Oil shale is characterized by a dense structure,low proportion of pores and fissures,and low permeability.Pore-fracture systems serve as crucial channels for shale oil migration,directly influencing the production eff...Oil shale is characterized by a dense structure,low proportion of pores and fissures,and low permeability.Pore-fracture systems serve as crucial channels for shale oil migration,directly influencing the production efficiency of shale oil resources.Effectively stimulating oil shale reservoirs remains a challenging and active research topic.This investigation employed shale specimens obtained from the Longmaxi Formation.Scanning electron microscopy,fluid injection experiments,and fluid-structure interaction simulations were used to comprehensively analyze structural changes and fluid flow behavior under high temperatures from microscopic to macroscopic scales.Experimental results indicate that the temperature has little effect on the structure and permeability of shale before 300℃.However,there are two threshold temperatures within the range of 300 to 600℃that have significant effects on the structure and permeability of oil shale.The first threshold temperature is between 300 and 400℃,which causes the oil shale porosity,pore-fracture ratio,and permeability begin to increase.This is manifested by the decrease in micropores and mesopores,the increase in macropores,and the formation of a large number of isolated pores and fissures within the shale.The permeability increases but not significantly.The second threshold temperature is between 500 and 600℃,which increases the permeability of oil shale significantly.During this stage,micropores and mesopores are further reduced,and macropores are significantly enlarged.A large number of connected and penetrated pores and fissures are formed.More numerous and thicker streamlines appear inside the oil shale.The experimental results demonstrate that high temperatures significantly alter the microstructure and permeability of oil shale.At the same time,the experimental results can provide a reference for the research of in-situ heating techniques in oil shale reservoir transformation.展开更多
The sedimentary bed morphology modulated by the wake flow of a wall-mounted flexible aquatic vegetation blade across various structural aspect ratios(A_(R)=l/b,where l and b are the length and width of the blade,respe...The sedimentary bed morphology modulated by the wake flow of a wall-mounted flexible aquatic vegetation blade across various structural aspect ratios(A_(R)=l/b,where l and b are the length and width of the blade,respectively)and incoming flow velocities was experimentally investigated in a water channel.A surface scanner was implemented to quantify bed topography,and a tomographic particle image velocimetry system was used to characterize the three-dimensional wake flows.The results showed that due to the deflection of incoming flow,the velocity magnitude increased at the lateral sides of the blade,thereby producing distinctive symmetric scour holes in these regions.The normalized morphology profiles of the sedimentary bed,which were extracted along the streamwise direction at the location of the maximum erosion depth,exhibited a self-similar pattern that closely followed a sinusoidal wave profile.The level of velocity magnitude enhancement was highly correlated to the postures of the flexible blade.At a given flow velocity,the blade with lower aspect ratios exhibited less significant deformation,causing more significant near-bed velocity enhancement in the wake deflection zone and therefore leading to higher erosion volumes.Further investigation indicated that when the blade underwent slight deformation,the larger velocity enhancement close to the bed can be attributed to more significant flow deflection effects at the lateral sides of the blade and stronger flow mixing with high momentum flows away from the bed.Supported with measurements,a basic formula was established to quantify the shear stress acting on the sedimentary bed as a function of incoming flow velocity and blade aspect ratio.展开更多
Objective:Fragment injury is a type of blast injury that is becoming more and more common in military campaigns and terrorist attacks.Numerical simulation methods investigating the formation of natural fragments and i...Objective:Fragment injury is a type of blast injury that is becoming more and more common in military campaigns and terrorist attacks.Numerical simulation methods investigating the formation of natural fragments and injuries to biological targets are expected to be developed.Methods:A cylindrical warhead model was established and the formation process of natural fragments was simulated using the approach of tied nodes with failure through the explicit finite element(FE)software of LS-DYNA.The interaction between the detonation product and the warhead shell was simulated using the fluidestructure interaction algorithm.A method to simulate the injury of natural fragments to a biological target was presented by transforming Lagrange elements into smooth particle hydrodynamics(SPH)particles after the natural fragments were successfully formed.A computational model of the human thorax was established to simulate the injury induced by natural fragments by the node-to-surface contact algorithm with erosion.Results:The discontinuous velocities of the warhead shell at different locations resulted in the formation of natural fragments with different sizes.The velocities of natural fragments increased rapidly at the initial stage and slowly after the warhead shell fractured.The initial velocities of natural fragments at the central part of the warhead shell were the largest,whereas those at both ends of the warhead shell were the smallest.The natural fragments resulted in bullet holes that were of the same shape as that of the fragments but slightly larger in size than the fragments in the human thorax after they penetrated through.Stress waves propagated in the ribs and enhanced the injury to soft tissues;additionally,ballistic pressure waves ahead of the natural fragments were also an injury factor to the soft tissues.Conclusion:The proposed method is effective in simulating the formation of natural fragments and their injury to biological targets.Moreover,this method will be beneficial for simulating the combined injuries of natural fragments and shock waves to biological targets.展开更多
