It is critical to establish a direct and precise method with a high sensitivity and selectivity in analytical chemistry. In this research, making use of a well known phenomenon of capillary flow, we have proposed an...It is critical to establish a direct and precise method with a high sensitivity and selectivity in analytical chemistry. In this research, making use of a well known phenomenon of capillary flow, we have proposed an image analysis method of nucleic acids at the price of a small amount of sample. When a droplet of the supramolecular complex solution, formed by neutral red and nucleic acids(NA) under an approximate neutral condition, was placed on the hydrophobic surface of dimethyl dichlorosilane pretreated glass slides, and it was evaporated, the supramolecular complex exhibited the periphery of the droplet due to the capillary effect, and accumulated there to form a red capillary flow directed assembly ring(CFDAR). A typical CFDAR has an outer diameter of (2 r ) about 1.18 mm and a ring width(2 δ ) of about 41 μm. Depending on the experimental conditions, a variety of CFDAR can be assembled. The experimental results are in agreement with our former theoretical discussion. It was found that when a droplet volume is 0.1 μL, the fluorescence intensity of the CFDAR formed by the NR NA is in proportion to the content of calf thymus DNA in the range of 0-0.28 ng, fish sperm DNA of 0-0.24 ng and yeast RNA of 0-0.16 ng with the limit of detection(3 σ ) of 1 7, 1.4 and 0.9 pg, respectively for the three nucleic acids.展开更多
Municipal sewage from an oxidation ditch was treated for reuse by nanofiltration(NF) in this study. The NF performance was optimized, and its fouling characteristics after different operational durations(i.e., 48 a...Municipal sewage from an oxidation ditch was treated for reuse by nanofiltration(NF) in this study. The NF performance was optimized, and its fouling characteristics after different operational durations(i.e., 48 and 169 hr) were analyzed to investigate the applicability of nanofiltration for water reuse. The optimum performance was achieved when transmembrane pressure = 12 bar, p H = 4 and flow rate = 8 L/min using a GE membrane. The permeate water quality could satisfy the requirements of water reclamation for different uses and local standards for water reuse in Beijing. Flux decline in the fouling experiments could be divided into a rapid flux decline and a quasi-steady state. The boundary flux theory was used to predict the evolution of permeate flux. The expected operational duration based on the 169-hr experiment was 392.6 hr which is 175% longer than that of the 48-hr one. High molecular weight(MW) protein-like substances were suggested to be the dominant foulants after an extended period based on the MW distribution and the fluorescence characteristics. The analyses of infrared spectra and extracellular polymeric substances revealed that the roles of both humic- and polysaccharide-like substances were diminished, while that of protein-like substances were strengthened in the contribution of membrane fouling with time prolonged. Inorganic salts were found to have marginally influence on membrane fouling. Additionally, alkali washing was more efficient at removing organic foulants in the long term, and a combination of water flushing and alkali washing was appropriate for NF fouling control in municipal sewage treatment.展开更多
A new coordination compound Zn(2,4'-bpt)2(H2O)(1) based on the versatile ligand 2,4'-Hbpt(2,4?-Hbpt = 3-(2-pyridyl)-5-(4-pyridyl)-1H-1,2,4-triazole) was prepared by hydrothermal reactions. The structure...A new coordination compound Zn(2,4'-bpt)2(H2O)(1) based on the versatile ligand 2,4'-Hbpt(2,4?-Hbpt = 3-(2-pyridyl)-5-(4-pyridyl)-1H-1,2,4-triazole) was prepared by hydrothermal reactions. The structure of complex 1 has been characterized by X-ray single-crystal diffraction, elemental analysis, X-ray powder diffraction, IR spectrum analysis and thermogravimetric analysis. Single-crystal X-ray diffraction analysis indicates that the complex belongs to monoclinic system, space group C2/c with a = 23.877(3), b = 0.7483(9), c = 1.2492(2) A, b = 92.681(2)°, V = 2230.6(4) A^3, Z = 4, Dc = 1.572 g/cm^3, m = 1.143 mm^-1, Mr = 527.85 and F(000) = 1080. The final R = 0.0581 and wR = 0.0898 with I 〉 2s(I). 1 is a 0D motif which is connected by hydrogen bonds to form a corrugated 1D pattern. In addition, 1 shows strong photoluminescent emissions in the solid state at room temperature which can be used as potential optical materials. Theoretical calculations based on density functional theory(DFT) were employed in order to explicate the stability and chemical reactivity of 2,4'-Hbpt with different conformations. The results indicated that conformation I is more stable and prior to coordination in the reactions.展开更多
Three-dimensional fluorescence excitation–emission matrix(EEM) coupled with parallel factor analysis(PARAFAC) was performed for a total of 18 water samples taken from three water sources(two lakes and one wastew...Three-dimensional fluorescence excitation–emission matrix(EEM) coupled with parallel factor analysis(PARAFAC) was performed for a total of 18 water samples taken from three water sources(two lakes and one wastewater treatment plant(WWTP) secondary effluent),with the purpose of identifying the major ultrafiltration(UF) membrane foulants in different water sources. Three fluorescent components(C1, C2 and C3) were identified,which represented terrestrially derived humic-like substances(C1), microbially derived humic-like substances(C2), and protein-like substances(C3). The correlations between the different fluorescent components and UF membrane fouling were analyzed. It was shown that for the WWTP secondary effluent, all three components(C1, C2 and C3) made a considerable contribution to the irreversible and total fouling of the UF membrane.However, for the two lakes, only the C3 exhibited a strong correlation with membrane fouling, indicating that the protein-like substances were the major membrane foulants in the lake waters. Significant attachment of C1, C2 and C3 to the UF membrane was also confirmed by mass balance analyses for the WWTP secondary effluent; while the attachment of C1 and C2 was shown to be negligible for the two lakes. The results may provide basic formation for developing suitable fouling control strategies for sustainable UF processes.展开更多
This work investigated the application of several fluorescence excitation–emission matrix analysis methods as natural organic matter(NOM) indicators for use in predicting the formation of trihalomethanes(THMs) an...This work investigated the application of several fluorescence excitation–emission matrix analysis methods as natural organic matter(NOM) indicators for use in predicting the formation of trihalomethanes(THMs) and haloacetic acids(HAAs). Waters from four different sources(two rivers and two lakes) were subjected to jar testing followed by 24 hr disinfection by-product formation tests using chlorine. NOM was quantified using three common measures: dissolved organic carbon, ultraviolet absorbance at 254 nm, and specific ultraviolet absorbance as well as by principal component analysis, peak picking,and parallel factor analysis of fluorescence spectra. Based on multi-linear modeling of THMs and HAAs, principle component(PC) scores resulted in the lowest mean squared prediction error of cross-folded test sets(THMs: 43.7(μg/L)^2, HAAs: 233.3(μg/L)^2). Inclusion of principle components representative of protein-like material significantly decreased prediction error for both THMs and HAAs. Parallel factor analysis did not identify a protein-like component and resulted in prediction errors similar to traditional NOM surrogates as well as fluorescence peak picking. These results support the value of fluorescence excitation–emission matrix–principal component analysis as a suitable NOM indicator in predicting the formation of THMs and HAAs for the water sources studied.展开更多
