期刊文献+
共找到4,926篇文章
< 1 2 247 >
每页显示 20 50 100
Crystal structure,thermal analysis,and luminescence properties of six heterocyclic lanthanide complexes
1
作者 SONG Zihe ZHAO Jinjin +1 位作者 REN Ning ZHANG Jianjun 《无机化学学报》 北大核心 2026年第1期181-192,共12页
Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'... Six new lanthanide complexes:[Ln(3,4-DEOBA)3(4,4'-DM-2,2'-bipy)]2·2C_(2)H_(5)OH,[Ln=Dy(1),Eu(2),Tb(3),Sm(4),Ho(5),Gd(6);3,4-DEOBA-=3,4-diethoxybenzoate,4,4'-DM-2,2'-bipy=4,4'-dimethyl-2,2'-bipyridine]were successfully synthesized by the volatilization of the solution at room temperature.The crystal structures of six complexes were determined by single-crystal X-ray diffraction technology.The results showed that the complexes all have a binuclear structure,and the structures contain free ethanol molecules.Moreover,the coordination number of the central metal of each structural unit is eight.Adjacent structural units interact with each other through hydrogen bonds and further expand to form 1D chain-like and 2D planar structures.After conducting a systematic study on the luminescence properties of complexes 1-4,their emission and excitation spectra were obtained.Experimental results indicated that the fluorescence lifetimes of complexes 2 and 3 were 0.807 and 0.845 ms,respectively.The emission spectral data of complexes 1-4 were imported into the CIE chromaticity coordinate system,and their corre sponding luminescent regions cover the yellow light,red light,green light,and orange-red light bands,respectively.Within the temperature range of 299.15-1300 K,the thermal decomposition processes of the six complexes were comprehensively analyzed by using TG-DSC/FTIR/MS technology.The hypothesis of the gradual loss of ligand groups during the decomposition process was verified by detecting the escaped gas,3D infrared spectroscopy,and ion fragment information detected by mass spectrometry.The specific decomposition path is as follows:firstly,free ethanol molecules and neutral ligands are removed,and finally,acidic ligands are released;the final product is the corresponding metal oxide.CCDC:2430420,1;2430422,2;2430419,3;2430424,4;2430421,5;2430423,6. 展开更多
关键词 lanthanide complexes fluorescence property crystal structure thermal analysis
在线阅读 下载PDF
Clinical applications of indocyanine green fluorescence for the treatment of hepatocellular carcinoma
2
作者 Gaetano Piccolo Matteo Barabino +2 位作者 Laura Benuzzi Giampaolo Formisano Paolo Pietro Bianchi 《World Journal of Gastrointestinal Oncology》 2026年第1期20-27,共8页
Over the past ten years,numerous papers have been published on the use of indocyanine green(ICG)fluorescence in liver surgery for hepatocellular carcinoma(HCC).There are many different applications.The first involves ... Over the past ten years,numerous papers have been published on the use of indocyanine green(ICG)fluorescence in liver surgery for hepatocellular carcinoma(HCC).There are many different applications.The first involves targeting superficial tumors in patients with macronodular cirrhosis and an irregular liver surface.In a minimally invasive setting,the lack of tactile feedback on the hepatic surface makes detecting subcapsular HCC with ultrasound alone challenging.ICG fusion images can mimic the tactile feedback of the hand and act as an ultrasound booster.ICG fluorescence can be used to evaluate tumor residues after minimally invasive thermal ablation.ICG fluorescence imaging can also be used to identify the grade of HCC early on and evaluate the microinvasive component. 展开更多
关键词 Indocyanine green fluorescence Hepatocellular carcinoma Minimally invasive liver resection Laparoscopic thermal ablation Fluorescence patterns Tumour characteristics
暂未订购
Active optical waveguides and metal ion sensors based on nanofibers with aggregation induced emission
3
作者 Liping Xu Xianguang Yang +9 位作者 Ming Chen Kai Li Junda He Dehua Tian Zaizhu Lou Fangchang Tan Puxiang Lai Andrea Camposeo Dario Pisignano Baojun Li 《Nano Research》 2026年第1期1077-1088,共12页
