A novel tetra-nuclear Tb-organic network,named as [Tb_(4)(2-pyia)_(6)(HAc)_(0.5)(2,2'-bipy)(H_(2)O)_(4.5)]·2,2'-bipy·H_(2)O(1),was synthesized hydrothermally based on 5-(pyridin-2-ylmethoxy) isophtha...A novel tetra-nuclear Tb-organic network,named as [Tb_(4)(2-pyia)_(6)(HAc)_(0.5)(2,2'-bipy)(H_(2)O)_(4.5)]·2,2'-bipy·H_(2)O(1),was synthesized hydrothermally based on 5-(pyridin-2-ylmethoxy) isophthalic acid(H_(2)pyia) and 2,2'-bipyridine(2,2'-bipy) ligands,and characterized by single crystal X-ray diffraction,thermogravimetric(TG) analyses,powder X-ray diffraction(PXRD) and infrared(IR) technology.1 possesses a two-dimensional network based on the tetra-nuclear inorganic building units,and the π-πstacking interactions between the pyia^(2-) ligands and the vip 2,2'-bipy molecules play an important role in the forming of 3D supramolecular structure.1 exhibits excellent fluorescent sensing performance for Fe^(3+)(1.26×10^(-8) mol/L),Cr_(2)O_(7)^(2-)(8.1×10^(-7) mol/L),2,4,6-trinitrophenol(TNP)(2.71×10^(-8) mol/L)and tetracycline(TCT)(2.76×10^(-7) mol/L) in aqueous solution with lower detection concentrations.The sensing mechanisms of 1 were investigated by density functional theory(DFT) calculations,ultraviolet-visible(UV-Vis) diffuse reflectance spectroscopy,PXRD and fluorescent lifetime analyses.The activated product of 1 was prepared by heating at 255℃ under constant pressure and used to photo-catalytically degrade TCT.Both 1 and the activated one have good photocatalytic degradation performance for TCT with degradation rates of 84.29% and 96.07%,respectively.The photocatalytic mechanisms were discovered by UV-Vis diffuse reflectance spectroscopy and radical trap experiments.The Tb-organic framework might be an excellent multifunctional fluorescent sensor and a good photocatalytic agent for TCT degradation in the future.展开更多
To realize highly sensitive and specific sensing toward sarin,an Eu(III)based metal-organic framework(Eu-CTTB-MOF),encompassing aπ-conjugated organic ligand H4 CTTB(4,4',4'',4'''-(9H-carbazole...To realize highly sensitive and specific sensing toward sarin,an Eu(III)based metal-organic framework(Eu-CTTB-MOF),encompassing aπ-conjugated organic ligand H4 CTTB(4,4',4'',4'''-(9H-carbazole-1,3,6,8-tetrayl)tetrabenzoic acid)was explored for ratiometric fluorescent sensing.An unprecedented specific recognition of nerve-agent sarin mimic diethyl chlorophosphate(DCP)in the presence of HCl interferent and a low limit of detection(LOD,20.97 nM)were achieved.This excellent detection performance is driven by the dual hydrogen bonding and hydrophobic interaction between the CTTB organic ligand and DCP,which would cause a dramatic change in the molecular configuration of the CTTB ligand.Density functional theory(DFT)calculations further verify the recognition of DCP by Eu-CTTB-MOF could suppress the rotations of the aromatic rings in CTTB ligand,significantly reducing the nonradiative decay pathways and subsequently enhancing the fluorescent intensity of the CTTB ligand.Especially,the Eu-CTTB-MOF enables the immediate response to DCP vapor and excellent specificity towards DCP even in the presence of 18 types of interferents,including HCl vapor,structural analogs,and volatile organic solvent,and a gas detector with accurate detection of DCP in simulated scenarios,positioning the designed MOF as a promising sensing material for practical scenarios.We expect that the present sensing strategy will shine a light on the development of brand-new sensing materials for on-site detection applications.展开更多
A coordination polymer{[Cd(H_(2)dpa)(bpy)]·3H_(2)O}_(n)(Cd-CP)was designed and hydrothermal synthesized based on 4-(2,4-dicarboxyphenoxy)phthalic acid(H_(4)dpa),2,2'-bipyridine(bpy)and Cd(NO_(3))_(2)·4H_...A coordination polymer{[Cd(H_(2)dpa)(bpy)]·3H_(2)O}_(n)(Cd-CP)was designed and hydrothermal synthesized based on 4-(2,4-dicarboxyphenoxy)phthalic acid(H_(4)dpa),2,2'-bipyridine(bpy)and Cd(NO_(3))_(2)·4H_(2)O.The structure was characterized by single-crystal X-ray diffraction,powder X-ray diffraction,elemental analysis,and infrared spectroscopy.Cd-CP belongs to the monoclinic crystal system with the P2_1/c space group and performs in a 1D double-chain structure.The adjacent double chains further form a 3D supramolecular network structure through hydrogen bonding.Thermogravimetric analysis shows that Cd-CP has good thermal stability.Fluorescence analysis showed that Cd-CP had good choosing selectively and was sensitive to metal ions(Fe^(3+)and Zn^(2+)),2,4,6-trinitrophenylhydrazine(TRI),and pyrimethanil(Pth).Interestingly,when Cd-CP was used for fluorescence detection of metal ions,it was found to have a fluorescence quenching effect on Fe^(3+)but had an obvious enhancement effect on Zn^(2+).Therefore,we designed an“on-off-on”logic gate.In addition,the mechanism of fluorescence sensing has been deeply explored.CCDC:2258625.展开更多
Volatile aromatic aldehydes,including benzaldehyde(BzH),4-fluorobenzaldehyde(4-F-BzH),4-isobutylbenzaldehyde(4-iBu-BzH),3-trifluoromethylbenzaldehyde(3-CF_(3)-BzH),p-methoxybenzaldehyde(4-MeO-BzH),and o-trifluoromethy...Volatile aromatic aldehydes,including benzaldehyde(BzH),4-fluorobenzaldehyde(4-F-BzH),4-isobutylbenzaldehyde(4-iBu-BzH),3-trifluoromethylbenzaldehyde(3-CF_(3)-BzH),p-methoxybenzaldehyde(4-MeO-BzH),and o-trifluoromethylbenzaldehyde(2-CF_(3)-BzH),are crucial raw materials for the synthesis of various pesticides and pharmaceuticals[1].展开更多