An in vivo three-dimensional fluorescence method for the determination of algae community structure was developed by parallel factor analysis (PARAFAC) and CHEMTAX. The PARAFAC model was applied to fluo-rescence exc...An in vivo three-dimensional fluorescence method for the determination of algae community structure was developed by parallel factor analysis (PARAFAC) and CHEMTAX. The PARAFAC model was applied to fluo-rescence excitation-emission matrix (EEM) of 60 algae species belonging to five divisions and 11 fluorescent components were identified according to the residual sum of squares and specificity of the composition profiles of fluorescent. By the 11 fluorescent components, the algae species at different growth stages were classified correctly at the division level using Bayesian discriminant analysis (BDA). Then the reference fluo-rescent component ratio matrix was constructed for CHEMTAX, and the EEM-PARAFAC-CHEMTAX method was developed to differentiate algae taxonomic groups. The correct discrimination ratios (CDRs) when the fluorometric method was used for single-species samples were 100% at the division level, except for Bacil-lariophyta with a CDR of 95.6%. The CDRs for the mixtures were above 94.0% for the dominant algae species and above 87.0% for the subdominant algae species. However, the CDRs of the subdominant algae species were too low to be unreliable when the relative abundance estimated was less than 15.0%. The fluorometric method was tested using the samples from the Jiaozhou Bay and the mesocosm experiments in the Xiaomai Island Bay in August 2007. The discrimination results of the dominant algae groups agreed with microscopy cell counts, as well as the subdominant algae groups of which the estimated relative abundance was above 15.0%. This technique would be of great aid when low-cost and rapid analysis is needed for samples in a large batch. The fluorometric technique has the ability to correctly identify dominant species with proper abundance both in vivo and in situ.展开更多
One new polymer [Co(L)(H2O)2]n(1) was synthesized by 4-(ethoxycarbonyl)-5-methyl-1H-1,2,3-triazole-1-carboxylic acid(Emtc) under the in situ solvent thermal reaction(H2L = 1-(carboxymethyl)-5-methyl-1H-1,...One new polymer [Co(L)(H2O)2]n(1) was synthesized by 4-(ethoxycarbonyl)-5-methyl-1H-1,2,3-triazole-1-carboxylic acid(Emtc) under the in situ solvent thermal reaction(H2L = 1-(carboxymethyl)-5-methyl-1H-1,2,3-triazole-4-carboxylic acid). The title complex performs a wave-like 2D framework and the ligand H2L demonstrates the coordination mode as μ4-η-2:η-1η-1:η-1. The crystal structure has been established by single-crystal X-ray diffraction, and characterized by FT-IR. Fluorescent property was investigated in this work. Hirshfeld surface analysis has also been carried out on 1, and obvious main intermolecular interactions are observed.展开更多
The structure around Ti^(4+) in Bao-SiO_2 -B_2O_3-TiO_2 had been studied by X-ray fluorescence spectra. The results show that the Ti^(4+) mainly exists in the [TiO_4] and enters the network of [SiO_4]. [TiO_4] has the...The structure around Ti^(4+) in Bao-SiO_2 -B_2O_3-TiO_2 had been studied by X-ray fluorescence spectra. The results show that the Ti^(4+) mainly exists in the [TiO_4] and enters the network of [SiO_4]. [TiO_4] has the tendency to change to [TiO_6] with the increase of TiO_2 con-tent. When the TiO_2 content increases to about 20mol% the tendency reaches its maximum.展开更多
Synapses are essential units for the flow of information in the brain.Over the last 70 years,synapses have been widely studied in multiple animal models including worms,fruit flies,and rodents.In comparison,the study ...Synapses are essential units for the flow of information in the brain.Over the last 70 years,synapses have been widely studied in multiple animal models including worms,fruit flies,and rodents.In comparison,the study of human synapses has evolved significantly slower,mainly because of technical limitations.However,three novel methods allowing the analysis of molecular,morphological,and functional properties of human synapses may expand our knowledge of the human brain.Here,we briefly describe these methods,and evaluate how the information provided by each unique approach may contribute to the functional and anatomical analysis of the synaptic component of human brain circuitries.In particular,using tissue from cryopreserved human brains,synaptic plasticity can be studied in isolated synaptosomes by fluorescence analysis of single-synapse long-term potentiation(FASS-LTP),and subpopulations of synapses can be thoroughly assessed in the ribbons of brain tissue by array tomography(AT).Currently,it is also possible to quantify synaptic density in the living human brain by positron emission tomography(PET),using a novel synaptic radio-ligand.Overall,data provided by FASS-LTP,AT,and PET may significantly contribute to the global understanding of synaptic structure and function in both healthy and diseased human brains,thus directly impacting translational research.展开更多
This paper classifies the anti-tumor traditional Chinese medicine's fluorescence analysis and finds that its research content mainly includes two aspects:the application of fluorescence analysis in the determinati...This paper classifies the anti-tumor traditional Chinese medicine's fluorescence analysis and finds that its research content mainly includes two aspects:the application of fluorescence analysis in the determination of the effective component content of anti-tumor traditional Chinese medicine;the study of the combined use of fluorescence imaging technology and the drug.According to literature analysis,it is found that although the research on the fluorescence analysis of anti-tumor Chinese medicine components is in a good state of development,it still needs to explore further in the identification of unknown components and deeper research on known components.Therefore,it can provide a certain basis for clinical guidance of tumor patients.展开更多