Fiber-structured ion sensors have gained traction in health monitoring and medical diagnostics owing to their structural flexibility,enhanced sensitivity,and suitability for integration into wearable devices.This stud... Fiber-structured ion sensors have gained traction in health monitoring and medical diagnostics owing to their structural flexibility,enhanced sensitivity,and suitability for integration into wearable devices.This study employed a simple and efficient solutionbased process to fabricate nanofibers containing aggregation-induced emission(AIE)dyes.The resulting AIE nanofibers exhibited stable and intense fluorescence,nanosecond fluorescence lifetime,and low-loss light transport when functioning as active waveguides.Additionally,crossed nanofiber intersections exhibited diffraction-limited emission spots.The AIE nanofibers demonstrate efficient and ionspecific fluorescence quenching in response to Ag^(+).These results support the development of sensing units capable of operating in liquid environments or in direct contact with skin or tissues,facilitating real-time monitoring of ion concentrations for personalized healthcare management. 展开更多
关键词 aggregation-induced emission NANOFIBERS fluorescence lifetime active waveguide ion sensors
原文传递
Tender energy spectroscopy beamline at the Shanghai Synchrotron Radiation Facility
4
作者 Shu‑Min Yang Ling‑Ling Guo +12 位作者 Bing Nan Ying Zhao Yan‑Qing Wu Zhi Guo Chen Tian Bo Zhao Chao‑Fan Xue Jun Zhao Shuang Song Zhen‑Ye Liang Li‑Na Li Yong Wang Ren‑Zhong Tai 《Nuclear Science and Techniques》 2026年第1期94-106,共13页
This paper describes the design and performance of the tender energy spectroscopy beamline(BL16U1),a phase Ⅱ beamline,at the Shanghai Synchrotron Radiation Facility.The beamline,based on an in-vacuum undulator source... This paper describes the design and performance of the tender energy spectroscopy beamline(BL16U1),a phase Ⅱ beamline,at the Shanghai Synchrotron Radiation Facility.The beamline,based on an in-vacuum undulator source with 26 mm period,provides an operable energy range between 2.1 keV and 16 keV,covering the K-edges of P to Rb and L3-edges of Zr to Bi.The principal optical elements of the beamline are a toroidal mirror,a liquid nitrogen-cooled double-crystal monochromator,a high-harmonic-rejection mirror,and two pairs of Kirkpatrick–Baez(KB)mirrors.Three end-stations,including non-focusing,microprobe,and sub-microprobe types,are installed on the beamline.X-ray fluorescence(XRF)and X-ray absorption spectroscopy(XAS),including X-ray absorption near-edge structure(XANES)and extended X-ray absorption fine structure(EXAFS),are performed under vacuum or He atmosphere at the non-focusing end-station(with a beam spot size of∼670μm×710μm).Using two KB mirrors systems,micro-XRF(μXRF)mapping and micro-XANES(μXANES)studies can be performed with a spot size of approximately∼3.3μm×1.3μm at the microprobe end-station and with a smaller spot size of∼0.5μm×0.25μm at the sub-microprobe end-station.The non-focusing end-station was officially opened to users in January 2024.The microprobe and sub-microprobe end-stations will be opened to users in the near future.This paper presents the characteristics,short-term technical developments,and early experimental results of this new beamline. 展开更多
关键词 Tender energy X-ray spectroscopy X-ray fluorescence SSRF X-ray absorption spectroscopy(XAS) MICROPROBE
在线阅读 下载PDF
Complexation and Fluorescence Enhancement of Bay-site Carboxyl Modified Perylene Dimide with Calcium Ion 被引量:3
5
作者 GU Dandan ZHAO Haoru +4 位作者 JIANG Xiaoze QI Haohan LIAO Zuogui CHEN Jia SUN Bin 《发光学报》 北大核心 2025年第3期474-485,共12页
Bay-site carboxyl functionalized perylene diimide derivative 1,7-COOH-PDI-C_(12)(PDI-COOH)was synthesized and distinct enhanced fluorescence was observed through combining with calcium ion(Ca^(2+))in THF/H_(2)O soluti... Bay-site carboxyl functionalized perylene diimide derivative 1,7-COOH-PDI-C_(12)(PDI-COOH)was synthesized and distinct enhanced fluorescence was observed through combining with calcium ion(Ca^(2+))in THF/H_(2)O solution.The assembly and fluorescence behavior of PDI-COOH/Ca^(2+)were studied in detail by changing hydration state with different concentrations.Based on the differences in assembly morphology and stoichiometric ratios of PDICOOH/Ca^(2+),we proposed the fluorescence emission mechanism of PDI-COOH/Ca^(2+)in THF/H_(2)O and THF,respectively.This work reveals a novel strategy of aggregated state fluorescence enhancement and reminds us of the important role of water in molecular fluorescence emission and assembly. 展开更多
关键词 carboxyl functionalized fluorescence behavior perylene diimide photoinduced electron transfer effect calcium ion
在线阅读 下载PDF
A cadmium(Ⅱ)coordination polymer based on a semirigid tetracarboxylate ligand for highly selective detection of Fe^(3+)and 4-nitrophenol 被引量:1
6
作者 BAI Yu WANG Jijiang +4 位作者 TANG Long YUE Erlin BAI Chao WANG Xiao ZHANG Yuqi 《无机化学学报》 北大核心 2025年第6期1217-1226,共10页