Saccharide sensing is a very meaningful research topic as saccharides are involved in many biological activities.However,it is challenging to design molecular sensors for saccharides because this family of compounds i...Saccharide sensing is a very meaningful research topic as saccharides are involved in many biological activities.However,it is challenging to design molecular sensors for saccharides because this family of compounds is hydromimetic in aqueous solutions and shares a similar chemical structure.In this review,research progress in the development of porphyrin-based saccharide sensors is described with representative examples.We focus on using porphyrin as the signal reporter because porphyrins exhibit unique advantages in high chemical stability,long emission wavelength,and multiple structural modification strategies.Reported literature results have been classified into mainly two sections according to the general working principles of the porphyrin sensor molecules.In the first section,recognition unit,design strategy and sensing performance of traditional porphyrin-based selective saccharide sensors are discussed.While in the second section,development of porphyrin-based sensor arrays for pattern recognition of saccharides has been summarized.Looking through the design strategy and sensing performance of reported achievements,it is reasonable to anticipate a bright future for designing practical porphyrin-based saccharide sensors.展开更多
Volatile organic amines and biogenic amines produced by the amino acid degradation can undeniably affect the food quality and safety,and thus causes serious health problems.It is of great urgency to exploit reliable a...Volatile organic amines and biogenic amines produced by the amino acid degradation can undeniably affect the food quality and safety,and thus causes serious health problems.It is of great urgency to exploit reliable and sensitive detection methods for amines to ensure food safety and public health.The fluorescent and colorimetric sensors offer simple and robust means to monitor amines with high sensitivity and selectivity,quick response,facile operation and low cost.Herein,we briefly review the past five years’progress in fluorescent and colorimetric sensing for monitoring organic and biogenic amines in food.The architectures of sensing materials ranging from small molecules to frameworks to polymers or self-assembly materials have been highlighted.Moreover,the main challenges and perspective of various sensing materials are presented to inspire further research and development.In the end,the development trend of new sensing materials and devices for real-time monitoring of food quality is also forecasted.This review is expected spur more research interest in design of novel amine sensing materials for future application transformation research.展开更多
It is a great challenge to discover novel chemical reactions suitable for biological analysis in a living system.The development of novel protein thiol blocking agents is a crucial need for exploring protein thiol fun...It is a great challenge to discover novel chemical reactions suitable for biological analysis in a living system.The development of novel protein thiol blocking agents is a crucial need for exploring protein thiol functions in protein refolding,signal transduction,and redox regulation.We are always keen on seeking novel chemical reactions applied to endogenous biological macromolecules or protein thiol sensing,blocking,and labeling.In the present work,we have successfully developed a novel agent to block protein thiol by enhanced electron-withdrawing inductive effects.This sensing and blocking process was detailedly monitored by UV-vis,fluorescent spectra,and SDS-Page gel separation.The spectral studies demonstrated that the agent could react ultrafastly with thiol within seconds atμM level.Furthermore,fluorescent imaging in cells and in vivo was further used for the validation of its ability to sensing and blocking thiol,providing evidence of downregulated protein thiols in Parkinson's disease.The enhanced electronwithdrawing inductive effect strategy in this work may provide a general guideline for designing protein thiol agent.展开更多
In this study,the interaction between TPE-Ph COF and ammonia molecules,as well as the mechanism of fluorescence detection of ammonia,were comprehensively investigated using density functional theory(DFT)and time-depen...In this study,the interaction between TPE-Ph COF and ammonia molecules,as well as the mechanism of fluorescence detection of ammonia,were comprehensively investigated using density functional theory(DFT)and time-dependent density functional theory(TD-DFT).It was found that the binding between TPE-Ph COF and ammonia molecules occurs primarily through coordination bonds or hydrogen bonds.Specifically,the formation of coordination bonds significantly changes the intramolecular charge transfer of TPE-Ph COF,leading to fluorescence quenching.Computational analysis revealed the changes in electron and hole distributions upon the binding of ammonia to TPE-Ph COF,as well as the competition between nonradiative and radiative transitions during the photophysical processes,thereby elucidating the intrinsic mechanism of fluorescence response.展开更多
Rapid and eff ective diff erentiation of cancerous cells is essential for early diagnosis and treatment of tumors.Here,a multichannel sensor array is developed based on four surface-engineered gold-silver nanoclusters...Rapid and eff ective diff erentiation of cancerous cells is essential for early diagnosis and treatment of tumors.Here,a multichannel sensor array is developed based on four surface-engineered gold-silver nanoclusters(AuAgNCs)to discriminate multiple cancerous and normal cells.Diff erent binding a ffinities between various cells and AuAgNCs lead to changes in the intrinsic fluorescence of AuAgNCs as well as their peroxide-like activity.Based on the distinct response of dual fluorescence signals of four AuAgNCs,a multichannel sensor array is established,which is capable of accurately identifying both normal and cancerous cells,even cells of diff erent subtypes and homologous cells from various individuals with high sensitivity.Moreover,this fluorescent clusterzyme-based sensor array enables quantitative detection of cancerous cells(e.g.,HeLa cells)with good performance,which holds great potential as a promising platform for further cancer diagnosis.展开更多