The discrete excitation-emission-matrix fluorescence spectra (EEMS) at 12 excitation wavelengths (400, 430, 450, 460, 470, 490, 500, 510, 525, 550, 570, and 590 nm) and emission wavelengths ranging from 600-750 nm wer...The discrete excitation-emission-matrix fluorescence spectra (EEMS) at 12 excitation wavelengths (400, 430, 450, 460, 470, 490, 500, 510, 525, 550, 570, and 590 nm) and emission wavelengths ranging from 600-750 nm were determined for 43 phytoplankton species. A two-rank fluorescence spectra database was established by wavelet analysis and a fluorometric discrimination technique for determining phytoplankton population was developed. For laboratory simulatively mixed samples, the samples mixed from 43 algal species (the algae of one division accounted for 25%, 50%, 75%, 85%, and 100% of the gross biomass, respectively), the average discrimination rates at the level of division were 65.0%, 87.5%, 98.6%, 99.0%, and 99.1%, with average relative contents of 18.9%, 44.5%, 68.9%, 73.4%, and 82.9%, respectively; the samples mixed from 32 red tide algal species (the dominant species accounted for 60%, 70%, 80%, 90%, and 100% of the gross biomass, respectively), the average correct discrimination rates of the dominant species at the level of genus were 63.3%, 74.2%, 78.8%, 83.4%, and 79.4%, respectively. For the 81 laboratory mixed samples with the dominant species accounting for 75% of the gross biomass (chlorophyll), the discrimination rates of the dominant species were 95.1% and 72.8% at the level of division and genus, respectively. For the 12 samples collected from the mesocosm experiment in Maidao Bay of Qingdao in August 2007, the dominant species of the 11 samples were recognized at the division level and the dominant species of four of the five samples in which the dominant species accounted for more than 80% of the gross biomass were discriminated at the genus level; for the 12 samples obtained from Jiaozhou Bay in August 2007, the dominant species of all the 12 samples were recognized at the division level. The technique can be directly applied to fluorescence spectrophotometers and to the developing of an in situ algae fluorescence auto-analyzer for phytoplankton population.展开更多
Baicalin,a major flavonoid compound found in Scutellariae radix,is the first SARS-CoV-23CLpro virus inhibitor.Therefore,developing an accurate and reliable strategy to detect baicalin in biological systems is vital.He...Baicalin,a major flavonoid compound found in Scutellariae radix,is the first SARS-CoV-23CLpro virus inhibitor.Therefore,developing an accurate and reliable strategy to detect baicalin in biological systems is vital.Herein,we report the first indolyl-lanthanide metal-organic framework(MOF)materials and their application as baicalin sensors.The results of this study indicate that the new crystal structure has good stability and luminous performance.The detection limits of baicalin in serum and urine are 0.05 and 0.04μmol/L,respectively,suggesting high sensitivity and selectivity.Various background substances present in practical samples,such as anions,cations,and amino acids,do not interfere with the photoluminescence analytical signal of Eu^(3+).We identified that the quenching of the Eu-MOF is due to the inner filter effect,absorption energy competition,and photoinduced electron transfer among the baicalin,ligand,and MOF through powder X-ray diffraction analysis,Fourier transform infrared spectroscopy,luminescence lifetimes,ultraviolet studies,and computational analysis.Thus,we designed a convenient,sensitive,and facile detection method using the Eu-MOF and demonstrate that Eu^(3+)-based materials are promising sensors for baicalin detection in actual serum and urine.Additionally,the prepared Eu-MOF@polyvinyl alcohol composite matrix membrane test film has considerable practical application value for the portable detection of baicalin.展开更多
Using N-P-acetamidobenzenesulfonyl-glycine acid (abbreviated as abglyH2) as a ligand, two zinc(II) complexes [Zn(abglyH)2(bipy)2(H2O)2], (1) and {[Znz(abgly)2(bipy)2(H2O)2]. 2(H2O)}n (2) (bipy =...Using N-P-acetamidobenzenesulfonyl-glycine acid (abbreviated as abglyH2) as a ligand, two zinc(II) complexes [Zn(abglyH)2(bipy)2(H2O)2], (1) and {[Znz(abgly)2(bipy)2(H2O)2]. 2(H2O)}n (2) (bipy = 4,4'-bipyridine) have been synthesized under mild conditions and characterized by IR, elemental analysis and X-ray diffraction analysis. Complex 1 is a monomeric compound, which is further assembled by intermolecular hydrogen bonds and π-π interactions into a 3-D supramolecular network. Complex 2 adopts a one-dimensional double chain structure and is further linked by hydrogen bonds to form a 2-D structure. Fluorescent analysis shows that complex 1 has an emissive maximum at 337 nm and complex 2 exhibits an emissive maximum at 339 nm in the solution state at room temperature.展开更多
A significant amount of aluminum dross is available as a waste in foundry industries in Bangladesh. In this study, alumina was ex- tracted from aluminum dross collected from two foundry industries situated in Dhamrai ...A significant amount of aluminum dross is available as a waste in foundry industries in Bangladesh. In this study, alumina was ex- tracted from aluminum dross collected from two foundry industries situated in Dhamrai and Manikgang, near the capital city, Dhaka. Alu- minum dross samples were found to approximately contain 75wt% A1203 and 12wt% SIO2. An acid dissolution process was used to recover the alumina value from the dross. The effects of various parameters, e.g., temperature, acid concentration, and leaching time, on the extrac- tion of alumina were studied to optimize the dissolution process. First, AI(OH)3 was produced in the form of a gel. Calcination of the AI(OH)3 gel at 1000℃, 1200℃, and 1400℃ for 2 h produced O-AlcOa, (t~+O)-A1203, and u-alumina powder, respectively. Thermal charac- terization of the AI(OH)3 gel was performed by thermogravimetric/differential thermal analysis (TG/DTA) and differential scanning calo- rimetry (DSC). The phases and crystallite size of the alumina were determined by X-ray diffraction analysis. The dimensions of the alumina were found to be on the nano level. The chemical compositions of the aluminum dross and alumina were determined by X-ray fluorescence (XRF) spectroscopy. The microstructure and morphology of the alumina were studied with scanning electron microscopy. The purity of the alumina extracted in this study was found to be 99.0%. Thus, it is expected that the obtained alumina powders can be potentially utilized as biomaterials.展开更多
Biological degradation of dissolved organic matter(DOM)regulates its structure and fate in river ecosystems.Previous views suggested that labile components were dominantly consumed by microbial metabolism.Here we prov...Biological degradation of dissolved organic matter(DOM)regulates its structure and fate in river ecosystems.Previous views suggested that labile components were dominantly consumed by microbial metabolism.Here we provide new observations that a part of recalcitrant compounds largely contribute to riverine DOM biodegradation.The excitationemission matrix fluorescent spectroscopy combined with peak picking and parallel factor analysis are used to explore component variability during DOM incubation.Humic-like and tryptophan-like DOM are the primary components of riverine DOM,with proportion contributions of 39%–82% and 16%–61% for % of the maximumfluorescence intensity,respectively.After 56 days of aerobic incubation in the dark,large amounts of tyrosine-like DOM generation are observed.Elevated temperature enhances the decomposition of ultraviolet humiclike substance and further stimulates labile DOM bio-mineralization into carbon dioxide.Meanwhile,averaged proportions of amino acid compositions(peak B and T)markedly increase(p<0.05)as the humic-like compositions(peak A,M and C)decrease after DOM incubation,suggesting incomplete degradation of refractory DOM from high-molecular to low-molecular weight compounds.The findings support the new notion of the continuous DOM biodegradation in a mode as“steps by steps”,contributing to a new understanding of carbon cycling for the UN Sustainable Development Goal.展开更多
