin polymer matrix and the strong interaction between the particle surfaces and the gelatin molecules.This protocol should be promising for HA-based nanocomposites with enhanced mechanical properties for biomedical applications.
基金Funded by the National Natural Science Foundation of China(No.52172287)the National Key Research and Development Program of China(No.2021YFA0715700)。
文摘Using a titration setup to accurately control the reaction conditions and in situ monitor the reaction,we showed that fluoride exhibited negligible effects on the ion association process of calcium and phosphate and the formation of ACP nanospheres in a buffer solution with constant ionic strength.However,the stability of ACP increased with increasing fluoride concentration,which was ascribed to the inhibitory effect of fluoride on the aggregation of ACP nanospheres and the nucleation of nanocrystals on the surface of ACP nanospheres.Furthermore,fluoride could inhibit the lateral growth of HAP nanosheets and promote the formation of rod-like crystals.These results further improve our understanding of the crystallization pathway of HAP crystals and the regulatory effects of fluoride.
基金supported by National Natural Science Foundation of China(21978066)Basic Research Program of Hebei Province for Natural Science Foundation and Key Basic Research Project(18964308D)the Key Program of Natural Science Foundation of Hebei Province(B2020202048).
文摘The synthesis of methacrylic acid from biomass-derived itaconic acid is a green route,for it can get rid of the dependence on fossil resource.In order to solve the problems on this route such as use of a preciousmetal catalyst and a corrosive homogeneous alkali,we prepared a series of hydroxyapatite catalysts by an ionic liquid-assisted hydrothermal method and evaluated their catalytic performance.The results showed that the ionic liquid[Bmim]BF_(4) can affect the crystal growth of hydroxyapatite,provide fluoride ion for fluorination of hydroxyapatite,and adjust the surface acidity and basicity,morphology,textural properties,crystallinity,and composition of hydroxyapatite.The[Bmim]BF4 dosage and hydrothermal temperature can affect the fluoride ion concentration in the hydrothermal system,thus changing the degree of fluoridation of hydroxyapatite.High fluoride-ion concentration can lead to the formation of CaF_(2) and thus significantly decrease the catalytic performance of hydroxyapatite.The hydrothermal time mainly affects the growth of hydroxyapatite crystals on the c axis,leading to different catalytic performance.The suitable conditions for the preparation of this fluoridized hydroxyapatite are as follows:a mass ratio of[Bmim]BF4 to calcium salt=0.2:1,a hydrothermal time of 12 h,and a hydrothermal temperature of 130℃.A maximal methacrylic acid yield of 54.7%was obtained using the fluoridized hydroxyapatite under relatively mild reaction conditions(250℃ and 2 MPa of N_(2))in the absence of a precious-metal catalyst and a corrosive homogeneous alkali.
基金financially supported by the National Natural Science Foundation of China(Nos.52274273 and 51872269)the Key Laboratory of Testing and Tracing of Rare Earth Products for State Market Regulation(Jiangxi University of Science and Technology)(No.TTREP2022YB04)+4 种基金the Science and Technology Research Project of Hubei Provincial Department of Education(No.B2021091)Key Laboratory for New Textile Materials and Applications of Hubei Province(Wuhan Textile University)(No.FZXCL202107)the Open Project Program of High-Tech Organic Fibers Key Laboratory of Sichuan ProvinceChina and National Project Cultivation Plan of Wuhan Textile Universityaided by the graduate innovation fund project of Wuhan Textile University。
文摘As a material with good biocompatibility,hydroxyapatite(HAP)can have optical properties after doping with various rare earth ions.As a biocompatible fluorescent material,doped HAP could have broad applications in biological probes,drug delivery,optoelectronic materials,fluorescence anti-counterfeiting,and other aspects.In this paper,we put forward the preparation of HAP doped with terbium(Ⅲ)ions(Tb^(3+))by hydrothermal co-precipitation.By controlling the Tb^(3+)doping content in reaction and the reaction time,the changes in HAP's structure,morphology,and luminescence properties under different conditions were studied.When the doping amount of Tb^(3+)reached an optimal value,the dipole-quadrupole would occur and the concentration would be quenched.The control experiment showed that the optimal Tb3+content was 7.5×10^(-5)mol,which showed the best fluorescence performance.HAP,a non-luminous material,was rarely used in the field of fluorescent anti-counterfeiting and photoelectric devices.We proposed to prepare a luminescent aramid/polyphenylene sulfide(ACFs/PPS)fiber paper and a new light-emitting diode(LED)using the Tb-doped HAP phosphor.The composite sample exhibited an excellent stability and fluorescence performance,which also demonstrated a possibility of HAP applications in anticounterfeiting and photoelectric.The introduction of Tb3+dopant HAP was done to give HAP optical properties and broaden the application range of HAP.