Two amphiphilic TPE E/Z isomers with aggregation induced emission(AIE)property have been synthesized and characterized.The logarithmic fluorescent intensity of the two molecules was in positive relationship with logar...Two amphiphilic TPE E/Z isomers with aggregation induced emission(AIE)property have been synthesized and characterized.The logarithmic fluorescent intensity of the two molecules was in positive relationship with logarithmic viscosity of liquid.To note,the Z-TPE isomer exhibited more sensitivity in the viscosity of liquid sensing in comparison with the corresponding E-TPE counterpart(around 1.80 folds).Furthermore,two molecules could be used as fluorescent sensors for mechanical properties(viscosity and storage modulus)of hydrogel as well.In addition,two sensors displayed low cytotoxicity in normal tissue cell line(L929)within the concentration range of 2–10μmol/L.These results potentially promised their applications as fluorescent sensors for mechanical properties in the fields of biological and biomedical.展开更多
A novel coordination polymer(CP){[Cd_(2)(L)(1,4-bimb)_(1.5)(DMF)_(2)]·DMF}n(1)(H_(4)L=5,5'-[1,1'-biphenyl-4,4'-diylbis(oxy)]diisophthalic acid,1,4-bimb=1,4-bis(imidazole-1-ylmethyl)-benzene)has been d...A novel coordination polymer(CP){[Cd_(2)(L)(1,4-bimb)_(1.5)(DMF)_(2)]·DMF}n(1)(H_(4)L=5,5'-[1,1'-biphenyl-4,4'-diylbis(oxy)]diisophthalic acid,1,4-bimb=1,4-bis(imidazole-1-ylmethyl)-benzene)has been designed and synthesized through solvothermal reaction.Structural analysis shows that Cd(Ⅱ)is connected by H4L and 1,4-bimb to form a 2D network,and 1,4-bimb further expands the 2D network into a 3D framework.CP 1 can be used as an excellent fluorescence sensor for Fe^(3+)and 4-nitrophenol(4-NP),with low detection limits and good anti-interference.The detection limits of Fe^(3+)and 4-NP were 0.034 and 0.031μmol·L^(-1),respectively.In addition,the fluorescence quenching mechanism was studied.1 was successfully applied to determine Fe^(3+)and 4-NP content in the Yanhe River water sample.CCDC:2351092.展开更多
The presence of toxic mercury (Ⅱ) in water is an ever-growing problem on earth that has various harmful effect on human health and aquatic living organisms.Therefore,detection of mercury (Ⅱ) in water is very much cr...The presence of toxic mercury (Ⅱ) in water is an ever-growing problem on earth that has various harmful effect on human health and aquatic living organisms.Therefore,detection of mercury (Ⅱ) in water is very much crucial and several researches are going on in this topic.Metal-organic frameworks (MOFs) are considered as an effective device for sensing of toxic heavy metal ions in water.The tunable functionalities with large surface area of highly semiconducting MOFs enhance its activity towards fluorescence sensing.In this study,we are reporting one highly selective and sensitive luminescent sensor for the detection of mercury (Ⅱ) in water.A series of binary MOF composites were synthesized using in-situ solvothermal synthetic technique for fluorescence sensing of Hg^(2+)in water.The welldistributed graphitic carbon nitride quantum dots on porous zirconium-based MOF improve Hg^(2+)sensing activity in water owing to their great electronic and optical properties.The binary MOF composite (2) i.e.,the sensor exhibited excellent limit of detection (LOD) value of 2.4 nmol/L for Hg^(2+).The sensor also exhibited excellent performance for mercury (Ⅱ)detection in real water samples.The characterizations of the synthesized materials were done using various spectroscopic techniques and the fluorescence sensing mechanism was studied.展开更多
By employing a rational approach,we prepared a novel kind of luminescent europium-centered hybrid material named Eu(tta)_(3)NCP-TiO_(2).The resulting material was characterized by FT-IR spectra,SEM,X-ray diffraction,t...By employing a rational approach,we prepared a novel kind of luminescent europium-centered hybrid material named Eu(tta)_(3)NCP-TiO_(2).The resulting material was characterized by FT-IR spectra,SEM,X-ray diffraction,thermogravimetric analysis,and photoluminescence spectra.The hybrid material features the combined advantages of the europium complex and the titania host,exhibiting not only good thermostability,but also long luminescence lifetime.Owing to the excellent luminescence of this material,the application in detecting organic small molecule solvents and metal ions was explored systematically.Significantly,Eu(tta)_(3)NCP-TiO_(2) exhibits superior detection for nitrobenzene molecule and Cu^(2+) ion in DMF(N,N-dimethylformamide) medium.Furthermore,the limit of detection(LOD) of Eu(tta)_(3)NCP-TiO_(2) for nitrobenzene and Cu^(2+) ion can be counted as 5.593× 10^(-5) and 9.566 ×10^(-5) mol/L,respectively.The results demonstrate that Eu(tta)_(3)NCP-TiO_(2) can serve as an efficient fluorescence probe for the detection of sensing of nitrobenzene and Cu^(2+) ion.展开更多
A dual emission sensing film has been prepared for colorimetric temperature sensing using CsPbBr_(3)perovskite nanocrystals(CsPbBr_(3)NCs)and manganese doped potassium fluorosilicate(K_(2)SiF_(6):Mn^(4+),KSF)encapsula...A dual emission sensing film has been prepared for colorimetric temperature sensing using CsPbBr_(3)perovskite nanocrystals(CsPbBr_(3)NCs)and manganese doped potassium fluorosilicate(K_(2)SiF_(6):Mn^(4+),KSF)encapsulated in polystyrene by a microencapsulation strategy.The CsPbBr_(3)-KSF-PS film shows good temperature sensing response from 30℃to 70℃,with a relative temperature sensitivity(Sr)up to 10.31%℃^(−1) at 45℃.Meanwhile,the film maintains more than 95%intensity after 6 heating-cooling cycles and keeps its fluorescence characteristics after 3 months.The film can be used to monitor temperature change by naked eye under a UV lamp.In particular,the temperature discoloration point of the sensing film can be controlled by the ratio change of CsPbBr_(3):KSF to expand its applications.The study of the CsPbBr_(3)-KSF-PS sensing mechanism in this work is helpful to provide effective strategies for the design of reliable,high sensitivity and stable temperature sensing system using CsPbBr_(3)NCs.展开更多