基金supported by the Chongqing Natural Science Foundation of Chongqing,China(No.CSTB2022NSCQ-MSX0333)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJZD-K202401205)+1 种基金Chongqing Three Gorges University Graduate Research and Innovation Project Funding(No.YJSKY24045)Chongqing Engineering Research Center of Disaster Prevention&Control for Banks and Structures in Three Gorges Reservoir Area(No.SXAPGC24YB14,No.SXAPGC24YB03,No.SXAPGC24YB12)。
文摘Oil shale is characterized by a dense structure,low proportion of pores and fissures,and low permeability.Pore-fracture systems serve as crucial channels for shale oil migration,directly influencing the production efficiency of shale oil resources.Effectively stimulating oil shale reservoirs remains a challenging and active research topic.This investigation employed shale specimens obtained from the Longmaxi Formation.Scanning electron microscopy,fluid injection experiments,and fluid-structure interaction simulations were used to comprehensively analyze structural changes and fluid flow behavior under high temperatures from microscopic to macroscopic scales.Experimental results indicate that the temperature has little effect on the structure and permeability of shale before 300℃.However,there are two threshold temperatures within the range of 300 to 600℃that have significant effects on the structure and permeability of oil shale.The first threshold temperature is between 300 and 400℃,which causes the oil shale porosity,pore-fracture ratio,and permeability begin to increase.This is manifested by the decrease in micropores and mesopores,the increase in macropores,and the formation of a large number of isolated pores and fissures within the shale.The permeability increases but not significantly.The second threshold temperature is between 500 and 600℃,which increases the permeability of oil shale significantly.During this stage,micropores and mesopores are further reduced,and macropores are significantly enlarged.A large number of connected and penetrated pores and fissures are formed.More numerous and thicker streamlines appear inside the oil shale.The experimental results demonstrate that high temperatures significantly alter the microstructure and permeability of oil shale.At the same time,the experimental results can provide a reference for the research of in-situ heating techniques in oil shale reservoir transformation.
基金supported by the National Science Foundation under Grant No.2327916.
文摘The sedimentary bed morphology modulated by the wake flow of a wall-mounted flexible aquatic vegetation blade across various structural aspect ratios(A_(R)=l/b,where l and b are the length and width of the blade,respectively)and incoming flow velocities was experimentally investigated in a water channel.A surface scanner was implemented to quantify bed topography,and a tomographic particle image velocimetry system was used to characterize the three-dimensional wake flows.The results showed that due to the deflection of incoming flow,the velocity magnitude increased at the lateral sides of the blade,thereby producing distinctive symmetric scour holes in these regions.The normalized morphology profiles of the sedimentary bed,which were extracted along the streamwise direction at the location of the maximum erosion depth,exhibited a self-similar pattern that closely followed a sinusoidal wave profile.The level of velocity magnitude enhancement was highly correlated to the postures of the flexible blade.At a given flow velocity,the blade with lower aspect ratios exhibited less significant deformation,causing more significant near-bed velocity enhancement in the wake deflection zone and therefore leading to higher erosion volumes.Further investigation indicated that when the blade underwent slight deformation,the larger velocity enhancement close to the bed can be attributed to more significant flow deflection effects at the lateral sides of the blade and stronger flow mixing with high momentum flows away from the bed.Supported with measurements,a basic formula was established to quantify the shear stress acting on the sedimentary bed as a function of incoming flow velocity and blade aspect ratio.
基金The work was funded by the National Science Foundation for Young Scientists of China(11902356)China Postdoctoral Science Foundation(2018M633715)+1 种基金Innovation and Cultivation Fund of the Sixth Medical Center of PLA General Hospital(No.CXPY201825)the Army Scientific Research(LB20182D040012).
文摘Objective:Fragment injury is a type of blast injury that is becoming more and more common in military campaigns and terrorist attacks.Numerical simulation methods investigating the formation of natural fragments and injuries to biological targets are expected to be developed.Methods:A cylindrical warhead model was established and the formation process of natural fragments was simulated using the approach of tied nodes with failure through the explicit finite element(FE)software of LS-DYNA.The interaction between the detonation product and the warhead shell was simulated using the fluidestructure interaction algorithm.A method to simulate the injury of natural fragments to a biological target was presented by transforming Lagrange elements into smooth particle hydrodynamics(SPH)particles after the natural fragments were successfully formed.A computational model of the human thorax was established to simulate the injury induced by natural fragments by the node-to-surface contact algorithm with erosion.Results:The discontinuous velocities of the warhead shell at different locations resulted in the formation of natural fragments with different sizes.The velocities of natural fragments increased rapidly at the initial stage and slowly after the warhead shell fractured.The initial velocities of natural fragments at the central part of the warhead shell were the largest,whereas those at both ends of the warhead shell were the smallest.The natural fragments resulted in bullet holes that were of the same shape as that of the fragments but slightly larger in size than the fragments in the human thorax after they penetrated through.Stress waves propagated in the ribs and enhanced the injury to soft tissues;additionally,ballistic pressure waves ahead of the natural fragments were also an injury factor to the soft tissues.Conclusion:The proposed method is effective in simulating the formation of natural fragments and their injury to biological targets.Moreover,this method will be beneficial for simulating the combined injuries of natural fragments and shock waves to biological targets.