The flow control at low Reynolds numbers is one of the most promising technologies in the field of aerodynamics,and it is also an important source of the innovation for novel aircraft.In this study,a new way of nonlin...The flow control at low Reynolds numbers is one of the most promising technologies in the field of aerodynamics,and it is also an important source of the innovation for novel aircraft.In this study,a new way of nonlinear flow control by interaction between two flexible flaps is proposed,and their flow control mechanism is studied employing the self-constructed immersed boundary-lattice Boltzmann-finite element method(IB-LB-FEM).The effects of the difference in material properties and flap length between the two flexible flaps on the nonlinear flow control of the airfoil are discussed.It is suggested that the relationship between the deformation of the two flexible flaps and the evolution of the vortex under the fluid-structure interaction(FSI).It is shown that the upstream flexible flap plays a key role in the flow control of the two flexible flaps.The FSI effect of the upstream flexible flap will change the unsteady flow behind it and affect the deformation of the downstream flexible flap.Two flexible flaps with different material properties and different lengths will change their own FSI characteristics by the induced vortex,effectively suppressing the flow separation on the airfoil’s upper surface.The interaction of two flexible flaps plays an extremely important role in improving the autonomy and adjustability of flow control.The numerical results will provide a theoretical basis and technical guidance for the development and application of a new flap passive control technology.展开更多
We propose a suite of strategies for the parallel solution of fully implicit monolithic fluid-structure interaction(FSI).The solver is based on a modeling approach that uses the velocity and pressure as the primitive ...We propose a suite of strategies for the parallel solution of fully implicit monolithic fluid-structure interaction(FSI).The solver is based on a modeling approach that uses the velocity and pressure as the primitive variables,which offers a bridge between computational fluid dynamics(CFD)and computational structural dynamics.The spatiotemporal discretization leverages the variational multiscale formulation and the generalized-αmethod as a means of providing a robust discrete scheme.In particular,the time integration scheme does not suffer from the overshoot phenomenon and optimally dissipates high-frequency spurious modes in both subproblems of FSI.Based on the chosen fully implicit scheme,we systematically develop a combined suite of nonlinear and linear solver strategies.Invoking a block factorization of the Jacobian matrix,the Newton-Raphson procedure is reduced to solving two smaller linear systems in the multi-corrector stage.The first is of the elliptic type,indicating that the algebraic multigrid method serves as a well-suited option.The second exhibits a two-by-two block structure that is analogous to the system arising in CFD.Inspired by prior studies,the additive Schwarz domain decomposition method and the block-factorization-based preconditioners are invoked to address the linear problem.Since the number of unknowns matches in both subdomains,it is straightforward to balance loads when parallelizing the algorithm for distributed-memory architectures.We use two representative FSI benchmarks to demonstrate the robustness,efficiency,and scalability of the overall FSI solver framework.In particular,it is found that the developed FSI solver is comparable to the CFD solver in several aspects,including fixed-size and isogranular scalability as well as robustness.展开更多
The fluid-structure interaction(FSI)in aircraft hydraulic pipeline systems is of great concern because of the damage it causes.To accurately predict the vibration characteristic of long hydraulic pipelines with curved...The fluid-structure interaction(FSI)in aircraft hydraulic pipeline systems is of great concern because of the damage it causes.To accurately predict the vibration characteristic of long hydraulic pipelines with curved segments,we studied the frequency-domain modeling and solution method for FSI in these pipeline systems.Fourteen partial differential equations(PDEs)are utilized to model the pipeline FSI,considering both frequency-dependent friction and bending-flexibility modification.To address the numerical instability encountered by the traditional transfer matrix method(TMM)in solving relatively complex pipelines,an improved TMM is proposed for solving the PDEs in the frequency domain,based on the matrix-stacking strategy and matrix representation of boundary conditions.The proposed FSI model and improved solution method are validated by numerical cases and experiments.An experimental rig of a practical hydraulic system,consisting of an aircraft engine-driven pump,a Z-shaped aero-hydraulic pipeline,and a throttle valve,was constructed for testing.The magnitude ratio of acceleration to pressure is introduced to evaluate the theoretical and experimental results,which indicate that the proposed model and solution method are effective in practical applications.The methodology presented in this paper can be used as an efficient approach for the vibrational design of aircraft hydraulic pipeline systems.展开更多