The active oxygen species in the catalytic oxidation system of Fe(Ⅲ)PcTs-t-BuOOH were identified,and the mechanism of the catalytic oxidation of phenolic substrates was proposed.Quinone imine molecules,the main produ...The active oxygen species in the catalytic oxidation system of Fe(Ⅲ)PcTs-t-BuOOH were identified,and the mechanism of the catalytic oxidation of phenolic substrates was proposed.Quinone imine molecules,the main products of catalytic oxidation reaction,can be adsorbed on the surface of CdTe QDs,resulting in their fluorescence quenching.A dual function of catalytic oxidation and fluorescence sensing was developed for the determination of dichlorophenol(DCP)based on the Fe(Ⅲ)PcTs-BuOOH-CdTe QDs system.The linear detection range of DCP was 1×10^(-6)-1.3×10^(-4) mol/L,and the detection limit 2.4×10^(-7) mol/L.This method was characterized by high selectivity,good repeatability and desirable stability,presenting promising potentials for analyzing DCP concentration in real water samples.展开更多
Pentaerythrityl tetra(p-dimethylaminobenzoate) (PTDMAB) was synthesized and shown to emit in water-rich aqueous dioxane solutions the intramolecular charge transfer fluorescence that was sensitive to the presence of m...Pentaerythrityl tetra(p-dimethylaminobenzoate) (PTDMAB) was synthesized and shown to emit in water-rich aqueous dioxane solutions the intramolecular charge transfer fluorescence that was sensitive to the presence of metal ions.展开更多
Water-soluble pillar[5]arenes are a class of typical macrocycles and have aroused tremendous attention for its easy to modify, abundant host-vip properties and extensive applications. However, up to now, all the rep...Water-soluble pillar[5]arenes are a class of typical macrocycles and have aroused tremendous attention for its easy to modify, abundant host-vip properties and extensive applications. However, up to now, all the reported water-soluble pillar[5]arenes acted as the host molecules, whereas they failed to be postsynthetically modified, which seriously impeded the development of the pillar[5]arene-based supramolecular chemistry. In this work, a new water-soluble pillar[5]arene, pillar[4]arene[1]quinone, was designed and synthsized with eight quaternary ammonium groups as well as a quinone units. Such a new water-soluble pillar[4]arene[1]quinone was capable of forming 1:1 stable complex with sodium 1-octanesulfonate in aqueous solution. Since the 1,4-quinone unit of WP[4]Q[1] could react with ethylenediamine (EDA) to form a conjugated quinoxaline structure, so pillar[4]arene[1]quinone could apply to the facile fluorescence turn-on sensing of EDA in aqueous solution, organic solvent and air.展开更多
We report the convenient synthesis of a benzobis(imidazolium)-embedded conjugated polyelectrolyte pBBI by a Cu-catalyzed direct C–H arylation of a cationic benzobis(imidazolium)monomer with a di-iodide comonomer.pBBI...We report the convenient synthesis of a benzobis(imidazolium)-embedded conjugated polyelectrolyte pBBI by a Cu-catalyzed direct C–H arylation of a cationic benzobis(imidazolium)monomer with a di-iodide comonomer.pBBI shows weak fluorescence in solution due to rotation of the repeat units in the conjugated backbone,and enhanced fluorescence when electrostatically interacting with a variety of an-ions to form aggregates.Specially,pBBI responds to the bisulfite anion with intensified unique deep-blue fluorescence easily discriminated by naked eye.展开更多
Purpose: Aflatoxin B<sub>1</sub> is the most common mycotoxin in cereal crops;it is of stronger toxicity and has a carcinogenic effect. In recent years, a series of fluorescence sensors constructed on the ...Purpose: Aflatoxin B<sub>1</sub> is the most common mycotoxin in cereal crops;it is of stronger toxicity and has a carcinogenic effect. In recent years, a series of fluorescence sensors constructed on the basis of MoS<sub>2</sub>NS fluorescence quenching property have become a research hotspot. Therefore, we can construct a fast and simple analysis method with high specificity to detect AFB<sub>1</sub> by utilizing MoS<sub>2</sub>NS, which can be effectively applied to food safety monitoring and clinical diagnosis. Method: In the current research, a fluorescence biosensor is developed on the basis of a new type of two-dimensional nano-material namely MoS<sub>2</sub>NS applied for the detection of AFB<sub>1</sub>. The fluorescence of Apt@AFB<sub>1</sub> can be quickly quenched by MoS<sub>2</sub>NS through the fluorescence resonance energy transfer (FRET). When the target molecule AFB<sub>1</sub> exists, after the specificity binding between AFB<sub>1</sub> and aptamer, the Apt@AFB<sub>1</sub> loses its single stranded structure and is away from MoS<sub>2</sub>NS, and the fluorescence of Apt®AFB<sub>1</sub> cannot be quenched effectively. Such sensing signals can be used to achieve the sensitive detection of AFB<sub>1</sub>. Result: With this new method, under the optimized conditions, the AFB<sub>1</sub> is analyzed in the MoS<sub>2</sub>NS/Apt®AFB<sub>1</sub> sensing platform. Within the dynamic range of 0.2 - 25 ng/mL, the sensing platform expresses a good linear response to the level of AFB<sub>1</sub> with the R<sup>2</sup> = 0.9964 and LOD as 90 pg/mL. This method is applied to detect the actual serum samples and soybean milk with the recovery rate of 93.10% - 107.23% and 95.15% - 102.60% separately, and it can be used in the quantitative detection under the interference of other mycotoxins in a relatively accurate way. Conclusion: It is proved that this new detection method can be used as a potential biosensor platform for the detection of AFB<sub>1</sub>. This detection method features several advantages such as specificity, rapidness and low costs, which can meet the requirement of trace detection in clinical detection and food safety.展开更多