A novel coordination polymer(CP){[Cd_(2)(L)(1,4-bimb)_(1.5)(DMF)_(2)]·DMF}n(1)(H_(4)L=5,5'-[1,1'-biphenyl-4,4'-diylbis(oxy)]diisophthalic acid,1,4-bimb=1,4-bis(imidazole-1-ylmethyl)-benzene)has been d... A novel coordination polymer(CP){[Cd_(2)(L)(1,4-bimb)_(1.5)(DMF)_(2)]·DMF}n(1)(H_(4)L=5,5'-[1,1'-biphenyl-4,4'-diylbis(oxy)]diisophthalic acid,1,4-bimb=1,4-bis(imidazole-1-ylmethyl)-benzene)has been designed and synthesized through solvothermal reaction.Structural analysis shows that Cd(Ⅱ)is connected by H4L and 1,4-bimb to form a 2D network,and 1,4-bimb further expands the 2D network into a 3D framework.CP 1 can be used as an excellent fluorescence sensor for Fe^(3+)and 4-nitrophenol(4-NP),with low detection limits and good anti-interference.The detection limits of Fe^(3+)and 4-NP were 0.034 and 0.031μmol·L^(-1),respectively.In addition,the fluorescence quenching mechanism was studied.1 was successfully applied to determine Fe^(3+)and 4-NP content in the Yanhe River water sample.CCDC:2351092. 展开更多
关键词 coordination polymer Fe^(3+) 4-NITROPHENOL fluorescence sensing
在线阅读 下载PDF
Preparation of zinc sulfate open frameworks based probe materials and detection of Pb^(2+)and Fe^(3+)ions 被引量:1
7
作者 LU Pingping ZHANG Shuguang +1 位作者 ZHANG Peipei NI Aiyun 《无机化学学报》 北大核心 2025年第5期959-968,共10页
A zinc sulfate open framework matrix,[Zn(SO_4)(DMSO)](1),was synthesized by solvothermal evaporationusing dimethyl sulfoxide(DMSO)as the solvent.A compositeP@1,which exhibits fluorescence and room tempera-ture phospho... A zinc sulfate open framework matrix,[Zn(SO_4)(DMSO)](1),was synthesized by solvothermal evaporationusing dimethyl sulfoxide(DMSO)as the solvent.A compositeP@1,which exhibits fluorescence and room tempera-ture phosphorescence(RTP)properties,was prepared by doping 2,6-naphthalic acid(P)into matrix1at a low con-centration.P@1emitted a green RTP that was visible to the naked eye and lasted for approximately 2 s.P@1exhib-ited selective phosphorescence enhancement response towards Pb^(2+),with a detection limit of 2.52μmol·L^(-1).Themain detection mechanism is the Pb—O coordination-induced phosphorescence enhancement in the system.Inter-estingly,P@1also functioned as a dual-channel probe for the rapid detection of Fe^(3+)ions through fluorescencequenching with a detection limit of 0.038μmol·L^(-1).The recognition mechanism may be attributed to the competi-tive energy absorption betweenP@1and Fe^(3+)ions.CCDC:2388502,1. 展开更多
关键词 zinc sulfate matrix DOPING phosphorescence and fluorescence probes Pb^(2+) Fe^(3+)
在线阅读 下载PDF
Conditionally restricted fluorescent probe for Fe^(3+)and Cu^(2+)based on the naphthalimide structure 被引量:1
8
作者 ZHU Yuan ZHANG Xiaoda +2 位作者 WANG Shasha WEI Peng YI Tao 《无机化学学报》 北大核心 2025年第1期183-192,共10页
To address the lack of systematic studies on heavy metal fluorescent probes in typical buffer solutions,this study developed a Fe^(3+)and Cu^(2+)fluorescent probe,DHU‑NP‑4,based on a naphthalimide fluorophore.Comparat... To address the lack of systematic studies on heavy metal fluorescent probes in typical buffer solutions,this study developed a Fe^(3+)and Cu^(2+)fluorescent probe,DHU‑NP‑4,based on a naphthalimide fluorophore.Comparative analysis of the probe's performance in various buffer systems revealed that buffers with high organic content are unsuitable for evaluating such probes.Furthermore,the pH of the solvent system was found to significantly influence the probe's behavior.Under highly acidic conditions(pH≤2),DHU‑NP‑4 exhibited exceptional specificity for Fe^(3+),while in alkaline conditions,it demonstrated high specificity for Cu^(2+).Leveraging these properties,the probe enabled the quantitative detection of Fe^(3+)and Cu^(2+)in solution. 展开更多
关键词 fluorescent probe NAPHTHALIMIDE copper(Ⅱ)ion iron(Ⅲ)ion buffer solution
在线阅读 下载PDF
Machine learning-assisted fluorescence visualization for sequential quantitative detection of aluminum and fluoride ions 被引量:3
9
作者 Qiang Zhang Xin Li +5 位作者 Long Yu Lingxiao Wang Zhiqing Wen Pengchen Su Zhenli Sun Suhua Wang 《Journal of Environmental Sciences》 2025年第3期68-78,共11页