基金funded the World Class Research(WCR)Grant of Universitas Diponegoro with Contract Number 357-36/UN7.D2/PP/IV/2024.
文摘Hydroxyapatite(HA)is a bio ceramic commonly utilized in bone tissue engineering due to its bioactive and osteoconductive properties.Crab shells are usually disregarded as waste material despite their significant CaCO_(3) content,and have not been widely utilized in the synthesis of HA.This study aims to synthesize and analyze HA derived from crab shells using the hydrothermal method with different durations of holding time.This study utilized precipitated calcium carbonate(PCC)derived from crab shells.With a hydrothermal reactor set at 160℃ and varying holding times of 14(HA_14),16(HA_16),and 18(HA_18)h,a PCC and(NH4)2HPO4 mixture was used to synthesize HA.The synthesis results were analyzed using scanning electron microscopy(SEM),fourier transform infrared spectroscopy(FTIR),and X-ray diffraction(XRD)tests.This study has accomplished the synthesis of HA from crab shells.Nonetheless,the final product of synthesis still contained CaCO_(3) as an impurity.The prolonged hydrothermal holding time of 14 to 18 h resulted in a reduction of impurities while increasing the percentage of crystal weight and crystallite size of HA.Specimen CH_18 is the best-quality product generated in this study.This specimen produced HA with the highest percentage of crystal weight and crystallite size compared to the other specimens.Furthermore,specimen CH_18 exhibited the lowest concentration of impurities.The Ca/P ratio in this specimen was also the closest to 1.67.The Ca/P ratio,crystallite size,and crystal weight percentage of this specimen are 1.54,19.06 nm,and 99.1%,respectively.
基金financial support from the Science and Technology Development Fund of Egypt (No.5540)。
文摘Integrating titanium-based implants with the surrounding bone tissue remains challenging.This study aims to explore the impact of different anodization voltages(20−80 V)on the surface topography of two-phase(α/β)Ti alloys and to produce TiO_(2) films with enhanced bone formation abilities.Scanning electron microscopy coupled with energy dispersive spectroscopy(SEM−EDS)and atomic force microscopy(AFM)were applied to investigate the morphological,chemical,and surface topography of the prepared alloys and to confirm the growth of hydroxyapatite(HA)on their surfaces.Results disclosed that the surface roughness of TiO_(2) films formed on Ti−6Al−7Nb alloys was superior to that of Ti−6Al−4V alloys.Ti−6Al−7Nb alloy anodized at 80 V had the highest yields of HA after immersion in simulated body fluid with enhanced HA surface coverage.The developed HA layer had a mean thickness of(128.38±18.13)μm,suggesting its potential use as an orthopedic implantable material due to its promising bone integration and,hence,remarkable stability inside the human body.
基金Projects(51102285,81170912)supported by the National Natural Science Foundation of ChinaProject supported by the Open Foundation of State Key Laboratory of Powder Metallurgy,China
文摘The mesoporous hydroxyapatite (HA) was synthesized by hydrothermal method utilizing cationic surfactant cetyltrimethylammonium bromide (CTAB) as template. The crystalline phase, morphology and porous structure were characterized respectively by different detecting techniques. The results reveal that the particles are highly crystalline hydroxyapatite phase. The surfactant has little influence on the morphology of the crystals, but affects the porous structure obviously. The sample without CTAB has a low surface area not exceeding 33 m^2/g, and no distinct pores can be observed by TEM. While the samples obtained with the surfactant get better parameters. Numerous open-ended pores centered at 2-7 nm spread unequally on the surface of the hydroxyapatite nanorods. The N2 adsorption-desorption experiments show type IV isotherms with distinct hysteresis loops, illustrating the presence of mesoporous structure. When the mole ratio of CTAB to HA is 1:2, the sample has the largest surface area of 97.1 m^2/g and pore volume of 0.466 cm^3/g.