Purpose: Interferon-γ (INF-γ) is a cytokine that participates in the immune reaction of the body. Its level of secretion can reflect the immune response condition after the body is infected by pathogens, which is a ...Purpose: Interferon-γ (INF-γ) is a cytokine that participates in the immune reaction of the body. Its level of secretion can reflect the immune response condition after the body is infected by pathogens, which is a significant indication of clinically-related diseases. Therefore, it is of great significance in application to develop a fluorescence biosensor to inspect INF-γ with rapidness, high sensitivity and high practicability. Method: The fluorescence sensor is made on the basis of the two-dimensional nano-material namely Carbon Nitride Nanosheet (CNNS) and the Aptamer probe to identify INF-γ (Apt®INF-γ). CNNS can quickly quench the Cy5 fluorescent dye modified on the Apt®INF-γ probe due to the Photoinduced Electron Transfer (PET), but when the INF-γ exists, Apt®INF-γ specifically identifies and combines it. The complex of Apt®INF-γ and INF-γ is away from CNNS, which can effectively block the fluorescent signal of Apt?INF-γ being quenched by CNNS. Result: The sensitive detection of IFN-γ protein can be achieved through the application of CNNS/Apt®INF-γ fluorescence sensing platform. In this method, the intensity of the fluorescent signal is positively correlated with the concentration of IFN-γ, of which the liner response range is 0.5 - 100 ng/mL and the limit of detection is 0.303 ng/mL. In addition, this fluorescence sensing platform has the advantages of high specificity, simple operation and low costs. It can inspect the content of IFN-γ in clinical serum samples without interference. The actual recovery rate of serum samples is 97.11% - 106.96%. Conclusion: Therefore, the CNNS/Apt®INF-γ sensing platform is expected to be implemented in the actual clinical detection, also conducive to developing a universal fluorescence biosensor to inspect other target materials.展开更多
基金Project supported by the National Natural Science Foundation of China(22063010)the Youth Innovation Team of Shaanxi Universities。
文摘A novel tetra-nuclear Tb-organic network,named as [Tb_(4)(2-pyia)_(6)(HAc)_(0.5)(2,2'-bipy)(H_(2)O)_(4.5)]·2,2'-bipy·H_(2)O(1),was synthesized hydrothermally based on 5-(pyridin-2-ylmethoxy) isophthalic acid(H_(2)pyia) and 2,2'-bipyridine(2,2'-bipy) ligands,and characterized by single crystal X-ray diffraction,thermogravimetric(TG) analyses,powder X-ray diffraction(PXRD) and infrared(IR) technology.1 possesses a two-dimensional network based on the tetra-nuclear inorganic building units,and the π-πstacking interactions between the pyia^(2-) ligands and the vip 2,2'-bipy molecules play an important role in the forming of 3D supramolecular structure.1 exhibits excellent fluorescent sensing performance for Fe^(3+)(1.26×10^(-8) mol/L),Cr_(2)O_(7)^(2-)(8.1×10^(-7) mol/L),2,4,6-trinitrophenol(TNP)(2.71×10^(-8) mol/L)and tetracycline(TCT)(2.76×10^(-7) mol/L) in aqueous solution with lower detection concentrations.The sensing mechanisms of 1 were investigated by density functional theory(DFT) calculations,ultraviolet-visible(UV-Vis) diffuse reflectance spectroscopy,PXRD and fluorescent lifetime analyses.The activated product of 1 was prepared by heating at 255℃ under constant pressure and used to photo-catalytically degrade TCT.Both 1 and the activated one have good photocatalytic degradation performance for TCT with degradation rates of 84.29% and 96.07%,respectively.The photocatalytic mechanisms were discovered by UV-Vis diffuse reflectance spectroscopy and radical trap experiments.The Tb-organic framework might be an excellent multifunctional fluorescent sensor and a good photocatalytic agent for TCT degradation in the future.
基金supported by the National Key Research and Development Program of China(2022YFA1205500)National Natural Science Foundation of China(22374161)+1 种基金Tianshan Innovation Team Plan(2022TSYCTD0020)the Youth Innovation Promotion Association,CAS(Y2022106).
文摘To realize highly sensitive and specific sensing toward sarin,an Eu(III)based metal-organic framework(Eu-CTTB-MOF),encompassing aπ-conjugated organic ligand H4 CTTB(4,4',4'',4'''-(9H-carbazole-1,3,6,8-tetrayl)tetrabenzoic acid)was explored for ratiometric fluorescent sensing.An unprecedented specific recognition of nerve-agent sarin mimic diethyl chlorophosphate(DCP)in the presence of HCl interferent and a low limit of detection(LOD,20.97 nM)were achieved.This excellent detection performance is driven by the dual hydrogen bonding and hydrophobic interaction between the CTTB organic ligand and DCP,which would cause a dramatic change in the molecular configuration of the CTTB ligand.Density functional theory(DFT)calculations further verify the recognition of DCP by Eu-CTTB-MOF could suppress the rotations of the aromatic rings in CTTB ligand,significantly reducing the nonradiative decay pathways and subsequently enhancing the fluorescent intensity of the CTTB ligand.Especially,the Eu-CTTB-MOF enables the immediate response to DCP vapor and excellent specificity towards DCP even in the presence of 18 types of interferents,including HCl vapor,structural analogs,and volatile organic solvent,and a gas detector with accurate detection of DCP in simulated scenarios,positioning the designed MOF as a promising sensing material for practical scenarios.We expect that the present sensing strategy will shine a light on the development of brand-new sensing materials for on-site detection applications.
文摘A coordination polymer{[Cd(H_(2)dpa)(bpy)]·3H_(2)O}_(n)(Cd-CP)was designed and hydrothermal synthesized based on 4-(2,4-dicarboxyphenoxy)phthalic acid(H_(4)dpa),2,2'-bipyridine(bpy)and Cd(NO_(3))_(2)·4H_(2)O.The structure was characterized by single-crystal X-ray diffraction,powder X-ray diffraction,elemental analysis,and infrared spectroscopy.Cd-CP belongs to the monoclinic crystal system with the P2_1/c space group and performs in a 1D double-chain structure.The adjacent double chains further form a 3D supramolecular network structure through hydrogen bonding.Thermogravimetric analysis shows that Cd-CP has good thermal stability.Fluorescence analysis showed that Cd-CP had good choosing selectively and was sensitive to metal ions(Fe^(3+)and Zn^(2+)),2,4,6-trinitrophenylhydrazine(TRI),and pyrimethanil(Pth).Interestingly,when Cd-CP was used for fluorescence detection of metal ions,it was found to have a fluorescence quenching effect on Fe^(3+)but had an obvious enhancement effect on Zn^(2+).Therefore,we designed an“on-off-on”logic gate.In addition,the mechanism of fluorescence sensing has been deeply explored.CCDC:2258625.
基金supported by National Natural Science Foundation of China(22361031,22308260).