A cold-tolerant cultivar, Xiangnuo 1, and a cold-sensitive cultivar, IR50, were used to study the influence of chilling on photosynthetic rate and chlorophyll fluorescence parameters in rice seedlings. The photosynthe...A cold-tolerant cultivar, Xiangnuo 1, and a cold-sensitive cultivar, IR50, were used to study the influence of chilling on photosynthetic rate and chlorophyll fluorescence parameters in rice seedlings. The photosynthetic rates declined dramatically during chilling, and decreased by 48.7% and 67.5% in Xiangnuo 1 and IR50 seedlings, respectively, after being subjected to chilling treatment for two days. Chlorophyll fluorescence measurements showed that relatively higher qp and qNP in Xiangnuo 1 were maintained to dissipate the redundant excitation energy and protect the reaction centers from chill injury; accordingly, redundant excitation energy accumulated less in the reaction centers, and antenna systems were less injured by chilling in Xiangnuo 1. On the contrary, in IR50, qp and qNP declined rapidly while Eg increased, as the chilling persisted. This result indicated that the reaction centers and antenna systems in IR50 were damaged severely by chilling, which led to the lower photosynthetic rate.展开更多
Tibet, which is rich in mineral resources, is a treasure trove for geological explorers. However, prospecting work has been slow, especially in the western part, due to the precipitous terrain, changeable climate and ...Tibet, which is rich in mineral resources, is a treasure trove for geological explorers. However, prospecting work has been slow, especially in the western part, due to the precipitous terrain, changeable climate and low access. Hence, modern advanced field analytical technology and effective data processing methods play significant roles in rapid and efficient exploration in Tibet. In this paper, spectrum-area fractal modeling and portable X-ray fluorescence analysis(pXRFA) were used to identify and verify geochemical anomalies associated with Ag-Pb-Zn mineralization based on a stream-sediment dataset of 39 elements in the Dajiacuo-Xurucuo region of western Tibet. First, staged factor analysis(SFA) was used to obtain the Ag-Pb-Zn-Cd geochemical assemblage. Second, the first-factor pattern obtained using SFA was dissociated by a spectrum-area(S-A) fractal model and a digital elevation model(DEM)-based geochemical model(DGM) was constructed. Finally, the sections of Ag, Cd, Pb, and Zn were obtained using pXRFA. The results show that Ag-Pb-Zn-Cd enrichment zones were mostly located around the contact belt of volcanic rocks and intrusions, or along SE-NW trending faults. Considering the variable terrain and catchment basin, the extension of long axes of Ag-Pb-Zn-Cd anomalies into higher elevation areas that are favorable for Ag-Pb-Zn mineralization should be investigated. Anomaly maps created with the aid of a DGM show promising potential for mineralization in the Dajiacuo-Xurucuo region, and abundant Ag-Pb-Zn mineralization was identified with the assistance of pXRFA in the source areas for the geochemical anomalies in the Dajiacuo. We conclude that SFA and the S-A fractal model constitute a valid tool to identify or verify geochemical anomalies in areas of low-density stream-sediment sampling. The pXRFA can accurately determine the source of geochemical anomalies and improve anomaly verification efficiency.展开更多
Gas exchange and chlorophyll a fluorescence were measured to study the effects of soil water deficit (75, 60 and 45% of field capacity, FC) on the photosynthetic activity of drip-irrigated cotton under field conditi...Gas exchange and chlorophyll a fluorescence were measured to study the effects of soil water deficit (75, 60 and 45% of field capacity, FC) on the photosynthetic activity of drip-irrigated cotton under field conditions. At light intensities above 1 200 IJmol m-2 s-1, leaf net photosynthetic rate (mn) at 60 and 45% FC was 0.75 and 0.45 times respectively than that of 75% FC. The chlorophyll content, leaf water potential and yield decreased as soil water deficit decreased. Fiber length was significantly lower at 45% FC than at 75% FC. The actual quantum yield of the photosystem II (PSII) primary photo- chemistry and the photochemical quenching were significantly greater at 60% FC than at 75% FC. The electron transport rate and non-photochemical quenching at 45% FC were 0.91 and 1.29 times than those at 75% FC, respectively. The amplitudes of the K- and L-bands were higher at 45% FC than at 60% FC. As soil water content decreased, active PSII reaction centers per chlorophyll decreased, functional PSII antenna size increased, and energetic connectivity between PSII units decreased. Electron flow from plastoquinol to the PSI end electron acceptors was significantly lower at 45% FC than at 75% FC. Similar to the effect on leaf Po, water deficit reduced the performance index (PIABs, tot) in the dark-adapted state. These results suggest that (i) the effect of mild water deficit on photosystem activity was mainly related to processes between plastoquinol and the PSI end electron acceptors, (ii) PSI end electron acceptors were only affected at moderate water deficit, and (iii) PIABs. tota can reliably indicate the effect of water deficit on the energy supply for cotton metabolism.展开更多
In this study, a magnetic micro-particle conditioning–pressurized vertical electro-osmotic dewatering(MPEOD) process with magnetic micro-particle conditioning–drainage under gravity–mechanical compression–electr...In this study, a magnetic micro-particle conditioning–pressurized vertical electro-osmotic dewatering(MPEOD) process with magnetic micro-particle conditioning–drainage under gravity–mechanical compression–electrical compression(MMPC–DG–MC–EC) stages was established to study the distribution and migration of water, extracellular polymeric substances(EPS), and other organic matter in the activated sludge(AS) matrix at each stage.Results showed that the MPEOD process could attain 53.52% water content(WC) in dewatered AS with bound water(BW) and free water(FW) reduction rates of 82.97% and 99.67%,respectively. The coagulation and time-delayed magnetic field effects of magnetic microparticles(MMPs) along the MMPC–DG–MC stages initiated the transformation of partial BW to FW in AS. EC had a coupling driving effect of electro-osmosis and pressure on BW, and the changes in pH and temperature at EC stage induced the aggregation of AS flocs and the release of partial BW. Additionally, MMPs dosing further improved the dewatering performance of AS by acting as skeleton builders to provide water passages. Meanwhile, MMPs could disintegrate sludge cells and EPS fractions, thereby reducing tryptophan-like protein and byproduct-like material concentrations in LB-EPS as well as protein/polysaccharide ratio in AS matrix, which could improve AS filterability. At EC stage, the former four Ex/Em regions of fluorescence regional integration analysis for EPS were obviously reduced, especially the protein-like substances in LB-and TB-EPS, which contributed to improvement of AS dewaterability.展开更多
