The integration of advanced diagnostic and therapeutic capabilities in oncology has given rise to phototheranostics,a field that combines the precision of imaging with the selectivity of light-activated treatments.Due...The integration of advanced diagnostic and therapeutic capabilities in oncology has given rise to phototheranostics,a field that combines the precision of imaging with the selectivity of light-activated treatments.Due to their pronounced near-infrared(NIR)absorption,tunable molecular structures,and commendable stability,organic photovoltaic non-fullerene acceptors(NFAs)represent a promising frontier in cancer management.Despite the great potential of NFAs in phototheranostics,there is currently a lack of systematic reviews in this field.This review provides a meticulous examination of the current state of NFAs in the field of phototheranostics,highlighting the strategic approaches to spectral red-shifting that enhance tissue penetration and therapeutic efficacy.It dissects the link between molecular architecture and performance across key therapeutic and diagnostic modalities,including photothermal therapy(PTT),photodynamic therapy(PDT),and fluorescence imaging(FLI).In addition,the review presents a concise analysis of the challenges and milestones in the clinical translation of NFAs,offering insights into the innovations required to overcome existing barriers.展开更多
基金supported by the Natural Science Foundation of Zhejiang Province(Nos.LZ23B040001,LY23E030003 and LY24B030005)the National Natural Science Foundation of China(No.22105222)+1 种基金the Interdisciplinary Research Project of Hangzhou Normal University(No.2024JCXK05)the Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application,Soochow University。
文摘The integration of advanced diagnostic and therapeutic capabilities in oncology has given rise to phototheranostics,a field that combines the precision of imaging with the selectivity of light-activated treatments.Due to their pronounced near-infrared(NIR)absorption,tunable molecular structures,and commendable stability,organic photovoltaic non-fullerene acceptors(NFAs)represent a promising frontier in cancer management.Despite the great potential of NFAs in phototheranostics,there is currently a lack of systematic reviews in this field.This review provides a meticulous examination of the current state of NFAs in the field of phototheranostics,highlighting the strategic approaches to spectral red-shifting that enhance tissue penetration and therapeutic efficacy.It dissects the link between molecular architecture and performance across key therapeutic and diagnostic modalities,including photothermal therapy(PTT),photodynamic therapy(PDT),and fluorescence imaging(FLI).In addition,the review presents a concise analysis of the challenges and milestones in the clinical translation of NFAs,offering insights into the innovations required to overcome existing barriers.