Fluid-structure interaction(FSI)of gas-liquid two-phase fow in the horizontal pipe is investigated numerically in the present study.The volume of fluid model and standard k-e turbulence model are integrated to simulat...Fluid-structure interaction(FSI)of gas-liquid two-phase fow in the horizontal pipe is investigated numerically in the present study.The volume of fluid model and standard k-e turbulence model are integrated to simulate the typical gas-liquid two-phase fow patterns.First,validation of the numerical model is conducted and the typical fow patterns are consistent with the Baker chart.Then,the FSI framework is established to investigate the dynamic responses of the interaction between the horizontal pipe and gas-liquid two-phase fow.The results show that the dynamic response under stratified fow condition is relatively flat and the maximum pipe deformation and equivalent stress are 1.8 mm and 7.5 MPa respectively.Meanwhile,the dynamic responses induced by slug fow,wave fow and annular fow show obvious periodic fuctuations.Furthermore,the dynamic response characteristics under slug flow condition are maximum;the maximum pipe deformation and equivalent stress can reach 4mm and 17.5 MPa,respectively.The principal direction of total deformation is different under various flow patterns.Therefore,the periodic equivalent stress will form the cyclic impact on the pipe wall and affect the fatigue life of the horizontal pipe.The present study may serve as a reference for FSI simulation under gas-liquid two-phase transport conditions.展开更多
The multi-body flexible morphing airfoil can improve the aerodynamic characteristics based on different flight missions continuously.Recently researches have focused on the unsteady aerodynamic characteristics of flex...The multi-body flexible morphing airfoil can improve the aerodynamic characteristics based on different flight missions continuously.Recently researches have focused on the unsteady aerodynamic characteristics of flexible wings under passive actuation.However,the unsteady aerodynamic characteristics with the fluid-structure interaction effects in the multi-body active actuation process of morphing airfoil deserve further investigation.In this paper,a fluid-structure coupled simulation method for multi-body flexible morphing airfoil with active actuation subsystem was investigated,and the aerodynamic characteristics during deformation were compared with different skin flexibility,flow field environment,actuation mode and actuation time.The numerical results show that for the steady aerodynamic,the skin flexibility can improve the stability efficiency.In the unsteady process,the change trend of the transient lift coefficient and pitching moment are consistent with those of the active drive characteristics,while the instantaneous lift-drag ratio coefficient is greatly affected by the driving mode and can be improved by increasing the driving duration.展开更多
During the implementation of CO_(2) fracturing for oil and gas development,the force transfer effect caused by the unsteady flow of high-pressure CO_(2) fluid can lead to forced vibration of the tubing and ensuing str...During the implementation of CO_(2) fracturing for oil and gas development,the force transfer effect caused by the unsteady flow of high-pressure CO_(2) fluid can lead to forced vibration of the tubing and ensuing structural fatigue.In this study,a forced vibration analysis of tubing under CO_(2) fracturing conditions is carried out by taking into account the fluid-structure coupling and related interaction forces by means of the method of characteristics(MOC).The results show that for every 1 m^(3)/min increase in pumping displacement,the fluid flow rate increases up to 3.67 m/s.The flow pressure in the pipe tends to be consistent with the pumping pressure at the initial stage and then decreases with an increase in the pump starting time.When the pumping pressure increases by 10 MPa,the additional stress in the tubing increases by 11.8%,and the peak value of the additional stress at the bottom of the well is the largest.The temperature in the tubing grows with well depth,which causes a phase change in CO_(2) due to heat absorption.At this time the pressure in the tubing decreases,the fluid flow rate increases by about 1.12 m/s,and the additional stress grows by about 1.5 MPa.展开更多
A fluid-structure interaction approach is proposed in this paper based onNon-Ordinary State-Based Peridynamics(NOSB-PD)and Updated Lagrangian Particle Hydrodynamics(ULPH)to simulate the fluid-structure interaction pro...A fluid-structure interaction approach is proposed in this paper based onNon-Ordinary State-Based Peridynamics(NOSB-PD)and Updated Lagrangian Particle Hydrodynamics(ULPH)to simulate the fluid-structure interaction problem with large geometric deformation and material failure and solve the fluid-structure interaction problem of Newtonian fluid.In the coupled framework,the NOSB-PD theory describes the deformation and fracture of the solid material structure.ULPH is applied to describe the flow of Newtonian fluids due to its advantages in computational accuracy.The framework utilizes the advantages of NOSB-PD theory for solving discontinuous problems and ULPH theory for solving fluid problems,with good computational stability and robustness.A fluidstructure coupling algorithm using pressure as the transmission medium is established to deal with the fluidstructure interface.The dynamic model of solid structure and the PD-ULPH fluid-structure interaction model involving large deformation are verified by numerical simulations.The results agree with the analytical solution,the available experimental data,and other numerical results.Thus,the accuracy and effectiveness of the proposed method in solving the fluid-structure interaction problem are demonstrated.The fluid-structure interactionmodel based on ULPH and NOSB-PD established in this paper provides a new idea for the numerical solution of fluidstructure interaction and a promising approach for engineering design and experimental prediction.展开更多