The presence of aluminum(Al^(3+))and fluoride(F^(−))ions in the environment can be harmful to ecosystems and human health,highlighting the need for accurate and efficient monitoring.In this paper,an innovative approac... The presence of aluminum(Al^(3+))and fluoride(F^(−))ions in the environment can be harmful to ecosystems and human health,highlighting the need for accurate and efficient monitoring.In this paper,an innovative approach is presented that leverages the power of machine learning to enhance the accuracy and efficiency of fluorescence-based detection for sequential quantitative analysis of aluminum(Al^(3+))and fluoride(F^(−))ions in aqueous solutions.The proposed method involves the synthesis of sulfur-functionalized carbon dots(C-dots)as fluorescence probes,with fluorescence enhancement upon interaction with Al^(3+)ions,achieving a detection limit of 4.2 nmol/L.Subsequently,in the presence of F^(−)ions,fluorescence is quenched,with a detection limit of 47.6 nmol/L.The fingerprints of fluorescence images are extracted using a cross-platform computer vision library in Python,followed by data preprocessing.Subsequently,the fingerprint data is subjected to cluster analysis using the K-means model from machine learning,and the average Silhouette Coefficient indicates excellent model performance.Finally,a regression analysis based on the principal component analysis method is employed to achieve more precise quantitative analysis of aluminum and fluoride ions.The results demonstrate that the developed model excels in terms of accuracy and sensitivity.This groundbreaking model not only showcases exceptional performance but also addresses the urgent need for effective environmental monitoring and risk assessment,making it a valuable tool for safeguarding our ecosystems and public health. 展开更多
关键词 Machine learning Aluminum ion detection Fluorine ion detection Fluorescence probe K-means model
原文传递
Accurate visualization colorectal cancer by monitoring viscosity variations with a novel mitochondria-targeted fluorescent probe 被引量:1
10
作者 Fan Zheng Runsha Xiao +7 位作者 Shuai Huang Zhikang Chen Chen Lai Anyao Bi Heying Yao Xueping Feng Zihua Chen Wenbin Zeng 《Chinese Chemical Letters》 2025年第2期291-294,共4页
Colorectal cancer(CRC)is one of the most prevalent malignant tumors worldwide,exhibiting high morbidity and mortality.Lack of efficient tools for early diagnosis and surgical resection guidance of CRC have been a seri... Colorectal cancer(CRC)is one of the most prevalent malignant tumors worldwide,exhibiting high morbidity and mortality.Lack of efficient tools for early diagnosis and surgical resection guidance of CRC have been a serious threat to the long-term survival rate of the CRC patients.Recent studies have shown that relative higher viscosity was presented in tumor cells compared to that in normal cells,leading to viscosity as a potential biomarker for CRC.Herein,we reported the development of a series of novel viscosity-sensitive and mitochondria-specific fluorescent probes(HTB,HTI,and HTP)for CRC detection.Among them,HTB showed high sensitivity,minimal background interference,low cytotoxicity,and significant viscous response capability,making it an ideal tool for distinguishing colorectal tumor cells from normal cells.Importantly,we have successfully utilized HTB to visualize in a CRC-cells-derived xenograft(CDX)model,enriching its medical imaging capacity,which laid a foundation for further clinical translational application. 展开更多
关键词 Fluorescent probe VISCOSITY BIOIMAGING Colorectal cancer Cancer diagnosis Mitochondrial-targeted
原文传递
Mechanism study of the molluscicide candidate PBQ on Pomacea canaliculata using a viscosity-sensitive fluorescent probe 被引量:1
11
作者 Lanyun Zhang Weisi Wang +5 位作者 Yu-Qiang Zhao Rui Huang Yuxun Lu Ying Chen Liping Duan Ying Zhou 《Chinese Chemical Letters》 2025年第1期447-452,共6页
PBQ[1-(4-chlorophenyl)-3-(pyridin-3-yl)urea],an enormous potent molluscicide,showed excellent Pomacea canaliculata(P.canaliculata)control activity and low toxicity for other aquatic organisms,but its snail-killing mec... PBQ[1-(4-chlorophenyl)-3-(pyridin-3-yl)urea],an enormous potent molluscicide,showed excellent Pomacea canaliculata(P.canaliculata)control activity and low toxicity for other aquatic organisms,but its snail-killing mechanisms are still not fully understood.We employed an optical method to elucidate PBQ action via a novel fluorescent viscosity probe,NCV.As the viscosity in the test solutions increased,compared with that in pure ethanol,a 54-fold fluorescence intensity enhancement of NCV was observed in 310 cP of 90%glycerol.Furthermore,NCV successfully exhibited a selective fluorescence response towards monensin-induced cellular viscosity changes in HepG2 cells.The liver,stomach,and foot plantar of the tested snails were frozen and sectioned for fluorescent imaging experiments after the treatment with different PBQ concentrations over various times.A significant fluorescent increase in the snail's liver was observed upon exposure to 0.75 mg/L PBQ for 72 h,which highlighted an increase in viscosity.Hematoxylin and eosin(HE)staining further supported PBQ-induced liver damage with a viscosity increase in P.canaliculata.Our study provides a new rapid optical visualization method to study the killing mechanisms of PBQ and may help discover new chemicals that control snail populations. 展开更多
