A novel fluorinated polyurethane (FPU) with fluorine-containing pendent groups was prepared by using fluorinated polyether glycol (PTMG-g-HFP) as a soft segment, 1,6-hexamethylene diisocyanate (HDI) or toluene d...A novel fluorinated polyurethane (FPU) with fluorine-containing pendent groups was prepared by using fluorinated polyether glycol (PTMG-g-HFP) as a soft segment, 1,6-hexamethylene diisocyanate (HDI) or toluene diisocyanate (TD1) as a hard segment and 1,4-butanodiol (BDO) as a chain extender. FTIR, ^1H NMR, ^13C NMR and GPC were used to characterize the structure of the fluorinated polyurethane. Thermal stabilities of the fluorinated polyurethane and the corresponding hydrogenated polyurethane were studied by TGA. XPS analysis at two different sampling depths for the fluorinated polyurethane was used to investigate the surface compositions of FPU. The results showed the fluorine enrichment on the surface of FPU.展开更多
In this study, two fluorinated polyurethanes(FPU) containing carborane groups in the main chains were firstly designed and synthesized via the reaction of hexamethylene diisocyanate trimer(HDI trimer) with fluorin...In this study, two fluorinated polyurethanes(FPU) containing carborane groups in the main chains were firstly designed and synthesized via the reaction of hexamethylene diisocyanate trimer(HDI trimer) with fluorinated polyesters(CFPETs) having hydroxyl-terminated carborane groups at room temperature. The structures of carborane fluorinated polyesters(CFPETs) and polyurethanes(CFPUs) were characterized by gel permeation chromatography(GPC), Fourier transform infrared(FTIR) spectroscopy and nuclear magnetic resonance(NMR) measurements. The thermal stability, mechanical properties, Shore A hardness, solvent resistance and acid-alkali resistance of the carborane fluorinated polyurethane films were also studied. Thermogravimetric analysis(TGA) tests manifested that the introduction of carborane groups into the main chain of fluorinated polyurethane endowed the obtained fluorinated polyurethane with excellent thermal stability. The thermal decomposition temperature of carborane fluorinated polyurethane(CFPU) increased by 190 °C compared with that of the carborane-free fluorinated polyurethane(FPU). Even at 800 °C, CFPU showed the char yield of 66.5%, which was higher than that of FPU(34.3%). The carborane-containing fluorinated polyurethanes also showed excellent chemical resistance and prominent mechanical property even after the cured films being immersed into Jet aircraft oil or 37% HCl for 168 h or at high temperature(700 °C). It is found that the structural characteristics of carborane group and the compacted structure of CFPU effectively improve the thermal stability, mechanical property, solvent resistance and acid-alkali resistance of the carborane-free fluorinated polyurethane. These excellent properties make CFPU as the useful raw materials to prepare the high temperature resistant coatings or adhesives for automotive engines, engine or fuel tank of aircraft and other equipment working in high-temperature or high concentrations of acid-alkali environments.展开更多
It has been well known that fluorinated polyurethanes exhibit uniquely low surface energy, biocompatibility and biostability, thermal and oxidative stability and nonsticking behavior. Consequently, these polymers have...It has been well known that fluorinated polyurethanes exhibit uniquely low surface energy, biocompatibility and biostability, thermal and oxidative stability and nonsticking behavior. Consequently, these polymers have attracted considerable interest. However, the mechanical properties of fluorinated polyurethanes usually decline with increasing fluorine contents. The blending of fluorinated polyurethanes with normal polyurethane was carried out to achieve balanced mechanical and surface properties. It was found that polyurethane with good mechanical properties and low surface energy can be obtained by adding a small amount of fluorinated polyurethane. The fluorinated side chains can easily migrate to uppermost surfaces of the blends untill the fluorine level at the surface becomes almost saturated. It has been shown from contact angle, XPS and AFM measurements that only as little as 0.34 wt% of fluorine level is enough to produce a surface saturated with fluorine, and the fluorine level at the uppermost surface is one hundred times higher than that in the blend bulk. The final outer surface structures of the polyurethane blend were independent of the content of the fluorinated polyurethane in the blends due to the surfaces saturated by fluorine.展开更多