Although porphyroblast microstructures play an important role in structural and metamorphic studies, there are still controversies in the interpretation. The focus is how porphyroblasts grow during deformation and met...Although porphyroblast microstructures play an important role in structural and metamorphic studies, there are still controversies in the interpretation. The focus is how porphyroblasts grow during deformation and metamorphism. In this paper, we introduce a new approach, the Synchrotron Radiation X-Ray Fluorescence, to a hemi-quantitative interpretation of the growth mode of porphyroblasts. The analysis was done at the Beijing Synchrotron Radiation Facility. The specimens were sampled from metapelite of the Baoyintu Group, northern Urad Middle Banner, Inner Mongolia. The new method is successful for determining the microscopic distribution of trace elements in porphybroblasts. The results support the theory of deformation partition, which has been brought forth by Bell and his colleagues, and demonstrate the existence of porphyroblast growth phases and the growth mode of porphyroblasts by hemi-quantitative mineral chemical analysis. The porphyroblast grows stage by stage in the manner of the distribution of a roseleaf and is controlled by deformation. We call the growth stage of porphyroblast a growth phase.展开更多
基金Supported by the NationalNaturalScience Foundation of China( No. 2 0 175 0 1) and U niversity Key Teachers Programdirected under the Ministry of Education ofP.R.China( No. 2 0 0 0 - 6 5 )
文摘It is critical to establish a direct and precise method with a high sensitivity and selectivity in analytical chemistry. In this research, making use of a well known phenomenon of capillary flow, we have proposed an image analysis method of nucleic acids at the price of a small amount of sample. When a droplet of the supramolecular complex solution, formed by neutral red and nucleic acids(NA) under an approximate neutral condition, was placed on the hydrophobic surface of dimethyl dichlorosilane pretreated glass slides, and it was evaporated, the supramolecular complex exhibited the periphery of the droplet due to the capillary effect, and accumulated there to form a red capillary flow directed assembly ring(CFDAR). A typical CFDAR has an outer diameter of (2 r ) about 1.18 mm and a ring width(2 δ ) of about 41 μm. Depending on the experimental conditions, a variety of CFDAR can be assembled. The experimental results are in agreement with our former theoretical discussion. It was found that when a droplet volume is 0.1 μL, the fluorescence intensity of the CFDAR formed by the NR NA is in proportion to the content of calf thymus DNA in the range of 0-0.28 ng, fish sperm DNA of 0-0.24 ng and yeast RNA of 0-0.16 ng with the limit of detection(3 σ ) of 1 7, 1.4 and 0.9 pg, respectively for the three nucleic acids.
基金supported by the Major Science & Technology Projects for Water Pollution Control and Management of China (Nos. 2012ZX07203-002 2015ZX07203-005)
文摘Municipal sewage from an oxidation ditch was treated for reuse by nanofiltration(NF) in this study. The NF performance was optimized, and its fouling characteristics after different operational durations(i.e., 48 and 169 hr) were analyzed to investigate the applicability of nanofiltration for water reuse. The optimum performance was achieved when transmembrane pressure = 12 bar, p H = 4 and flow rate = 8 L/min using a GE membrane. The permeate water quality could satisfy the requirements of water reclamation for different uses and local standards for water reuse in Beijing. Flux decline in the fouling experiments could be divided into a rapid flux decline and a quasi-steady state. The boundary flux theory was used to predict the evolution of permeate flux. The expected operational duration based on the 169-hr experiment was 392.6 hr which is 175% longer than that of the 48-hr one. High molecular weight(MW) protein-like substances were suggested to be the dominant foulants after an extended period based on the MW distribution and the fluorescence characteristics. The analyses of infrared spectra and extracellular polymeric substances revealed that the roles of both humic- and polysaccharide-like substances were diminished, while that of protein-like substances were strengthened in the contribution of membrane fouling with time prolonged. Inorganic salts were found to have marginally influence on membrane fouling. Additionally, alkali washing was more efficient at removing organic foulants in the long term, and a combination of water flushing and alkali washing was appropriate for NF fouling control in municipal sewage treatment.
基金Supported by the National Natural Science Foundation of China(Nos.21263019 and 51364038)
文摘A new coordination compound Zn(2,4'-bpt)2(H2O)(1) based on the versatile ligand 2,4'-Hbpt(2,4?-Hbpt = 3-(2-pyridyl)-5-(4-pyridyl)-1H-1,2,4-triazole) was prepared by hydrothermal reactions. The structure of complex 1 has been characterized by X-ray single-crystal diffraction, elemental analysis, X-ray powder diffraction, IR spectrum analysis and thermogravimetric analysis. Single-crystal X-ray diffraction analysis indicates that the complex belongs to monoclinic system, space group C2/c with a = 23.877(3), b = 0.7483(9), c = 1.2492(2) A, b = 92.681(2)°, V = 2230.6(4) A^3, Z = 4, Dc = 1.572 g/cm^3, m = 1.143 mm^-1, Mr = 527.85 and F(000) = 1080. The final R = 0.0581 and wR = 0.0898 with I 〉 2s(I). 1 is a 0D motif which is connected by hydrogen bonds to form a corrugated 1D pattern. In addition, 1 shows strong photoluminescent emissions in the solid state at room temperature which can be used as potential optical materials. Theoretical calculations based on density functional theory(DFT) were employed in order to explicate the stability and chemical reactivity of 2,4'-Hbpt with different conformations. The results indicated that conformation I is more stable and prior to coordination in the reactions.
基金supported by the National Natural Science Foundation of China(No.51208140)the National Water Pollution Control and Treatment Science and Technology Major Project of China(No.2012ZX07201002)
文摘Three-dimensional fluorescence excitation–emission matrix(EEM) coupled with parallel factor analysis(PARAFAC) was performed for a total of 18 water samples taken from three water sources(two lakes and one wastewater treatment plant(WWTP) secondary effluent),with the purpose of identifying the major ultrafiltration(UF) membrane foulants in different water sources. Three fluorescent components(C1, C2 and C3) were identified,which represented terrestrially derived humic-like substances(C1), microbially derived humic-like substances(C2), and protein-like substances(C3). The correlations between the different fluorescent components and UF membrane fouling were analyzed. It was shown that for the WWTP secondary effluent, all three components(C1, C2 and C3) made a considerable contribution to the irreversible and total fouling of the UF membrane.However, for the two lakes, only the C3 exhibited a strong correlation with membrane fouling, indicating that the protein-like substances were the major membrane foulants in the lake waters. Significant attachment of C1, C2 and C3 to the UF membrane was also confirmed by mass balance analyses for the WWTP secondary effluent; while the attachment of C1 and C2 was shown to be negligible for the two lakes. The results may provide basic formation for developing suitable fouling control strategies for sustainable UF processes.