关键词 Fluorescence sensor VISCOSITY Pomacea canaliculata Molluscicide mechanisms BIO-IMAGING
原文传递
Facile synthesis of silicon nanoparticles chelated lanthanide(Ⅲ)-based electrospun nanofiber membranes for rapid on-site visual detection of tetracycline 被引量:1
12
作者 Xuhuan Yan Junjie Wang +3 位作者 Jiaqi Shi Xinyu Wang Xianwei Lv Chenlu Bao 《Journal of Environmental Sciences》 2025年第10期474-485,共12页
Tetracycline(TC)is a broad-spectrum antibiotic,and its residues in the environment and food are harmful to human health.Therefore,it is essential to rapidly,sensitively,and conveniently detect TC.In this work,we devel... Tetracycline(TC)is a broad-spectrum antibiotic,and its residues in the environment and food are harmful to human health.Therefore,it is essential to rapidly,sensitively,and conveniently detect TC.In this work,we developed a portable silicon nanoparticles chelated Europium(Ⅲ)-based polyacrylonitrile(Eu-SiNPs/PAN)nanofiber membrane for rapid,sensitive,and convenient detection of TC.The Eu-SiNPs were synthesized with a facile one-pot method.The Eu-SiNPs/PAN nanofiber membrane was fabricated by electrospinning,combining Eu-SiNPs and PAN with three-dimensional porous membrane structures and UV resistance.Both the Eu-SiNPs and the Eu-SiNPs/PAN nanofiber membranes have good selectivity and anti-interference ability towards TC.The combined merits of rapid response,long storage life,easy portability,and naked-eye recognition of TC make the Eu-SiNPs/PAN nanofiber membrane a promising material for convenient TC detection applications.The practicability of these nanofiber membranes was further verified by detecting TC in real samples,such as lake water,drinking water and honey,and achieved quantitative detection. 展开更多
关键词 Fluorescent probe TETRACYCLINE Nanofiber membrane VISUALIZATION
原文传递
ONOO^(-) and viscosity dual-response fluorescent probe for arthritis imaging in vivo 被引量:1
13
作者 Qian Pang Fangjun Huo +1 位作者 Yongkang Yue Caixia Yin 《Chinese Chemical Letters》 2025年第9期419-422,共4页
Rheumatoid arthritis(RA) is a chronic inflammatory disease with multi-system damage and autoimmune features.The main clinical manifestations of RA include joint pain,swelling,and stiffness,and RA may lead to joint def... Rheumatoid arthritis(RA) is a chronic inflammatory disease with multi-system damage and autoimmune features.The main clinical manifestations of RA include joint pain,swelling,and stiffness,and RA may lead to joint deformity and dysfunction in severe cases.The pathologic development of RA involves complex interactions of multiple biomarkers,and detecting a single biomarker may produce falsepositive results due to other confounding factors.Therefore,fluorescent probes that can detect multiple biomarkers simultaneously are crucial for precise RA diagnosis.Peroxynitrite(ONOO^(-)) and viscosity are inflammation-related factors in cells.In this study,we developed a dual responsive near-infrared fluorescent probe,YLS,for ONOO^(-) and viscosity.The probe features dual-channel turn-on fluorescence responses at 625 and 760 nm upon the presence of ONOO^(-) and viscosity,respectively.Supported by YLS,we found that during RA pathology,lymphocyte infiltration not only increases the concentration of proteins in the joint fluid resulting in elevated viscosity;at the same time,the overproduction of ONOO^(-) exacerbates oxidative stress and inflammatory responses.This multiparameter assay is expected to improve the diagnostic accuracy of the early stages of RA,thus providing a scientific basis for early intervention and personalized treatment. 展开更多
关键词 Rheumatoid arthritis ONOO^(-) VISCOSITY Fluorescent probe DUAL-CHANNEL
原文传递
Exploring the frontiers of plant health:Harnessing NIR fluorescence and surface-enhanced Raman scattering modalities for innovative detection 被引量:1
14
作者 Shu Tian Wenxin Huang +5 位作者 Junrui Hu Huiling Wang Zhipeng Zhang Liying Xu Junrong Li Yao Sun 《Chinese Chemical Letters》 2025年第3期134-143,共10页