The centrifugal pump is a prevalent power equipment widely used in different engineering patterns,and the impeller blade wrap angle significantly impacts its performance.A numerical investigation was conducted to anal...The centrifugal pump is a prevalent power equipment widely used in different engineering patterns,and the impeller blade wrap angle significantly impacts its performance.A numerical investigation was conducted to analyze the influence of the blade wrap angle on flow characteristics and energy distribution of a centrifugal pump evaluated as a low specific speed with a value of 69.This study investigates six impellermodels that possess varying blade wrap angles(95°,105°,115°,125°,135°,and 145°)that were created while maintaining the same volute and other geometrical characteristics.The investigation of energy loss was conducted to evaluate the values of total and entropy generation rates(TEG,EGR).The fluid-structure interaction was considered numerically using the software tools ANSYS Fluent and ANSYSWorkbench.The elastic structural dynamic equation was used to estimate the structural response,while the shear stress transport k–ωturbulence model was utilized for the fluid domain modeling.The findings suggest that the blade wrap angle has a significant influence on the efficiency of the pump.The impeller featuring a blade wrap angle of 145°exhibits higher efficiency,with a notable increase of 3.76%relative to the original model.Variations in the blade wrap angle impact the energy loss,shaft power,and pump head.The model with a 145°angle exhibited a maximum equivalent stress of 14.8MPa and a total deformation of 0.084 mm.The results provide valuable insights into the intricate flow mechanism of the centrifugal pump,particularly when considering various blade wrap angles.展开更多
The role of hydrodynamic effect in the meeting of multiple fish is a fascinating topic.The interactions of two self-propelled flexi-ble plates swimming in opposite directions horizontally and maintaining a certain lat...The role of hydrodynamic effect in the meeting of multiple fish is a fascinating topic.The interactions of two self-propelled flexi-ble plates swimming in opposite directions horizontally and maintaining a certain lateral distance are numerically simulated using a penalty-immersed boundary method.The effects of the flapping phase and lateral distance on the propulsive performance of two fish meetings are analyzed.Results show that,when two plates meet,if their leading edges diverge laterally,the individual plate can efficiently and rapidly move apart from the other horizontally.If their leading edges converge laterally,the plate motion can be retarded,leading to high energy consumption.Moreover,an increasing lateral distance between two plates significantly weakens the fluid-structure interactions,resulting in an exponential decline in mean cruising speed.A quantitative force analysis based on vortex dynamic theory is performed to gain physics insight into the hydrodynamic interaction mechanism.It is found that lateral separation between the two leading edges enhances the vorticity generation and boundary vorticity flux on the surface of the plate,subsequently reinforcing the thrust effect and increasing horizontal velocity.This study offers insight into the hydro-dynamic mechanisms of the fluid-structure interactions among fish moving toward each other and suggests potential strategies for enhancing the maneuverability of robotic fish in complex environment.展开更多
The implicit partition algorithm used to solve fluid–structure coupling problems has high accuracy,but it requires a long computation time.In this paper,a semi-implicit fluid–structure coupling algorithm based on mo...The implicit partition algorithm used to solve fluid–structure coupling problems has high accuracy,but it requires a long computation time.In this paper,a semi-implicit fluid–structure coupling algorithm based on modal force prediction-correction is proposed to improve the computational efficiency.In the pre-processing stage,the fluid domain is assumed to be a pseudo-elastic solid and merged with the solid domain to form a holistic system,and the normalized modal information of the holistic system is calculated and stored.During the sub-step cycle,the modal superposition method is used to obtain the response of the holistic system with the predicted modal force as the load,so that the deformation of the structure and the updating of the fluid mesh can be achieved simultaneously.After solving the Reynolds-averaged Navier-Stokes equations in the fluid domain,the predicted modal force is corrected and a new sub-step cycle is started until the converged result is obtained.In this method,the computation of the fluid equations and the updating of the dynamic mesh are done implicitly,while the deformation of the structure is done explicitly.Two numerical cases,vortex induced oscillation of an elastic beam and fluid–structure interaction of a final stage blade,are used to verify the efficiency and accuracy of the proposed algorithm.The results show that the proposed method achieves the same accuracy as the implicit method while the computational time is reduced.In the case of the vortex-induced oscillation problem,the computational time can be reduced to 18.6%.In the case of the final stage blade vibration,the computational time can be reduced to 53.8%.展开更多
The dynamic characteristics of a single liquid-filled pipe have been broadly studied in the previous literature.The parallel liquid-filled pipe(PLFP)system is also widely used in engineering,and its structure is more ...The dynamic characteristics of a single liquid-filled pipe have been broadly studied in the previous literature.The parallel liquid-filled pipe(PLFP)system is also widely used in engineering,and its structure is more complex than that of a single pipe.However,there are few reports about the dynamic characteristics of the PLFPs.Therefore,this paper proposes improved frequency modeling and solution for the PLFPs,involving the logical alignment principle and coupled matrix processing.The established model incorporates both the fluid-structure interaction(FSI)and the structural coupling of the PLFPs.The validity of the established model is verified by modal experiments.The effects of some unique parameters on the dynamic characteristics of the PLFPs are discussed.This work provides a feasible method for solving the FSI of multiple pipes in parallel and potential theoretical guidance for the dynamic analysis of the PLFPs in engineering.展开更多