基金funded in part by the Canadian Water Network and the Natural Sciences and Engineering Research Council of Canada Chair in Drinking Water Research at the University of Toronto
文摘This work investigated the application of several fluorescence excitation–emission matrix analysis methods as natural organic matter(NOM) indicators for use in predicting the formation of trihalomethanes(THMs) and haloacetic acids(HAAs). Waters from four different sources(two rivers and two lakes) were subjected to jar testing followed by 24 hr disinfection by-product formation tests using chlorine. NOM was quantified using three common measures: dissolved organic carbon, ultraviolet absorbance at 254 nm, and specific ultraviolet absorbance as well as by principal component analysis, peak picking,and parallel factor analysis of fluorescence spectra. Based on multi-linear modeling of THMs and HAAs, principle component(PC) scores resulted in the lowest mean squared prediction error of cross-folded test sets(THMs: 43.7(μg/L)^2, HAAs: 233.3(μg/L)^2). Inclusion of principle components representative of protein-like material significantly decreased prediction error for both THMs and HAAs. Parallel factor analysis did not identify a protein-like component and resulted in prediction errors similar to traditional NOM surrogates as well as fluorescence peak picking. These results support the value of fluorescence excitation–emission matrix–principal component analysis as a suitable NOM indicator in predicting the formation of THMs and HAAs for the water sources studied.
基金The National Natural Science Foundation of China under contract Nos 41376106 and 41276069
文摘An in vivo three-dimensional fluorescence method for the determination of algae community structure was developed by parallel factor analysis (PARAFAC) and CHEMTAX. The PARAFAC model was applied to fluo-rescence excitation-emission matrix (EEM) of 60 algae species belonging to five divisions and 11 fluorescent components were identified according to the residual sum of squares and specificity of the composition profiles of fluorescent. By the 11 fluorescent components, the algae species at different growth stages were classified correctly at the division level using Bayesian discriminant analysis (BDA). Then the reference fluo-rescent component ratio matrix was constructed for CHEMTAX, and the EEM-PARAFAC-CHEMTAX method was developed to differentiate algae taxonomic groups. The correct discrimination ratios (CDRs) when the fluorometric method was used for single-species samples were 100% at the division level, except for Bacil-lariophyta with a CDR of 95.6%. The CDRs for the mixtures were above 94.0% for the dominant algae species and above 87.0% for the subdominant algae species. However, the CDRs of the subdominant algae species were too low to be unreliable when the relative abundance estimated was less than 15.0%. The fluorometric method was tested using the samples from the Jiaozhou Bay and the mesocosm experiments in the Xiaomai Island Bay in August 2007. The discrimination results of the dominant algae groups agreed with microscopy cell counts, as well as the subdominant algae groups of which the estimated relative abundance was above 15.0%. This technique would be of great aid when low-cost and rapid analysis is needed for samples in a large batch. The fluorometric technique has the ability to correctly identify dominant species with proper abundance both in vivo and in situ.
基金Supported by the financial support of Fundamental Research Funds for the Central Universities(3207045420)Jiangsu Ainaji Neoenergy Science&Technology Co.,Ltd.(8507040091)
文摘One new polymer [Co(L)(H2O)2]n(1) was synthesized by 4-(ethoxycarbonyl)-5-methyl-1H-1,2,3-triazole-1-carboxylic acid(Emtc) under the in situ solvent thermal reaction(H2L = 1-(carboxymethyl)-5-methyl-1H-1,2,3-triazole-4-carboxylic acid). The title complex performs a wave-like 2D framework and the ligand H2L demonstrates the coordination mode as μ4-η-2:η-1η-1:η-1. The crystal structure has been established by single-crystal X-ray diffraction, and characterized by FT-IR. Fluorescent property was investigated in this work. Hirshfeld surface analysis has also been carried out on 1, and obvious main intermolecular interactions are observed.
文摘The structure around Ti^(4+) in Bao-SiO_2 -B_2O_3-TiO_2 had been studied by X-ray fluorescence spectra. The results show that the Ti^(4+) mainly exists in the [TiO_4] and enters the network of [SiO_4]. [TiO_4] has the tendency to change to [TiO_6] with the increase of TiO_2 con-tent. When the TiO_2 content increases to about 20mol% the tendency reaches its maximum.
基金supported by National Institutes of Health Grants R21-AG048506,P01-AG000538 and RO1-AG34667(to CWC)UC MEXUS-CONACYT Grant CN-16-170(to GAP and CWC)
文摘Synapses are essential units for the flow of information in the brain.Over the last 70 years,synapses have been widely studied in multiple animal models including worms,fruit flies,and rodents.In comparison,the study of human synapses has evolved significantly slower,mainly because of technical limitations.However,three novel methods allowing the analysis of molecular,morphological,and functional properties of human synapses may expand our knowledge of the human brain.Here,we briefly describe these methods,and evaluate how the information provided by each unique approach may contribute to the functional and anatomical analysis of the synaptic component of human brain circuitries.In particular,using tissue from cryopreserved human brains,synaptic plasticity can be studied in isolated synaptosomes by fluorescence analysis of single-synapse long-term potentiation(FASS-LTP),and subpopulations of synapses can be thoroughly assessed in the ribbons of brain tissue by array tomography(AT).Currently,it is also possible to quantify synaptic density in the living human brain by positron emission tomography(PET),using a novel synaptic radio-ligand.Overall,data provided by FASS-LTP,AT,and PET may significantly contribute to the global understanding of synaptic structure and function in both healthy and diseased human brains,thus directly impacting translational research.
文摘This paper classifies the anti-tumor traditional Chinese medicine's fluorescence analysis and finds that its research content mainly includes two aspects:the application of fluorescence analysis in the determination of the effective component content of anti-tumor traditional Chinese medicine;the study of the combined use of fluorescence imaging technology and the drug.According to literature analysis,it is found that although the research on the fluorescence analysis of anti-tumor Chinese medicine components is in a good state of development,it still needs to explore further in the identification of unknown components and deeper research on known components.Therefore,it can provide a certain basis for clinical guidance of tumor patients.