Polyurethane elastomers with covalent adaptable networks(PU-CANs)based on the dynamic urethane bond have attracted remarkable attention owing to their reprocessability,adaptability,and self-healability.However,it is s...Polyurethane elastomers with covalent adaptable networks(PU-CANs)based on the dynamic urethane bond have attracted remarkable attention owing to their reprocessability,adaptability,and self-healability.However,it is still a formidable challenge to achieve excellent dynamics at low temperatures since the urethane bond energy is usually high.Herein,a fluorinated phenolic polyurethane(FPPU)elastomer with CANs based on phenol±carbamate bonds was successfully designed and prepared.Subsequently,the effects of fluorine atoms on the mechanical properties,thermal stability,reprocessability,and self-healability,surface free energy,and hydrophobicity of the prepared elastomers were systematically investigated.The FPPU elastomer showed notch-insensitivity,remarkable self-healable efficiency(98%),low dynamic dissociation temperature(60℃),excellent reprocessability,and low surface energy(62 MJ m^(-2))compared with non-fluorinated counterpart phenolic polyurethane elastomer(APPU).Based on the above-mentioned features,FPPU was selected as an elastic substrate to assemble into a triboelectric nanogenerator(TENG)to harvest energy from natural motion.This TENG exhibited an excellent electrical output performance with a peak open-circuit voltage of 103 V,a peak short-circuit current of 4.7μA and a peak short-circuit charge of 43 nC.In addition,the TENG possessed high selfcleaning and reprocessing efficiency.Furthermore,a stretchable and self-healing composite conductor based on FPPU was fabricated for flexible electronic devices.展开更多
基金Financial support from the Fundamental Research Foundation of Beijing Institute of Technology (No.20070442005)
文摘A novel fluorinated polyurethane (FPU) with fluorine-containing pendent groups was prepared by using fluorinated polyether glycol (PTMG-g-HFP) as a soft segment, 1,6-hexamethylene diisocyanate (HDI) or toluene diisocyanate (TD1) as a hard segment and 1,4-butanodiol (BDO) as a chain extender. FTIR, ^1H NMR, ^13C NMR and GPC were used to characterize the structure of the fluorinated polyurethane. Thermal stabilities of the fluorinated polyurethane and the corresponding hydrogenated polyurethane were studied by TGA. XPS analysis at two different sampling depths for the fluorinated polyurethane was used to investigate the surface compositions of FPU. The results showed the fluorine enrichment on the surface of FPU.
基金financially supported by International Cooperative Project (Harbin Institute of Technology 2014DFR40370)International Cooperative Project (Wuxi HIT Limited Corporation & Research Institute of New Materials BZ2015024)
文摘In this study, two fluorinated polyurethanes(FPU) containing carborane groups in the main chains were firstly designed and synthesized via the reaction of hexamethylene diisocyanate trimer(HDI trimer) with fluorinated polyesters(CFPETs) having hydroxyl-terminated carborane groups at room temperature. The structures of carborane fluorinated polyesters(CFPETs) and polyurethanes(CFPUs) were characterized by gel permeation chromatography(GPC), Fourier transform infrared(FTIR) spectroscopy and nuclear magnetic resonance(NMR) measurements. The thermal stability, mechanical properties, Shore A hardness, solvent resistance and acid-alkali resistance of the carborane fluorinated polyurethane films were also studied. Thermogravimetric analysis(TGA) tests manifested that the introduction of carborane groups into the main chain of fluorinated polyurethane endowed the obtained fluorinated polyurethane with excellent thermal stability. The thermal decomposition temperature of carborane fluorinated polyurethane(CFPU) increased by 190 °C compared with that of the carborane-free fluorinated polyurethane(FPU). Even at 800 °C, CFPU showed the char yield of 66.5%, which was higher than that of FPU(34.3%). The carborane-containing fluorinated polyurethanes also showed excellent chemical resistance and prominent mechanical property even after the cured films being immersed into Jet aircraft oil or 37% HCl for 168 h or at high temperature(700 °C). It is found that the structural characteristics of carborane group and the compacted structure of CFPU effectively improve the thermal stability, mechanical property, solvent resistance and acid-alkali resistance of the carborane-free fluorinated polyurethane. These excellent properties make CFPU as the useful raw materials to prepare the high temperature resistant coatings or adhesives for automotive engines, engine or fuel tank of aircraft and other equipment working in high-temperature or high concentrations of acid-alkali environments.