Unsteady currents fluids flowing through a baffle with holes found in a mobile storage tank are complex to analyze. This study aims to evaluate the effects of fluid structure interactions (FSI) on baffles in tanks car...Unsteady currents fluids flowing through a baffle with holes found in a mobile storage tank are complex to analyze. This study aims to evaluate the effects of fluid structure interactions (FSI) on baffles in tanks carried on mobile trucks that, more often than not, experience sloshing phenomenon engulfed by turbulences behaviors with respect to different motions of the truck. Mindful of the different types of baffles that are used in the tanks to limit sloshing wave activities and improve safety by allowing fluid to pass through carefully designed holes that are also placed in a specific pattern, the fluid structure interaction around a baffle with a hole is evaluated here through computing. Passing through the solver in COMSOL, an equivalent design tank and baffle with a hole is discretized to point form such that the fluid flowing through each point is evaluated and interpreted on a point graph generated with respect to each point located on the tank or baffle hole. The result obtained not only shows the effects of FSI as a function of turbulence kinetic energy per individual point but also the contour pressure field and velocity magnitude of the entire system.展开更多
Paravalvular Leakage(PVL)has been recognized as one of the most dangerous complications in relation to Transcathether Aortic Valve Implantation(TAVI)activities.However,data available in the literature about Fluid Stru...Paravalvular Leakage(PVL)has been recognized as one of the most dangerous complications in relation to Transcathether Aortic Valve Implantation(TAVI)activities.However,data available in the literature about Fluid Structure Interaction(FSI)for this specific problem are relatively limited.In the present study,the fluid and structure responses of the hemodynamics along the patient aorta model and the aortic wall deformation are studied with the aid of numerical simulation taking into account PVL and 100%TAVI valve opening.In particular,the aorta without valve(AWoV)is assumed as the normal condition,whereas an aorta with TAVI 26 mm for 100%Geometrical Orifice Area(GOA)is considered as the patient aorta with PVL complication.A 3D patient-specific aorta model is elaborated using the MIMICS software.Implantation of the identical TAVI valve of Edward SAPIEN XT 26(Edwards Lifes ciences,Irvine,California)is considered.An undersized 26 mm TAVI valve with 100%valve opening is selected to mimic the presence of PVL at the aortic annulus.The present research indicates that the existence of PVL can increase the blood velocity,pressure drop and WSS in comparison to normal conditions,thereby paving the way to the development of recirculation flow,thrombus formation,aorta wall collapse,aortic rupture and damage of endothelium.展开更多
The closely coupled approach combined with the finite volume method (FVM) solver and the finite element method (FEM) solver is used to investigate the fluid-structure interaction (FSI) of a three-dimensional can...The closely coupled approach combined with the finite volume method (FVM) solver and the finite element method (FEM) solver is used to investigate the fluid-structure interaction (FSI) of a three-dimensional cantilevered hydrofoil in the water tunnel. The FVM solver and the coupled approach are verified and validated by compar- ing the numerical predictions with the experimental measurements, and good agreement is obtained concerning both the lift on the foil and the tip displacement. In the noncav- itating flow, the result indicates that the growth of the initial incidence angle and the Reynolds number improves the deformation of the foil, and the lift on the foil is increased by the twist deformation. The normalized twist angle and displacement along the span of the hydrofoil for different incidence angles and Reynolds numbers are almost uniform. For the cavitation flow, it is shown that the small amplitude vibration of the foil has limited influence on the developing process of the partial cavity, and the quasi two-dimensional cavity shedding does not change the deformation mode of the hydrofoil. However, the frequency spectrum of the lift on the foil contains the frequency which is associated with the first bend frequency of the hydrofoil.展开更多
The effects of the renal artery stenosis (RAS) on the blood flow and vessel walls are investigated. The pulsatile blood flow through an anatomically realistic model of the abdominal aorta and renal arteries reconstr...The effects of the renal artery stenosis (RAS) on the blood flow and vessel walls are investigated. The pulsatile blood flow through an anatomically realistic model of the abdominal aorta and renal arteries reconstructed from CT-scan images is simulated, which incorporates the fluid-structure interaction (FSI). In addition to the investigation of the RAS effects on the wall shear stress and the displacement of the vessel wall, it is determined that the RAS leads to decrease in the renal mass flow. This may cause the activation of the renin-angiotension system and results in severe hypertension.展开更多