文摘Volatile aromatic aldehydes,including benzaldehyde(BzH),4-fluorobenzaldehyde(4-F-BzH),4-isobutylbenzaldehyde(4-iBu-BzH),3-trifluoromethylbenzaldehyde(3-CF_(3)-BzH),p-methoxybenzaldehyde(4-MeO-BzH),and o-trifluoromethylbenzaldehyde(2-CF_(3)-BzH),are crucial raw materials for the synthesis of various pesticides and pharmaceuticals[1].
基金financially supported by the National Natural Science Foundation of China(Nos.22278229,22131005 and 21904066)333 High Level Talent Project of Jiangsu Province.
文摘Saccharide sensing is a very meaningful research topic as saccharides are involved in many biological activities.However,it is challenging to design molecular sensors for saccharides because this family of compounds is hydromimetic in aqueous solutions and shares a similar chemical structure.In this review,research progress in the development of porphyrin-based saccharide sensors is described with representative examples.We focus on using porphyrin as the signal reporter because porphyrins exhibit unique advantages in high chemical stability,long emission wavelength,and multiple structural modification strategies.Reported literature results have been classified into mainly two sections according to the general working principles of the porphyrin sensor molecules.In the first section,recognition unit,design strategy and sensing performance of traditional porphyrin-based selective saccharide sensors are discussed.While in the second section,development of porphyrin-based sensor arrays for pattern recognition of saccharides has been summarized.Looking through the design strategy and sensing performance of reported achievements,it is reasonable to anticipate a bright future for designing practical porphyrin-based saccharide sensors.
基金funding support provided by the Key Scientific and Technological Project of Henan province(No.212102210549)Natural Science Foundation of Henan Province(No.222300420501)the Key Scientific Research Project of Higher Education of Henan Province(No.22A430007).
文摘Volatile organic amines and biogenic amines produced by the amino acid degradation can undeniably affect the food quality and safety,and thus causes serious health problems.It is of great urgency to exploit reliable and sensitive detection methods for amines to ensure food safety and public health.The fluorescent and colorimetric sensors offer simple and robust means to monitor amines with high sensitivity and selectivity,quick response,facile operation and low cost.Herein,we briefly review the past five years’progress in fluorescent and colorimetric sensing for monitoring organic and biogenic amines in food.The architectures of sensing materials ranging from small molecules to frameworks to polymers or self-assembly materials have been highlighted.Moreover,the main challenges and perspective of various sensing materials are presented to inspire further research and development.In the end,the development trend of new sensing materials and devices for real-time monitoring of food quality is also forecasted.This review is expected spur more research interest in design of novel amine sensing materials for future application transformation research.
基金supported by the Natural Science Foundation of China(22376216,21778026,21701074,21976209 and 22204127)the program of the Youth Innovation Promotion Association,CAS(2019217)+3 种基金Taishan Scholar Project Special Funding(TS20190962)the Shenzhen Science and Technology Program(JCYJ20210324142612032)the Guangdong Basic and Applied Basic Research Foundation(2021A1515110906)the Natural Science Basic Research Program of Shaanxi(No.2022JQ-106).
文摘It is a great challenge to discover novel chemical reactions suitable for biological analysis in a living system.The development of novel protein thiol blocking agents is a crucial need for exploring protein thiol functions in protein refolding,signal transduction,and redox regulation.We are always keen on seeking novel chemical reactions applied to endogenous biological macromolecules or protein thiol sensing,blocking,and labeling.In the present work,we have successfully developed a novel agent to block protein thiol by enhanced electron-withdrawing inductive effects.This sensing and blocking process was detailedly monitored by UV-vis,fluorescent spectra,and SDS-Page gel separation.The spectral studies demonstrated that the agent could react ultrafastly with thiol within seconds atμM level.Furthermore,fluorescent imaging in cells and in vivo was further used for the validation of its ability to sensing and blocking thiol,providing evidence of downregulated protein thiols in Parkinson's disease.The enhanced electronwithdrawing inductive effect strategy in this work may provide a general guideline for designing protein thiol agent.
文摘In this study,the interaction between TPE-Ph COF and ammonia molecules,as well as the mechanism of fluorescence detection of ammonia,were comprehensively investigated using density functional theory(DFT)and time-dependent density functional theory(TD-DFT).It was found that the binding between TPE-Ph COF and ammonia molecules occurs primarily through coordination bonds or hydrogen bonds.Specifically,the formation of coordination bonds significantly changes the intramolecular charge transfer of TPE-Ph COF,leading to fluorescence quenching.Computational analysis revealed the changes in electron and hole distributions upon the binding of ammonia to TPE-Ph COF,as well as the competition between nonradiative and radiative transitions during the photophysical processes,thereby elucidating the intrinsic mechanism of fluorescence response.
基金supported by the National Natural Science Foundation of China(22274131)the Shaanxi Fundamental Science Research Project for Chemistry&Biology(22JHQ071)。
文摘Rapid and eff ective diff erentiation of cancerous cells is essential for early diagnosis and treatment of tumors.Here,a multichannel sensor array is developed based on four surface-engineered gold-silver nanoclusters(AuAgNCs)to discriminate multiple cancerous and normal cells.Diff erent binding a ffinities between various cells and AuAgNCs lead to changes in the intrinsic fluorescence of AuAgNCs as well as their peroxide-like activity.Based on the distinct response of dual fluorescence signals of four AuAgNCs,a multichannel sensor array is established,which is capable of accurately identifying both normal and cancerous cells,even cells of diff erent subtypes and homologous cells from various individuals with high sensitivity.Moreover,this fluorescent clusterzyme-based sensor array enables quantitative detection of cancerous cells(e.g.,HeLa cells)with good performance,which holds great potential as a promising platform for further cancer diagnosis.