Plants play a crucial role in maintaining ecological balance and biodiversity.However,plant health is easily affected by environmental stresses.Hence,the rapid and precise monitoring of plant health is crucial for glo... Plants play a crucial role in maintaining ecological balance and biodiversity.However,plant health is easily affected by environmental stresses.Hence,the rapid and precise monitoring of plant health is crucial for global food security and ecological balance.Currently,traditional detection strategies for monitoring plant health mainly rely on expensive equipment and complex operational procedures,which limit their widespread application.Fortunately,near-infrared(NIR)fluorescence and surface-enhanced Raman scattering(SERS)techniques have been recently highlighted in plants.NIR fluorescence imaging holds the advantages of being non-invasive,high-resolution and real-time,which is suitable for rapid screening in large-scale scenarios.While SERS enables highly sensitive and specific detection of trace chemical substances within plant tissues.Therefore,the complementarity of NIR fluorescence and SERS modalities can provide more comprehensive and accurate information for plant disease diagnosis and growth status monitoring.This article summarizes these two modalities in plant applications,and discusses the advantages of multimodal NIR fluorescence/SERS for a better understanding of a plant’s response to stress,thereby improving the accuracy and sensitivity of detection. 展开更多
关键词 NIR fluorescence SERS Plant biomarker detection Plant imaging PHYTOHORMONE
原文传递
The second near-infrared (NIR-II) window excitable/emissive organic/polymeric fluorescent molecules for bioimaging application 被引量:1
15
作者 Guannan Liu Chenguang Wang Geyu Lu 《Journal of Innovative Optical Health Sciences》 2025年第3期25-43,共19页
The fluorescence imaging (FLI) in the second near-infrared window (NIR-II, 1000–1700nm) has attracted considerable attention in the past decade. In contrast to conventional NIR-I window excitation (808nm/980nm), FLI ... The fluorescence imaging (FLI) in the second near-infrared window (NIR-II, 1000–1700nm) has attracted considerable attention in the past decade. In contrast to conventional NIR-I window excitation (808nm/980nm), FLI with NIR-II window excitation (1064nm/other wavelength beyond 1000nm) can afford deeper tissue penetration depth with high clarity due to the merits of suppressed photon scattering and diminished autofluorescence. In this review, we have summarized NIR-II window excitable/emissive organic/polymeric fluorophores recently developed. The characteristics of these fluorophores such as chemical structures and photophysical properties have also been critically discussed. Furthermore, the latest development of noninvasive in vivo FLI with NIR-II excitation was highlighted. The ideal imaging results emphasized the importance of NIR-II excitation of these fluorophores in enabling deep tissue penetration and high-resolution imaging. Finally, a perspective on the challenges and prospects of NIR-II excitable/emissive organic/polymeric fluorophores was also discussed. We expected this review will be served as a source of inspiration for researchers, stimulating the creation of novel NIR-II excitable fluorophores and fostering the development of bioimaging applications. 展开更多
关键词 Fluorescence imaging NEAR-INFRARED excitation wavelength organic fluorophores conjugated polymers
原文传递
Exploring the diversity of dissolved organic matter(DOM)properties and sources in different functional areas of a typical macrophyte-derived lake combined with optical spectroscopy and FT-ICR MS analysis 被引量:1
16
作者 Kun Wang Haoyu Ren +2 位作者 Shengwu Yuan Xia Jiang Pengfei Wang 《Journal of Environmental Sciences》 2025年第1期462-473,共12页
Lake Baiyangdian is one of China’s largest macrophyte-derived lakes,facing severe challenges related to water quality maintenance and eutrophication prevention.Dissolved organic matter(DOM)was a huge carbon pool and ... Lake Baiyangdian is one of China’s largest macrophyte-derived lakes,facing severe challenges related to water quality maintenance and eutrophication prevention.Dissolved organic matter(DOM)was a huge carbon pool and its abundance,property,and transformation played important roles in the biogeochemical cycle and energy flow in lake ecosystems.In this study,Lake Baiyangdian was divided into four distinct areas:Unartificial Area(UA),Village Area(VA),Tourism Area(TA),and Breeding Area(BA).We examined the diversity of DOM properties and sources across these functional areas.Our findings reveal that DOM in this lake is predominantly composed of protein-like substances,as determined by excitation-emission matrix and parallel factor analysis(EEM-PARAFAC).Notably,the exogenous tyrosine-like