Based on the train-track coupling dynamics and high-speed train aerodynamics, this paper deals with an improved algorithm for fluid-structure interaction of high-speed trains. In the algorithm, the data communication ...Based on the train-track coupling dynamics and high-speed train aerodynamics, this paper deals with an improved algorithm for fluid-structure interaction of high-speed trains. In the algorithm, the data communication between fluid solver and structure solver is avoided by inserting the program of train-track coupling dynamics into fluid dynamics program, and the relaxation factor concerning the load boundary of the fluid-structure interface is introduced to improve the fluctuation and convergence of aerodynamic forces. With this method, the fluid-structure dynamics of a highspeed train are simulated under the condition that the velocity of crosswind is 13.8 m/s and the train speed is 350 km/h. When the relaxation factor equals 0.5, the fluctuation of aerodynamic forces is lower and its convergence is faster than in other cases. The side force and lateral displacement of the head train are compared between off-line simulation and co-simulation. Simulation results show that the fluid-structure interaction has a significant influence on the aerodynam- ics and attitude of the head train under crosswind conditions. In addition, the security indexes of the head train worsen after the fluid-structure interaction calculation. Therefore, the fluid-structure interaction calculation is necessary for high-speed trains.展开更多
The objective of this paper is to present and to validate a new hybrid coupling (HC) algorithm for modeling of fluid-structure interaction (FSI) in incompressible, viscous flows. The HC algorithm is able to avoid ...The objective of this paper is to present and to validate a new hybrid coupling (HC) algorithm for modeling of fluid-structure interaction (FSI) in incompressible, viscous flows. The HC algorithm is able to avoid numerical instability issues associated with artificial added mass effects, which are often encountered by standard loosely coupled (LC) and tightly coupled (TC) algorithms, when modeling the FSI response of flexible structures in incompressible flow. The artificial added mass effect is caused by the lag in exchange of interfacial displacements and forces between the fluid and solid solvers in partitioned algorithms. The artificial added mass effect is much more prominent for light/flexible struc- tures moving in water, because the fluid forces are in the same order of magnitude as the solid forces, and because the speed at which numerical errors propagate in an incom- pressible fluid. The new HC algorithm avoids numerical instability issues associated with artificial added mass effects by embedding Theodorsen's analytical approximation of the hydroelastic forces in the solution process to obtain better initial estimates of the displacements. Details of the new HC algorithm are presented. Numerical validation studies are shown for the forced pitching response of a steel and a plastic hydrofoil. The results show that the HC algorithm is able to converge faster, and is able to avoid numerical insta- bility issues, compared to standard LC and TC algorithms, when modeling the transient FSI response of a plastic hydrofoil. Although the HC algorithm is only demonstrated for a NACA0009 hydrofoil subject to pure pitching motion, the method can be easily extended to model general 3-D FSI response and stability of complex, flexible structures in turbulent, incompressible, multiphase flows.展开更多
In this paper, the authors present airflow field characteristics of human upper airway and soft palate movement attitude during breathing. On the basis of the data taken from the spiral computerized tomography images ...In this paper, the authors present airflow field characteristics of human upper airway and soft palate movement attitude during breathing. On the basis of the data taken from the spiral computerized tomography images of a healthy person and a patient with Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS), three-dimensional models of upper airway cavity and soft palate are reconstructed by the method of surface rendering. Numerical simulation is performed for airflow in the upper airway and displacement of soft palate by fluid-structure interaction analysis. The reconstructed threedimensional models precisely preserve the original configuration of upper airways and soft palate. The results of the pressure and velocity distributions in the airflow field are quantitatively determined, and the displacement of soft palate is presented. Pressure gradients of airway are lower for the healthy person and the airflow distribution is quite uniform in the case of free breathing. However, the OSAHS patient remarkably escalates both the pressure and velocity in the upper airway, and causes higher displacement of the soft palate. The present study is useful in revealing pathogenesis and quantitative mutual relationship between configuration and function of the upper airway as well as in diagnosingdiseases related to anatomical structure and function of the upper airway.展开更多
The inflation of a five-ring cone parachute with the airflow velocity of 18 m/s is studied based on the simplified arbitrary Lagrange Euler (SALE)/fluid-structure interaction (FSI) method. The numerical results of...The inflation of a five-ring cone parachute with the airflow velocity of 18 m/s is studied based on the simplified arbitrary Lagrange Euler (SALE)/fluid-structure interaction (FSI) method. The numerical results of the canopy shape, stability, opening load, and drag area are obtained, and they are well consistent with the experimental data gained from wind tunnel tests. The method is then used to simulate the opening process under different velocities. It is found that the first load shock affected by the velocity often occurs at the end of the initial inflation stage. For the first time, the phenomena that the inflation distance proportion coefficient increases and the dynamic load coefficient decreases, respectively, with the increase in the velocity are revealed. The above proposed method is competent to solve the large deformation problem without empirial coefficients, and can collect more space-time details of fluid-structure-motion information when it is compared with the traditional method.展开更多