基金Project(2013SK2024)supported by the Key Projects in Social Development Pillar Program of Hunan Province,ChinaProject(20130162120094)supported by Specialized Research Fund for the Doctoral Program of Higher Education(SRFDP),Ministry of Education,ChinaProjects(81071869,51305464)supported by the National Natural Science Foundation of China
文摘In order to further improve the transfection efficiency of hydroxyapatite nanoparticle (HAp), arginine functionalized hydroxyapatite (HAp/Arg) was synthesized by hydrothermal synthesis. The morphology, crystallite size and zeta potential of the HAp/Arg were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and zeta potential analyzer. The loading and protecting properties of HAp/Arg to DNA were tested by electrophoresis. Its cytotoxicity was also measured in Hela cells and HAEC cells by MTT and LDH, and its transfection efficiency was examined by fluorescence microscope and flow cytometry. The results reveal that HAp/Arg is short rod-like and nano single crystal, the mean diameter is 50-90 nm and zeta potential is 35.8 mV at pH 7.4. HAp/Arg to DNA can be condensed by electrostatic effect and protect DNA against degradation in DNase I, and shows high transfection efficiency without cytotoxicity. These results suggest that HAp/Arg can be a promising alternative as a novel gene delivery system.
文摘The mixture of CaHPO 4·2H 2O and CaCO 3 was ground in an aqueous system under appropriate conditions to investigate the mechanochemical reaction for the synthesis of crystalline hydroxyapatite (HA) powder. Hydroxyapatite of high crystallinity powder including trace Ca 10 (PO 4) 6CO 3(OH) and Ca 9HPO 4(PO 4) 6OH can be synthesized by mechanical activation without further thermal treatment at a high temperature. The synthesis reaction during the grinding process was almost completed within 1h. The as-ground powder exhibits a particle distribution of 20-100nm in size with a spherical or rodlike morphology. The composition and degree of crystallinity of the mechanochemical synthesized hydroxyapatite powders were coincident with the cement-type hydroxyapatite.
基金Project (81071869) supported by the National Natural Science Foundation of China Project (2009637526) supported by China Scholarship Council (CSC Program)Project (2010QZZD006) supported by the Key Program of Central South University Advancing Front Foundation
文摘The arginine-modified and europium-doped hydroxyapatite nanoparticles(HAP-Eu) were synthesized by hydrothermal synthesis.The prepared nanoparticles were characterized by transmission electron microscopy(TEM),X-ray diffractometry(XRD),Fourier transform infrared(FTIR) and zeta potential analyzer.The cell viability of HAP-Eu was tested by image flow cytometry.The results indicated that HAP-Eu is short column shapes and its size is approximately 100 nm,its zeta potential is about 30.10 mV at pH of 7.5,and shows no cytotoxicity in human epithelial cells and endothelial cells.
文摘Objective:To investigate possible effects of nanophase powder of hydroxyapatite on proliferation of periodontal ligament cells. Methods: With sol-gel method, the nanophase hydroxyapatite powders were fabricated. These powders were proved nanopaticles by transmission electron microscope. The effects on proliferation of periodontal ligament cell(PDLC) were observed in vitro with MTT [3-(4,5dimethylthiazo;-2-yl)-2,5-diphenytetralium bromide] method. Results: On the 2nd,3rd,4th day after treated with nanoparticles of hydroxyapatite, the proliferate activity of the PDLC increases significantly, compared with those with dense hydroxyaoatite and control but no significant difference could be found between the dense hydroxyapatite and the control. Conclusion: Nanophase hydroxyapatite can promote the regeneration of periodontal tissue.