基金National Natural Science Foundation of China(Nos.21375116,21978251,22073080)Nature Science Foundation of Jiangsu Province(Nos.BK20190903,BK20190905)+2 种基金A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions for financial supportThe open funds of the Ministry of Education Key Lab for Avian Preventive Medicine(No.YF202020)the Thousand Talents Plan for Young Professionals of China。
文摘Two amphiphilic TPE E/Z isomers with aggregation induced emission(AIE)property have been synthesized and characterized.The logarithmic fluorescent intensity of the two molecules was in positive relationship with logarithmic viscosity of liquid.To note,the Z-TPE isomer exhibited more sensitivity in the viscosity of liquid sensing in comparison with the corresponding E-TPE counterpart(around 1.80 folds).Furthermore,two molecules could be used as fluorescent sensors for mechanical properties(viscosity and storage modulus)of hydrogel as well.In addition,two sensors displayed low cytotoxicity in normal tissue cell line(L929)within the concentration range of 2–10μmol/L.These results potentially promised their applications as fluorescent sensors for mechanical properties in the fields of biological and biomedical.
文摘A novel coordination polymer(CP){[Cd_(2)(L)(1,4-bimb)_(1.5)(DMF)_(2)]·DMF}n(1)(H_(4)L=5,5'-[1,1'-biphenyl-4,4'-diylbis(oxy)]diisophthalic acid,1,4-bimb=1,4-bis(imidazole-1-ylmethyl)-benzene)has been designed and synthesized through solvothermal reaction.Structural analysis shows that Cd(Ⅱ)is connected by H4L and 1,4-bimb to form a 2D network,and 1,4-bimb further expands the 2D network into a 3D framework.CP 1 can be used as an excellent fluorescence sensor for Fe^(3+)and 4-nitrophenol(4-NP),with low detection limits and good anti-interference.The detection limits of Fe^(3+)and 4-NP were 0.034 and 0.031μmol·L^(-1),respectively.In addition,the fluorescence quenching mechanism was studied.1 was successfully applied to determine Fe^(3+)and 4-NP content in the Yanhe River water sample.CCDC:2351092.
文摘The presence of toxic mercury (Ⅱ) in water is an ever-growing problem on earth that has various harmful effect on human health and aquatic living organisms.Therefore,detection of mercury (Ⅱ) in water is very much crucial and several researches are going on in this topic.Metal-organic frameworks (MOFs) are considered as an effective device for sensing of toxic heavy metal ions in water.The tunable functionalities with large surface area of highly semiconducting MOFs enhance its activity towards fluorescence sensing.In this study,we are reporting one highly selective and sensitive luminescent sensor for the detection of mercury (Ⅱ) in water.A series of binary MOF composites were synthesized using in-situ solvothermal synthetic technique for fluorescence sensing of Hg^(2+)in water.The welldistributed graphitic carbon nitride quantum dots on porous zirconium-based MOF improve Hg^(2+)sensing activity in water owing to their great electronic and optical properties.The binary MOF composite (2) i.e.,the sensor exhibited excellent limit of detection (LOD) value of 2.4 nmol/L for Hg^(2+).The sensor also exhibited excellent performance for mercury (Ⅱ)detection in real water samples.The characterizations of the synthesized materials were done using various spectroscopic techniques and the fluorescence sensing mechanism was studied.
基金Project supported by the National Natural Science Foundation of China(21473133,21173164)。
文摘By employing a rational approach,we prepared a novel kind of luminescent europium-centered hybrid material named Eu(tta)_(3)NCP-TiO_(2).The resulting material was characterized by FT-IR spectra,SEM,X-ray diffraction,thermogravimetric analysis,and photoluminescence spectra.The hybrid material features the combined advantages of the europium complex and the titania host,exhibiting not only good thermostability,but also long luminescence lifetime.Owing to the excellent luminescence of this material,the application in detecting organic small molecule solvents and metal ions was explored systematically.Significantly,Eu(tta)_(3)NCP-TiO_(2) exhibits superior detection for nitrobenzene molecule and Cu^(2+) ion in DMF(N,N-dimethylformamide) medium.Furthermore,the limit of detection(LOD) of Eu(tta)_(3)NCP-TiO_(2) for nitrobenzene and Cu^(2+) ion can be counted as 5.593× 10^(-5) and 9.566 ×10^(-5) mol/L,respectively.The results demonstrate that Eu(tta)_(3)NCP-TiO_(2) can serve as an efficient fluorescence probe for the detection of sensing of nitrobenzene and Cu^(2+) ion.
基金financial supports by the Shenzhen Science and Technology Project(No.JCYJ20180306172823786)the National Natural Science Foundation of China(Nos.21876141,NFFTBS-J1310024)。
文摘A dual emission sensing film has been prepared for colorimetric temperature sensing using CsPbBr_(3)perovskite nanocrystals(CsPbBr_(3)NCs)and manganese doped potassium fluorosilicate(K_(2)SiF_(6):Mn^(4+),KSF)encapsulated in polystyrene by a microencapsulation strategy.The CsPbBr_(3)-KSF-PS film shows good temperature sensing response from 30℃to 70℃,with a relative temperature sensitivity(Sr)up to 10.31%℃^(−1) at 45℃.Meanwhile,the film maintains more than 95%intensity after 6 heating-cooling cycles and keeps its fluorescence characteristics after 3 months.The film can be used to monitor temperature change by naked eye under a UV lamp.In particular,the temperature discoloration point of the sensing film can be controlled by the ratio change of CsPbBr_(3):KSF to expand its applications.The study of the CsPbBr_(3)-KSF-PS sensing mechanism in this work is helpful to provide effective strategies for the design of reliable,high sensitivity and stable temperature sensing system using CsPbBr_(3)NCs.
基金Funded by the National Natural Science Foundation of China(No.61205062)the Hubei Provincial Department of Education Scientific Research Program Guidance Project(No.B2020282)。
文摘The active oxygen species in the catalytic oxidation system of Fe(Ⅲ)PcTs-t-BuOOH were identified,and the mechanism of the catalytic oxidation of phenolic substrates was proposed.Quinone imine molecules,the main products of catalytic oxidation reaction,can be adsorbed on the surface of CdTe QDs,resulting in their fluorescence quenching.A dual function of catalytic oxidation and fluorescence sensing was developed for the determination of dichlorophenol(DCP)based on the Fe(Ⅲ)PcTs-BuOOH-CdTe QDs system.The linear detection range of DCP was 1×10^(-6)-1.3×10^(-4) mol/L,and the detection limit 2.4×10^(-7) mol/L.This method was characterized by high selectivity,good repeatability and desirable stability,presenting promising potentials for analyzing DCP concentration in real water samples.