Fluid-structure interaction (FSI) is essentially a dynamic phenomenon and always exists in fluid-filled pipe system. The four-equation model, which has been proved to be effective to describe and predict the phenome...Fluid-structure interaction (FSI) is essentially a dynamic phenomenon and always exists in fluid-filled pipe system. The four-equation model, which has been proved to be effective to describe and predict the phenomenon of FSI due to friction coupling and Poisson coupling being taken into account, is utilized to describe the FSI of fluid-filled pipe system. Terse compatibility equations are educed by the method of characteristics (MOC) to describe the fluid-filled pipe system. To shorten computing time needed to get the solutions under the condition of keeping accuracy requirement, two steps are adopted, firstly the time step Δt and divided number of the straight pipe are optimized, sec-ondly the mesh spacing Δz close to boundary is subdivided in several submeshes automatically ac-cording to the speed gradient of fluid. The mathematical model and arithmetic are validated by com-parisons between simulation solutions of two straight pipe systems and experiment known from lit-erature.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.92371201,52192633,11872293,and 92152301)the Natural Science Basic Research Program of Shaanxi(Grant Nos.2024JC-YBQN-0008,and 2022JC-03)+1 种基金Shaanxi Key Research and Development Program(Grant No.2022ZDLGY02-07)the Joint Natural Science Foundation of China with Guangdong Province for TianHe-II Supercomputer Resources,and the Research Start-up Foundation of Xi’an University of Science and Technology for the High-Level Talent.
文摘The flow control at low Reynolds numbers is one of the most promising technologies in the field of aerodynamics,and it is also an important source of the innovation for novel aircraft.In this study,a new way of nonlinear flow control by interaction between two flexible flaps is proposed,and their flow control mechanism is studied employing the self-constructed immersed boundary-lattice Boltzmann-finite element method(IB-LB-FEM).The effects of the difference in material properties and flap length between the two flexible flaps on the nonlinear flow control of the airfoil are discussed.It is suggested that the relationship between the deformation of the two flexible flaps and the evolution of the vortex under the fluid-structure interaction(FSI).It is shown that the upstream flexible flap plays a key role in the flow control of the two flexible flaps.The FSI effect of the upstream flexible flap will change the unsteady flow behind it and affect the deformation of the downstream flexible flap.Two flexible flaps with different material properties and different lengths will change their own FSI characteristics by the induced vortex,effectively suppressing the flow separation on the airfoil’s upper surface.The interaction of two flexible flaps plays an extremely important role in improving the autonomy and adjustability of flow control.The numerical results will provide a theoretical basis and technical guidance for the development and application of a new flap passive control technology.
基金This work was supported by the National Natural Science Foundation of China(Grant No.12172160)Shenzhen Science and Technology Program(Grant No.JCYJ20220818100600002)+1 种基金South-ern University of Science and Technology(Grant No.Y01326127)the Department of Science and Technology of Guangdong Province(Grant Nos.2020B1212030001 and 2021QN020642).
文摘We propose a suite of strategies for the parallel solution of fully implicit monolithic fluid-structure interaction(FSI).The solver is based on a modeling approach that uses the velocity and pressure as the primitive variables,which offers a bridge between computational fluid dynamics(CFD)and computational structural dynamics.The spatiotemporal discretization leverages the variational multiscale formulation and the generalized-αmethod as a means of providing a robust discrete scheme.In particular,the time integration scheme does not suffer from the overshoot phenomenon and optimally dissipates high-frequency spurious modes in both subproblems of FSI.Based on the chosen fully implicit scheme,we systematically develop a combined suite of nonlinear and linear solver strategies.Invoking a block factorization of the Jacobian matrix,the Newton-Raphson procedure is reduced to solving two smaller linear systems in the multi-corrector stage.The first is of the elliptic type,indicating that the algebraic multigrid method serves as a well-suited option.The second exhibits a two-by-two block structure that is analogous to the system arising in CFD.Inspired by prior studies,the additive Schwarz domain decomposition method and the block-factorization-based preconditioners are invoked to address the linear problem.Since the number of unknowns matches in both subdomains,it is straightforward to balance loads when parallelizing the algorithm for distributed-memory architectures.We use two representative FSI benchmarks to demonstrate the robustness,efficiency,and scalability of the overall FSI solver framework.In particular,it is found that the developed FSI solver is comparable to the CFD solver in several aspects,including fixed-size and isogranular scalability as well as robustness.