文摘Hydroxyapatite (HA) nano-powder was synthesized via wet chemical technique in a used precipitation reaction, in which Ca(OH)2 and H3PO4 were used as precursors. Deionised water was used as a diluting media for the reaction and ammonia was used to adjust the pH. The synthetic HA nano-powder has some medical applications such as a coating material in orthopaedic implants and in dental. HA powder has been studied at different temperatures from 100 to 800 ℃ to achieve the stoichiometric Ca/P ratio 1.667. The optimum temperature was found to be 600 ℃. Above this temperature, the HA powder decomposed to CaO. The crystallite size of HA powder was found to be in the range of 8.47-24.47 nm. The crystallographic properties were evaluated by X-ray diffraction, Fourier transform infrared spectroscopy, energy dispersive X- ray spectroscopy and scanning electron microscopy. The results show that, high purity of nano-hydroxyapatite powders could be obtained at low temperatures, and the crystallinity, crystallite size and Ca/P ratio of the resulting nanoparticles were found to be dependent on the calcination temperature. When Ca/P ratio exceeded 1.75, formation of CaO phase was observed.
基金supported by the National Key Research and Development Program of China from Ministry of Science and Technology (No. 2016YFC1100502)the College Students’ Innovative Program of Liaoning Province (No. 201310163023)+2 种基金Key Research Program of Frontier Sciences (No. QYZDY-SSW-JSC027)the Hundred-Talent Program from Chinese Academy of Sciences (CAS)the Innovation Research Program from Institute of Metal Research, CAS (No. 2015-ZD01)
文摘Plasma-sprayed hydroxyapatite (HA) coatings have been widely utilized in load-bearing titanium alloy implants. In this study, Mg, Sr co-substituted HA ((Mg,Sr)-HA) nano-scale powders have been synthesized, which are further used to prepare (Mg,Sr)-HA coatings on Ti-6A1-4V alloys in order to improve the biological functions. The average size of (Mg,Sr)-HA nano particles is ~75nm. The average bonding strength for (Mg,Sr)-HA coating and samples after heat treatment at 500℃ or 600℃ for 3h are 26.17±2.11 MPa, 36.07±4.48 MPa and 37.07 ±2.95 MPa, respectively. There is a significantly increase of bonding strength likely due to low residual stress after heated treatment.MC3T3-E1 cells show a high proliferation rate when cultured with (Mg,Sr)-HA coating extract compared to the normal culture medium, which also exhibit large extension and depositi on of extracellular matrices when adhered on the coating surfaces. Thus, these (Mg,Sr)-HA coatings show high bonding strength and improved biological functions, which offer promising future applications in the fields of orthopedics and dentistry.
基金Project supported by the National Natural Science Foundation of China (No. 81000462)the Zhejiang Provincial Natural Science Foundation (No. R2110374),China
文摘Objective:The purpose of this study was to investigate the effects of a zinc-substituted nano-hydroxyapatite(Zn-HA) coating,applied by an electrochemical process,on implant osseointegraton in a rabbit model.Methods:A Zn-HA coating or an HA coating was deposited using an electrochemical process.Surface morphology was examined using field-emission scanning electron microscopy.The crystal structure and chemical composition of the coatings were examined using an X-ray diffractometer(XRD) and Fourier transform infrared spectroscopy(FTIR).A total of 78 implants were inserted into femurs and tibias of rabbits.After two,four,and eight weeks,femurs and tibias were retrieved and prepared for histomorphometric evaluation and removal torque(RTQ) tests.Results:Rod-like HA crystals appeared on both implant surfaces.The dimensions of the Zn-HA crystals seemed to be smaller than those of HA.XRD patterns showed that the peaks of both coatings matched well with standard HA patterns.FTIR spectra showed that both coatings consisted of HA crystals.The Zn-HA coating significantly improved the bone area within all threads after four and eight weeks(P<0.05),the bone to implant contact(BIC) at four weeks(P<0.05),and RTQ values after four and eight weeks(P<0.05).Conclusions:The study showed that an electrochemically deposited Zn-HA coating has potential for improving bone integration with an implant surface.