component C1 showed a stronger presence in VA and BA compared to UA and TA.Ultrahigh-resolution mass spectrometry(FT-ICR MS)unveiled a similar DOM molecular composition pattern across different functional areas due to the high relative abundances of lignan compounds,suggesting that macrophytes significantly influence the material structure of DOM.DOM properties exhibited specific associations with water quality indicators in various functional areas,as indicated by the Mantel test.The connections between DOM properties and NO_(3)-N andNH3-Nwere more pronounced in VA and BA than in UA and TA.Our results underscore the viability of using DOM as an indicator for more precise and scientific water quality management. 展开更多
关键词 Dissolved organic matter Fluorescence property Molecular composition Source
原文传递
Exogenous application of artificial humic substance can improve black soil properties and rice yield 被引量:1
17
作者 Yue YUAN Qingyu LIU +4 位作者 Shun ZHANG Zhuqing LIU Xi ZHANG Kui CHENG Fan YANG 《Pedosphere》 2025年第3期504-515,共12页
Rice yield in the black soil region of Northeast China has been declining due to severe soil fertility degradation caused by both biotic and abiotic factors.Artificial humic substance(A-HS)has attracted much attention... Rice yield in the black soil region of Northeast China has been declining due to severe soil fertility degradation caused by both biotic and abiotic factors.Artificial humic substance(A-HS)has attracted much attention due to its high cost-effectiveness and great potential to improve soil fertility.However,the specific effects of A-HS on nutrient contents in rice nursery soils remain unclear.This study systematically investigated the effects of rational application of A-HS on soil nutrient turnover and yield and analyzed the changes in soil nutrients and microbial communities at Qianfeng Farm,Northeast China.The results indicated that the application of A-HS significantly increased soil dissolved organic matter and nutrient contents in the native and seedling soils.In addition,the root growth and yield of the seedlings at maturity were effectively promoted.More interestingly,the application of A-HS significantly altered plant growth-promoting rhizobacteria,such as Noviherbaspirillum,Klebsiella,and Pedobacter,improving natural barrier formation and soil nutrient conversion.It could be concluded that A-HS significantly enhanced crop nutrient uptake and accumulation by altering soil bacterial communities.In general,the application of A-HS could be profitable and sustainable in rice production.The current study from multiple aspects provides valuable insights into the benefits of A-HS in promoting crop growth and development,which could have important implications for agriculture and food security. 展开更多
关键词 fluorescence intensity microbial community physicochemical property plant growth-promoting rhizobacteria rice seedling
原文传递
Ni–Zn bimetal-organic framework nanoprobes reinforced polymeric coating to achieve dual-responsive warning of coating damage and interfacial corrosion 被引量:1
18
作者 Dezhi Jiao Chengbao Liu +5 位作者 Yujie Qiang Shuoqi Li Cong Sun Peimin Hou Lanyue Cui Rongchang Zeng 《Nano Materials Science》 2025年第3期326-339,共14页
Coating microdefects and localized corrosion in coating/metal system are inevitable,accelerating the degradation of metal infrastructure.Early evaluating coating microdefects and detecting corrosion sites are urgent y... Coating microdefects and localized corrosion in coating/metal system are inevitable,accelerating the degradation of metal infrastructure.Early evaluating coating microdefects and detecting corrosion sites are urgent yet remain challenge to achieve.Herein,we propose a robust,universal and efficient fluorescence-based strategy for hierarchical warning of coating damage and metal corrosion by introducing the concepts of damage-induced fluorescence enhancement effect(DIE)and ionic-recognition induced quenching effect(RIQ).The coatings with dualresponsiveness for coating defect and steel corrosion are constructed by incorporating synthesized nanoprobes composed of metal organic frameworks(Ni–Zn-MOFs)loaded with Rhodamine B(RhB@MOFs).The initial damage to the coating causes an immediate intensification of fluorescence,while the specific ionic-recognition characteristic of RhB with Fe3t results in an evident fluorescence quenching,enabling the detection of coating damage and corrosion.Importantly,this nanoprobes are insensitive to the coating matrix and exhibit stable corrosion warning capability across various coating systems.Meanwhile,electrochemical investigations indicate that the impedance values of RM/EP maintain above 10^(8)Ωcm^(2)even after 60 days of immersion.Therefore,the incorporation of fluorescent nanoprobes greatly inhibits the intrusion of electrolytes into polymer and improves the corrosion protection performance of the coating.This powerful strategy towards dual-level damage warning provides insights for the development of long-term smart protective materials. 展开更多
