Organic compounds are promising electrode materials for aqueous zinc-ion batteries(AZIBs) but largely suffer from poor rate and cycling performance.This work reports that the push-pull electron effect of organic compo...Organic compounds are promising electrode materials for aqueous zinc-ion batteries(AZIBs) but largely suffer from poor rate and cycling performance.This work reports that the push-pull electron effect of organic compounds could be used to tune the electrochemical performance of AZIB s.Hexaazatriphenylene-based(HATN) small molecules with different withdrawing or donating groups were synthesized and used as electrodes for AZIBs.Compared to the hydrogen atoms and electrondonating methyl groups,the electron-withdrawing fluorine atoms endow HATN-based small molecule(HATN-6F)with a much-improved redox platform,rate performance and cycling stability.The fluorinated electrode HATN-6F potently amplifies and stabilizes the kinetics of cation co-(de)insertion reactions,concurrently enhancing the conductivity and electron affinity,resulting in improved rate performance and enhanced cycling stability.The combination of theoretical calculations and experimental characterization confirms that the fluorine-rich peripheral environment effectively modifies the distribution of conjugated electrons in HATN,enhancing its affinity for zinc ions and improving its capacity for cations zinc storage.This work demonstrates a new avenue for the design and synthesis of organic electrode with excellent electrochemical performance for ZIBs.展开更多
基金financially supported by the Guangdong-Hong Kong-Macao Joint Innovation Fund(No.2024A0505040001)Basic Research Project of the Science and Technology Innovation Commission of Shenzhen(No.JCYJ20220818100418040)+2 种基金the National Natural Science Foundation of China(Nos.92372114,21875097 and 22409216)the Guangdong Basic and Applied Basic Research(No.2023A1515010035)the Jiangyin-SUSTech Innovation Fund(No.OR2404014)
文摘Organic compounds are promising electrode materials for aqueous zinc-ion batteries(AZIBs) but largely suffer from poor rate and cycling performance.This work reports that the push-pull electron effect of organic compounds could be used to tune the electrochemical performance of AZIB s.Hexaazatriphenylene-based(HATN) small molecules with different withdrawing or donating groups were synthesized and used as electrodes for AZIBs.Compared to the hydrogen atoms and electrondonating methyl groups,the electron-withdrawing fluorine atoms endow HATN-based small molecule(HATN-6F)with a much-improved redox platform,rate performance and cycling stability.The fluorinated electrode HATN-6F potently amplifies and stabilizes the kinetics of cation co-(de)insertion reactions,concurrently enhancing the conductivity and electron affinity,resulting in improved rate performance and enhanced cycling stability.The combination of theoretical calculations and experimental characterization confirms that the fluorine-rich peripheral environment effectively modifies the distribution of conjugated electrons in HATN,enhancing its affinity for zinc ions and improving its capacity for cations zinc storage.This work demonstrates a new avenue for the design and synthesis of organic electrode with excellent electrochemical performance for ZIBs.