基金supported by National High-Tech Research and Development Program of China (863 Program)(No.2009AA063005)Natural Science Foundation of Shandong Province (No.ZR2009EM001)
文摘The discrete excitation-emission-matrix fluorescence spectra (EEMS) at 12 excitation wavelengths (400, 430, 450, 460, 470, 490, 500, 510, 525, 550, 570, and 590 nm) and emission wavelengths ranging from 600-750 nm were determined for 43 phytoplankton species. A two-rank fluorescence spectra database was established by wavelet analysis and a fluorometric discrimination technique for determining phytoplankton population was developed. For laboratory simulatively mixed samples, the samples mixed from 43 algal species (the algae of one division accounted for 25%, 50%, 75%, 85%, and 100% of the gross biomass, respectively), the average discrimination rates at the level of division were 65.0%, 87.5%, 98.6%, 99.0%, and 99.1%, with average relative contents of 18.9%, 44.5%, 68.9%, 73.4%, and 82.9%, respectively; the samples mixed from 32 red tide algal species (the dominant species accounted for 60%, 70%, 80%, 90%, and 100% of the gross biomass, respectively), the average correct discrimination rates of the dominant species at the level of genus were 63.3%, 74.2%, 78.8%, 83.4%, and 79.4%, respectively. For the 81 laboratory mixed samples with the dominant species accounting for 75% of the gross biomass (chlorophyll), the discrimination rates of the dominant species were 95.1% and 72.8% at the level of division and genus, respectively. For the 12 samples collected from the mesocosm experiment in Maidao Bay of Qingdao in August 2007, the dominant species of the 11 samples were recognized at the division level and the dominant species of four of the five samples in which the dominant species accounted for more than 80% of the gross biomass were discriminated at the genus level; for the 12 samples obtained from Jiaozhou Bay in August 2007, the dominant species of all the 12 samples were recognized at the division level. The technique can be directly applied to fluorescence spectrophotometers and to the developing of an in situ algae fluorescence auto-analyzer for phytoplankton population.
基金Project supported by Jilin Province Science and Technology Development Plan Project(20210201061GX)。
文摘Baicalin,a major flavonoid compound found in Scutellariae radix,is the first SARS-CoV-23CLpro virus inhibitor.Therefore,developing an accurate and reliable strategy to detect baicalin in biological systems is vital.Herein,we report the first indolyl-lanthanide metal-organic framework(MOF)materials and their application as baicalin sensors.The results of this study indicate that the new crystal structure has good stability and luminous performance.The detection limits of baicalin in serum and urine are 0.05 and 0.04μmol/L,respectively,suggesting high sensitivity and selectivity.Various background substances present in practical samples,such as anions,cations,and amino acids,do not interfere with the photoluminescence analytical signal of Eu^(3+).We identified that the quenching of the Eu-MOF is due to the inner filter effect,absorption energy competition,and photoinduced electron transfer among the baicalin,ligand,and MOF through powder X-ray diffraction analysis,Fourier transform infrared spectroscopy,luminescence lifetimes,ultraviolet studies,and computational analysis.Thus,we designed a convenient,sensitive,and facile detection method using the Eu-MOF and demonstrate that Eu^(3+)-based materials are promising sensors for baicalin detection in actual serum and urine.Additionally,the prepared Eu-MOF@polyvinyl alcohol composite matrix membrane test film has considerable practical application value for the portable detection of baicalin.
基金Supported by the NNSFC (Nos. 20471046 and 20771054)Henan Tackle Key Problem of Science and Technology (Nos. 072102270030 and 072102270034)
文摘Using N-P-acetamidobenzenesulfonyl-glycine acid (abbreviated as abglyH2) as a ligand, two zinc(II) complexes [Zn(abglyH)2(bipy)2(H2O)2], (1) and {[Znz(abgly)2(bipy)2(H2O)2]. 2(H2O)}n (2) (bipy = 4,4'-bipyridine) have been synthesized under mild conditions and characterized by IR, elemental analysis and X-ray diffraction analysis. Complex 1 is a monomeric compound, which is further assembled by intermolecular hydrogen bonds and π-π interactions into a 3-D supramolecular network. Complex 2 adopts a one-dimensional double chain structure and is further linked by hydrogen bonds to form a 2-D structure. Fluorescent analysis shows that complex 1 has an emissive maximum at 337 nm and complex 2 exhibits an emissive maximum at 339 nm in the solution state at room temperature.
文摘A significant amount of aluminum dross is available as a waste in foundry industries in Bangladesh. In this study, alumina was ex- tracted from aluminum dross collected from two foundry industries situated in Dhamrai and Manikgang, near the capital city, Dhaka. Alu- minum dross samples were found to approximately contain 75wt% A1203 and 12wt% SIO2. An acid dissolution process was used to recover the alumina value from the dross. The effects of various parameters, e.g., temperature, acid concentration, and leaching time, on the extrac- tion of alumina were studied to optimize the dissolution process. First, AI(OH)3 was produced in the form of a gel. Calcination of the AI(OH)3 gel at 1000℃, 1200℃, and 1400℃ for 2 h produced O-AlcOa, (t~+O)-A1203, and u-alumina powder, respectively. Thermal charac- terization of the AI(OH)3 gel was performed by thermogravimetric/differential thermal analysis (TG/DTA) and differential scanning calo- rimetry (DSC). The phases and crystallite size of the alumina were determined by X-ray diffraction analysis. The dimensions of the alumina were found to be on the nano level. The chemical compositions of the aluminum dross and alumina were determined by X-ray fluorescence (XRF) spectroscopy. The microstructure and morphology of the alumina were studied with scanning electron microscopy. The purity of the alumina extracted in this study was found to be 99.0%. Thus, it is expected that the obtained alumina powders can be potentially utilized as biomaterials.
基金financially supported by the National Natural Science Foundation of China (Nos. 31670473 and 42107091)
文摘Biological degradation of dissolved organic matter(DOM)regulates its structure and fate in river ecosystems.Previous views suggested that labile components were dominantly consumed by microbial metabolism.Here we provide new observations that a part of recalcitrant compounds largely contribute to riverine DOM biodegradation.The excitationemission matrix fluorescent spectroscopy combined with peak picking and parallel factor analysis are used to explore component variability during DOM incubation.Humic-like and tryptophan-like DOM are the primary components of riverine DOM,with proportion contributions of 39%–82% and 16%–61% for % of the maximumfluorescence intensity,respectively.After 56 days of aerobic incubation in the dark,large amounts of tyrosine-like DOM generation are observed.Elevated temperature enhances the decomposition of ultraviolet humiclike substance and further stimulates labile DOM bio-mineralization into carbon dioxide.Meanwhile,averaged proportions of amino acid compositions(peak B and T)markedly increase(p<0.05)as the humic-like compositions(peak A,M and C)decrease after DOM incubation,suggesting incomplete degradation of refractory DOM from high-molecular to low-molecular weight compounds.The findings support the new notion of the continuous DOM biodegradation in a mode as“steps by steps”,contributing to a new understanding of carbon cycling for the UN Sustainable Development Goal.
文摘A cold-tolerant cultivar, Xiangnuo 1, and a cold-sensitive cultivar, IR50, were used to study the influence of chilling on photosynthetic rate and chlorophyll fluorescence parameters in rice seedlings. The photosynthetic rates declined dramatically during chilling, and decreased by 48.7% and 67.5% in Xiangnuo 1 and IR50 seedlings, respectively, after being subjected to chilling treatment for two days. Chlorophyll fluorescence measurements showed that relatively higher qp and qNP in Xiangnuo 1 were maintained to dissipate the redundant excitation energy and protect the reaction centers from chill injury; accordingly, redundant excitation energy accumulated less in the reaction centers, and antenna systems were less injured by chilling in Xiangnuo 1. On the contrary, in IR50, qp and qNP declined rapidly while Eg increased, as the chilling persisted. This result indicated that the reaction centers and antenna systems in IR50 were damaged severely by chilling, which led to the lower photosynthetic rate.