关键词 Smart coating Damage warning Corrosion detecting Metal organic frameworks Fluorescence quenching Ionic recognition
在线阅读 下载PDF
Advances in fluorescent nanoprobes for live-cell super-resolution imaging 被引量:1
19
作者 Peng Xu Zexuan Dong +2 位作者 Simei Zhong Yu-Hui Zhang Wei Shen 《Journal of Innovative Optical Health Sciences》 2025年第3期3-23,共21页
The rapid development of super-resolution microscopy has made it possible to observe subcellular structures and dynamic behaviors in living cells with nanoscale spatial resolution, greatly advancing progress in life s... The rapid development of super-resolution microscopy has made it possible to observe subcellular structures and dynamic behaviors in living cells with nanoscale spatial resolution, greatly advancing progress in life sciences. As hardware technology continues to evolve, the availability of new fluorescent probes with superior performance is becoming increasingly important. In recent years, fluorescent nanoprobes (FNPs) have emerged as highly promising fluorescent probes for bioimaging due to their high brightness and excellent photostability. This paper focuses on the development and applications of FNPs as probes for live-cell super-resolution imaging. It provides an overview of different super-resolution methods, discusses the performance requirements for FNPs in these methods, and reviews the latest applications of FNPs in the super-resolution imaging of living cells. Finally, it addresses the challenges and future outlook in this field. 展开更多
关键词 Super-resolution imaging fluorescent nanoprobe live-cell imaging
原文传递
Advanced Optical Microscopic Imaging Techniques for Imaging Amyloid Beta and Deciphering Alzheimer's Disease Pathogenesis 被引量:1
20
作者 Shiju Gu Chongzhao Ran 《iRADIOLOGY》 2025年第2期95-114,共20页
Alzheimer's disease(AD)is a neurodegenerative disease characterized by a progressive decline in cognitive functions.Given that AD undermines the quality of life for millions and has an extended asymptomatic period... Alzheimer's disease(AD)is a neurodegenerative disease characterized by a progressive decline in cognitive functions.Given that AD undermines the quality of life for millions and has an extended asymptomatic period,exploring the full AD pathogenesis and seeking the optimal therapeutic solution have become critical and imperative.This allows researchers to intervene,delay,and potentially prevent AD progression.Several clinical imaging methods are utilized routinely to diagnose and monitor AD,such as magnetic resonance imaging(MRI),functional magnetic resonance imaging(fMRI),positron emission tomography(PET),and single photon emission computed tomography(SPECT).Nevertheless,due to their intrinsic drawbacks and restrictions,such as radiation concerns,high cost,long acquisition time,and low spatial resolution,their applications in AD research are limited,especially at the cellular and molecular levels.In contrast,optical microscopic imaging methods overcome these limitations,offering researchers a variety of approaches with distinct advantages to explore AD pathology on diverse models.In this review,we provide a comprehensive overview of commonly utilized optical microscopic imaging techniques in AD research and introduce their contributions to image amyloid beta(Aβ)species.These techniques include fluorescence microscopy(FM),confocal microscopy(CM),two-photon fluorescence microscopy(TPFM),super-resolution microscopy(SRM),expansion microscopy(ExM),and light-sheet fluorescence microscopy(LSFM).In addition,we introduce some related topics,such as the development of near-infrared(NIR)Aβprobes,the Aβplaque hypothesis,and Aβoligomer hypothesis,and the roles of microglia and astrocytes in AD progression.We believe optical microscopic imaging methods continue to play an indispensable role in deciphering the full pathogenesis of AD and advancing therapeutic strategies. 展开更多
关键词 Alzheimer's disease amyloid beta in vivo imaging super-resolution microscopy two-photon fluorescence microscopy
在线阅读 下载PDF
上一页 1 2 247 下一页 到第
使用帮助 返回顶部