文摘Pentaerythrityl tetra(p-dimethylaminobenzoate) (PTDMAB) was synthesized and shown to emit in water-rich aqueous dioxane solutions the intramolecular charge transfer fluorescence that was sensitive to the presence of metal ions.
基金financially supported by the National Natural Science Foundation of China (No. 21801139)the Natural Science Foundation of Jiangsu Province (Nos. BK20180942, BK20190917)+1 种基金the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (No. 19KJB150015)the Six Talent Peak Projects in Jiangsu Province (No. XCL-085)。
文摘Water-soluble pillar[5]arenes are a class of typical macrocycles and have aroused tremendous attention for its easy to modify, abundant host-vip properties and extensive applications. However, up to now, all the reported water-soluble pillar[5]arenes acted as the host molecules, whereas they failed to be postsynthetically modified, which seriously impeded the development of the pillar[5]arene-based supramolecular chemistry. In this work, a new water-soluble pillar[5]arene, pillar[4]arene[1]quinone, was designed and synthsized with eight quaternary ammonium groups as well as a quinone units. Such a new water-soluble pillar[4]arene[1]quinone was capable of forming 1:1 stable complex with sodium 1-octanesulfonate in aqueous solution. Since the 1,4-quinone unit of WP[4]Q[1] could react with ethylenediamine (EDA) to form a conjugated quinoxaline structure, so pillar[4]arene[1]quinone could apply to the facile fluorescence turn-on sensing of EDA in aqueous solution, organic solvent and air.
基金support from the National Natural Science Foundation of China(No.21772134)the Fundamental Research Funds for Central Universities(No.20826041D4117).
文摘We report the convenient synthesis of a benzobis(imidazolium)-embedded conjugated polyelectrolyte pBBI by a Cu-catalyzed direct C–H arylation of a cationic benzobis(imidazolium)monomer with a di-iodide comonomer.pBBI shows weak fluorescence in solution due to rotation of the repeat units in the conjugated backbone,and enhanced fluorescence when electrostatically interacting with a variety of an-ions to form aggregates.Specially,pBBI responds to the bisulfite anion with intensified unique deep-blue fluorescence easily discriminated by naked eye.
文摘Purpose: Aflatoxin B<sub>1</sub> is the most common mycotoxin in cereal crops;it is of stronger toxicity and has a carcinogenic effect. In recent years, a series of fluorescence sensors constructed on the basis of MoS<sub>2</sub>NS fluorescence quenching property have become a research hotspot. Therefore, we can construct a fast and simple analysis method with high specificity to detect AFB<sub>1</sub> by utilizing MoS<sub>2</sub>NS, which can be effectively applied to food safety monitoring and clinical diagnosis. Method: In the current research, a fluorescence biosensor is developed on the basis of a new type of two-dimensional nano-material namely MoS<sub>2</sub>NS applied for the detection of AFB<sub>1</sub>. The fluorescence of Apt@AFB<sub>1</sub> can be quickly quenched by MoS<sub>2</sub>NS through the fluorescence resonance energy transfer (FRET). When the target molecule AFB<sub>1</sub> exists, after the specificity binding between AFB<sub>1</sub> and aptamer, the Apt@AFB<sub>1</sub> loses its single stranded structure and is away from MoS<sub>2</sub>NS, and the fluorescence of Apt®AFB<sub>1</sub> cannot be quenched effectively. Such sensing signals can be used to achieve the sensitive detection of AFB<sub>1</sub>. Result: With this new method, under the optimized conditions, the AFB<sub>1</sub> is analyzed in the MoS<sub>2</sub>NS/Apt®AFB<sub>1</sub> sensing platform. Within the dynamic range of 0.2 - 25 ng/mL, the sensing platform expresses a good linear response to the level of AFB<sub>1</sub> with the R<sup>2</sup> = 0.9964 and LOD as 90 pg/mL. This method is applied to detect the actual serum samples and soybean milk with the recovery rate of 93.10% - 107.23% and 95.15% - 102.60% separately, and it can be used in the quantitative detection under the interference of other mycotoxins in a relatively accurate way. Conclusion: It is proved that this new detection method can be used as a potential biosensor platform for the detection of AFB<sub>1</sub>. This detection method features several advantages such as specificity, rapidness and low costs, which can meet the requirement of trace detection in clinical detection and food safety.
文摘Purpose: Interferon-γ (INF-γ) is a cytokine that participates in the immune reaction of the body. Its level of secretion can reflect the immune response condition after the body is infected by pathogens, which is a significant indication of clinically-related diseases. Therefore, it is of great significance in application to develop a fluorescence biosensor to inspect INF-γ with rapidness, high sensitivity and high practicability. Method: The fluorescence sensor is made on the basis of the two-dimensional nano-material namely Carbon Nitride Nanosheet (CNNS) and the Aptamer probe to identify INF-γ (Apt®INF-γ). CNNS can quickly quench the Cy5 fluorescent dye modified on the Apt®INF-γ probe due to the Photoinduced Electron Transfer (PET), but when the INF-γ exists, Apt®INF-γ specifically identifies and combines it. The complex of Apt®INF-γ and INF-γ is away from CNNS, which can effectively block the fluorescent signal of Apt?INF-γ being quenched by CNNS. Result: The sensitive detection of IFN-γ protein can be achieved through the application of CNNS/Apt®INF-γ fluorescence sensing platform. In this method, the intensity of the fluorescent signal is positively correlated with the concentration of IFN-γ, of which the liner response range is 0.5 - 100 ng/mL and the limit of detection is 0.303 ng/mL. In addition, this fluorescence sensing platform has the advantages of high specificity, simple operation and low costs. It can inspect the content of IFN-γ in clinical serum samples without interference. The actual recovery rate of serum samples is 97.11% - 106.96%. Conclusion: Therefore, the CNNS/Apt®INF-γ sensing platform is expected to be implemented in the actual clinical detection, also conducive to developing a universal fluorescence biosensor to inspect other target materials.