基金This work was supported by the China National Distinguished Young Investigator Fund (No. 29925413) and the NationalNatural Science Foundation of China (No. 59973013)
文摘It has been well known that fluorinated polyurethanes exhibit uniquely low surface energy, biocompatibility and biostability, thermal and oxidative stability and nonsticking behavior. Consequently, these polymers have attracted considerable interest. However, the mechanical properties of fluorinated polyurethanes usually decline with increasing fluorine contents. The blending of fluorinated polyurethanes with normal polyurethane was carried out to achieve balanced mechanical and surface properties. It was found that polyurethane with good mechanical properties and low surface energy can be obtained by adding a small amount of fluorinated polyurethane. The fluorinated side chains can easily migrate to uppermost surfaces of the blends untill the fluorine level at the surface becomes almost saturated. It has been shown from contact angle, XPS and AFM measurements that only as little as 0.34 wt% of fluorine level is enough to produce a surface saturated with fluorine, and the fluorine level at the uppermost surface is one hundred times higher than that in the blend bulk. The final outer surface structures of the polyurethane blend were independent of the content of the fluorinated polyurethane in the blends due to the surfaces saturated by fluorine.
基金supported by the National Key Research and Development Program of China(2021YFC2101804 and2021YFC2101802)the National Natural Science Foundation of China(52173117,52073049,and 21991123)+9 种基金Shanghai Rising-Star Program(21QA1400200)the Open Research Fund of Center for Civil Aviation Composites of Donghua University and Shanghai Collaborative Innovation Center of High Performance Fibers and Composites(Province-Ministry Joint)the Natural Science Foundation of Shanghai(20ZR1402500 and22ZR1400700)China Postdoctoral Science Foundation(2021M702898)the Belt&Road Young Scientist Exchanges Project of Science and Technology Commission Foundation of Shanghai(20520741000)the Science and Technology Commission of Shanghai(20DZ2254900)Ningbo 2025 Science and Technology Major Project(2019B10068)Jiangsu Agricultural Science and Technology Innovation Fund(CX(20)3140)the Fundamental Research Funds for the Central Universities(2232021G-02)DHU Distinguished Young Professor Program(LZA2019001)。
文摘Polyurethane elastomers with covalent adaptable networks(PU-CANs)based on the dynamic urethane bond have attracted remarkable attention owing to their reprocessability,adaptability,and self-healability.However,it is still a formidable challenge to achieve excellent dynamics at low temperatures since the urethane bond energy is usually high.Herein,a fluorinated phenolic polyurethane(FPPU)elastomer with CANs based on phenol±carbamate bonds was successfully designed and prepared.Subsequently,the effects of fluorine atoms on the mechanical properties,thermal stability,reprocessability,and self-healability,surface free energy,and hydrophobicity of the prepared elastomers were systematically investigated.The FPPU elastomer showed notch-insensitivity,remarkable self-healable efficiency(98%),low dynamic dissociation temperature(60℃),excellent reprocessability,and low surface energy(62 MJ m^(-2))compared with non-fluorinated counterpart phenolic polyurethane elastomer(APPU).Based on the above-mentioned features,FPPU was selected as an elastic substrate to assemble into a triboelectric nanogenerator(TENG)to harvest energy from natural motion.This TENG exhibited an excellent electrical output performance with a peak open-circuit voltage of 103 V,a peak short-circuit current of 4.7μA and a peak short-circuit charge of 43 nC.In addition,the TENG possessed high selfcleaning and reprocessing efficiency.Furthermore,a stretchable and self-healing composite conductor based on FPPU was fabricated for flexible electronic devices.