基金supported by the National Natural Science Foundation of China(Nos.51975025 and 51890822)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(No.2016QNRC001)the National Key Research and Development Program of China(No.2019YFB2004500)。
文摘The fluid-structure interaction(FSI)in aircraft hydraulic pipeline systems is of great concern because of the damage it causes.To accurately predict the vibration characteristic of long hydraulic pipelines with curved segments,we studied the frequency-domain modeling and solution method for FSI in these pipeline systems.Fourteen partial differential equations(PDEs)are utilized to model the pipeline FSI,considering both frequency-dependent friction and bending-flexibility modification.To address the numerical instability encountered by the traditional transfer matrix method(TMM)in solving relatively complex pipelines,an improved TMM is proposed for solving the PDEs in the frequency domain,based on the matrix-stacking strategy and matrix representation of boundary conditions.The proposed FSI model and improved solution method are validated by numerical cases and experiments.An experimental rig of a practical hydraulic system,consisting of an aircraft engine-driven pump,a Z-shaped aero-hydraulic pipeline,and a throttle valve,was constructed for testing.The magnitude ratio of acceleration to pressure is introduced to evaluate the theoretical and experimental results,which indicate that the proposed model and solution method are effective in practical applications.The methodology presented in this paper can be used as an efficient approach for the vibrational design of aircraft hydraulic pipeline systems.
基金the National Natural Science Foundation of China(No.51779143)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(No.SL2020ZD101)the Cultivation of Scientific Research Ability of Young Talents of Shanghai Jiao Tong University(No.19X100040072)。
文摘Fluid-structure interaction(FSI)of gas-liquid two-phase fow in the horizontal pipe is investigated numerically in the present study.The volume of fluid model and standard k-e turbulence model are integrated to simulate the typical gas-liquid two-phase fow patterns.First,validation of the numerical model is conducted and the typical fow patterns are consistent with the Baker chart.Then,the FSI framework is established to investigate the dynamic responses of the interaction between the horizontal pipe and gas-liquid two-phase fow.The results show that the dynamic response under stratified fow condition is relatively flat and the maximum pipe deformation and equivalent stress are 1.8 mm and 7.5 MPa respectively.Meanwhile,the dynamic responses induced by slug fow,wave fow and annular fow show obvious periodic fuctuations.Furthermore,the dynamic response characteristics under slug flow condition are maximum;the maximum pipe deformation and equivalent stress can reach 4mm and 17.5 MPa,respectively.The principal direction of total deformation is different under various flow patterns.Therefore,the periodic equivalent stress will form the cyclic impact on the pipe wall and affect the fatigue life of the horizontal pipe.The present study may serve as a reference for FSI simulation under gas-liquid two-phase transport conditions.
基金supported by the National Natural Science Foundation of China(Nos.52192633,11872293)the Natural Science Foundation of Shaanxi Province,China(No.2022JC-03)。
文摘The multi-body flexible morphing airfoil can improve the aerodynamic characteristics based on different flight missions continuously.Recently researches have focused on the unsteady aerodynamic characteristics of flexible wings under passive actuation.However,the unsteady aerodynamic characteristics with the fluid-structure interaction effects in the multi-body active actuation process of morphing airfoil deserve further investigation.In this paper,a fluid-structure coupled simulation method for multi-body flexible morphing airfoil with active actuation subsystem was investigated,and the aerodynamic characteristics during deformation were compared with different skin flexibility,flow field environment,actuation mode and actuation time.The numerical results show that for the steady aerodynamic,the skin flexibility can improve the stability efficiency.In the unsteady process,the change trend of the transient lift coefficient and pitching moment are consistent with those of the active drive characteristics,while the instantaneous lift-drag ratio coefficient is greatly affected by the driving mode and can be improved by increasing the driving duration.
基金funded by National Natural Science Foundation of China(Grant No.52105209)funded by the National Engineering Research Centre for Oil and Gas Drilling and Completion Technology(Grant No.F2023199).
文摘During the implementation of CO_(2) fracturing for oil and gas development,the force transfer effect caused by the unsteady flow of high-pressure CO_(2) fluid can lead to forced vibration of the tubing and ensuing structural fatigue.In this study,a forced vibration analysis of tubing under CO_(2) fracturing conditions is carried out by taking into account the fluid-structure coupling and related interaction forces by means of the method of characteristics(MOC).The results show that for every 1 m^(3)/min increase in pumping displacement,the fluid flow rate increases up to 3.67 m/s.The flow pressure in the pipe tends to be consistent with the pumping pressure at the initial stage and then decreases with an increase in the pump starting time.When the pumping pressure increases by 10 MPa,the additional stress in the tubing increases by 11.8%,and the peak value of the additional stress at the bottom of the well is the largest.The temperature in the tubing grows with well depth,which causes a phase change in CO_(2) due to heat absorption.At this time the pressure in the tubing decreases,the fluid flow rate increases by about 1.12 m/s,and the additional stress grows by about 1.5 MPa.