基金funded by the Fundamental Research Funds for the Central UniversitiesChina University of Geosciences (Wuhan)(No. 2019132)China Geological Survey (No. DD20190159-33)。
文摘Tibet, which is rich in mineral resources, is a treasure trove for geological explorers. However, prospecting work has been slow, especially in the western part, due to the precipitous terrain, changeable climate and low access. Hence, modern advanced field analytical technology and effective data processing methods play significant roles in rapid and efficient exploration in Tibet. In this paper, spectrum-area fractal modeling and portable X-ray fluorescence analysis(pXRFA) were used to identify and verify geochemical anomalies associated with Ag-Pb-Zn mineralization based on a stream-sediment dataset of 39 elements in the Dajiacuo-Xurucuo region of western Tibet. First, staged factor analysis(SFA) was used to obtain the Ag-Pb-Zn-Cd geochemical assemblage. Second, the first-factor pattern obtained using SFA was dissociated by a spectrum-area(S-A) fractal model and a digital elevation model(DEM)-based geochemical model(DGM) was constructed. Finally, the sections of Ag, Cd, Pb, and Zn were obtained using pXRFA. The results show that Ag-Pb-Zn-Cd enrichment zones were mostly located around the contact belt of volcanic rocks and intrusions, or along SE-NW trending faults. Considering the variable terrain and catchment basin, the extension of long axes of Ag-Pb-Zn-Cd anomalies into higher elevation areas that are favorable for Ag-Pb-Zn mineralization should be investigated. Anomaly maps created with the aid of a DGM show promising potential for mineralization in the Dajiacuo-Xurucuo region, and abundant Ag-Pb-Zn mineralization was identified with the assistance of pXRFA in the source areas for the geochemical anomalies in the Dajiacuo. We conclude that SFA and the S-A fractal model constitute a valid tool to identify or verify geochemical anomalies in areas of low-density stream-sediment sampling. The pXRFA can accurately determine the source of geochemical anomalies and improve anomaly verification efficiency.
基金supported by the National Natural Science Foundation of China (31401321 and U1203283)the Pairing Program of Shihezi University with Eminent Scholars in Elite Universities (SDJDZ201510)the Swiss National Science Foundation (200021-116765)
文摘Gas exchange and chlorophyll a fluorescence were measured to study the effects of soil water deficit (75, 60 and 45% of field capacity, FC) on the photosynthetic activity of drip-irrigated cotton under field conditions. At light intensities above 1 200 IJmol m-2 s-1, leaf net photosynthetic rate (mn) at 60 and 45% FC was 0.75 and 0.45 times respectively than that of 75% FC. The chlorophyll content, leaf water potential and yield decreased as soil water deficit decreased. Fiber length was significantly lower at 45% FC than at 75% FC. The actual quantum yield of the photosystem II (PSII) primary photo- chemistry and the photochemical quenching were significantly greater at 60% FC than at 75% FC. The electron transport rate and non-photochemical quenching at 45% FC were 0.91 and 1.29 times than those at 75% FC, respectively. The amplitudes of the K- and L-bands were higher at 45% FC than at 60% FC. As soil water content decreased, active PSII reaction centers per chlorophyll decreased, functional PSII antenna size increased, and energetic connectivity between PSII units decreased. Electron flow from plastoquinol to the PSI end electron acceptors was significantly lower at 45% FC than at 75% FC. Similar to the effect on leaf Po, water deficit reduced the performance index (PIABs, tot) in the dark-adapted state. These results suggest that (i) the effect of mild water deficit on photosystem activity was mainly related to processes between plastoquinol and the PSI end electron acceptors, (ii) PSI end electron acceptors were only affected at moderate water deficit, and (iii) PIABs. tota can reliably indicate the effect of water deficit on the energy supply for cotton metabolism.
基金supported by the National Natural Science Foundation of China(Nos.51478041,51678053)Major Projects on Control and Rectification of Water Body Pollution(Nos.2012ZX07105-002-03,2013ZX07202-010)
文摘In this study, a magnetic micro-particle conditioning–pressurized vertical electro-osmotic dewatering(MPEOD) process with magnetic micro-particle conditioning–drainage under gravity–mechanical compression–electrical compression(MMPC–DG–MC–EC) stages was established to study the distribution and migration of water, extracellular polymeric substances(EPS), and other organic matter in the activated sludge(AS) matrix at each stage.Results showed that the MPEOD process could attain 53.52% water content(WC) in dewatered AS with bound water(BW) and free water(FW) reduction rates of 82.97% and 99.67%,respectively. The coagulation and time-delayed magnetic field effects of magnetic microparticles(MMPs) along the MMPC–DG–MC stages initiated the transformation of partial BW to FW in AS. EC had a coupling driving effect of electro-osmosis and pressure on BW, and the changes in pH and temperature at EC stage induced the aggregation of AS flocs and the release of partial BW. Additionally, MMPs dosing further improved the dewatering performance of AS by acting as skeleton builders to provide water passages. Meanwhile, MMPs could disintegrate sludge cells and EPS fractions, thereby reducing tryptophan-like protein and byproduct-like material concentrations in LB-EPS as well as protein/polysaccharide ratio in AS matrix, which could improve AS filterability. At EC stage, the former four Ex/Em regions of fluorescence regional integration analysis for EPS were obviously reduced, especially the protein-like substances in LB-and TB-EPS, which contributed to improvement of AS dewaterability.
基金supported by the National Natural Science Foundation of China(grant 40102020).
文摘Although porphyroblast microstructures play an important role in structural and metamorphic studies, there are still controversies in the interpretation. The focus is how porphyroblasts grow during deformation and metamorphism. In this paper, we introduce a new approach, the Synchrotron Radiation X-Ray Fluorescence, to a hemi-quantitative interpretation of the growth mode of porphyroblasts. The analysis was done at the Beijing Synchrotron Radiation Facility. The specimens were sampled from metapelite of the Baoyintu Group, northern Urad Middle Banner, Inner Mongolia. The new method is successful for determining the microscopic distribution of trace elements in porphybroblasts. The results support the theory of deformation partition, which has been brought forth by Bell and his colleagues, and demonstrate the existence of porphyroblast growth phases and the growth mode of porphyroblasts by hemi-quantitative mineral chemical analysis. The porphyroblast grows stage by stage in the manner of the distribution of a roseleaf and is controlled by deformation. We call the growth stage of porphyroblast a growth phase.