基金open foundation of the Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanicsthe Open Foundation of Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment.
文摘A fluid-structure interaction approach is proposed in this paper based onNon-Ordinary State-Based Peridynamics(NOSB-PD)and Updated Lagrangian Particle Hydrodynamics(ULPH)to simulate the fluid-structure interaction problem with large geometric deformation and material failure and solve the fluid-structure interaction problem of Newtonian fluid.In the coupled framework,the NOSB-PD theory describes the deformation and fracture of the solid material structure.ULPH is applied to describe the flow of Newtonian fluids due to its advantages in computational accuracy.The framework utilizes the advantages of NOSB-PD theory for solving discontinuous problems and ULPH theory for solving fluid problems,with good computational stability and robustness.A fluidstructure coupling algorithm using pressure as the transmission medium is established to deal with the fluidstructure interface.The dynamic model of solid structure and the PD-ULPH fluid-structure interaction model involving large deformation are verified by numerical simulations.The results agree with the analytical solution,the available experimental data,and other numerical results.Thus,the accuracy and effectiveness of the proposed method in solving the fluid-structure interaction problem are demonstrated.The fluid-structure interactionmodel based on ULPH and NOSB-PD established in this paper provides a new idea for the numerical solution of fluidstructure interaction and a promising approach for engineering design and experimental prediction.
文摘The centrifugal pump is a prevalent power equipment widely used in different engineering patterns,and the impeller blade wrap angle significantly impacts its performance.A numerical investigation was conducted to analyze the influence of the blade wrap angle on flow characteristics and energy distribution of a centrifugal pump evaluated as a low specific speed with a value of 69.This study investigates six impellermodels that possess varying blade wrap angles(95°,105°,115°,125°,135°,and 145°)that were created while maintaining the same volute and other geometrical characteristics.The investigation of energy loss was conducted to evaluate the values of total and entropy generation rates(TEG,EGR).The fluid-structure interaction was considered numerically using the software tools ANSYS Fluent and ANSYSWorkbench.The elastic structural dynamic equation was used to estimate the structural response,while the shear stress transport k–ωturbulence model was utilized for the fluid domain modeling.The findings suggest that the blade wrap angle has a significant influence on the efficiency of the pump.The impeller featuring a blade wrap angle of 145°exhibits higher efficiency,with a notable increase of 3.76%relative to the original model.Variations in the blade wrap angle impact the energy loss,shaft power,and pump head.The model with a 145°angle exhibited a maximum equivalent stress of 14.8MPa and a total deformation of 0.084 mm.The results provide valuable insights into the intricate flow mechanism of the centrifugal pump,particularly when considering various blade wrap angles.
基金joined PI of Westlake University(Grant Nos.041030150118 and 103110556022101)Scientific Research Funding Project of Westlake University(Grant No.2021WUFP017).
文摘The role of hydrodynamic effect in the meeting of multiple fish is a fascinating topic.The interactions of two self-propelled flexi-ble plates swimming in opposite directions horizontally and maintaining a certain lateral distance are numerically simulated using a penalty-immersed boundary method.The effects of the flapping phase and lateral distance on the propulsive performance of two fish meetings are analyzed.Results show that,when two plates meet,if their leading edges diverge laterally,the individual plate can efficiently and rapidly move apart from the other horizontally.If their leading edges converge laterally,the plate motion can be retarded,leading to high energy consumption.Moreover,an increasing lateral distance between two plates significantly weakens the fluid-structure interactions,resulting in an exponential decline in mean cruising speed.A quantitative force analysis based on vortex dynamic theory is performed to gain physics insight into the hydrodynamic interaction mechanism.It is found that lateral separation between the two leading edges enhances the vorticity generation and boundary vorticity flux on the surface of the plate,subsequently reinforcing the thrust effect and increasing horizontal velocity.This study offers insight into the hydro-dynamic mechanisms of the fluid-structure interactions among fish moving toward each other and suggests potential strategies for enhancing the maneuverability of robotic fish in complex environment.
基金support of the National Natural Science Foundation of China(No.51675406)the Basic Research Project Group,China(No.514010106-205)。
文摘The implicit partition algorithm used to solve fluid–structure coupling problems has high accuracy,but it requires a long computation time.In this paper,a semi-implicit fluid–structure coupling algorithm based on modal force prediction-correction is proposed to improve the computational efficiency.In the pre-processing stage,the fluid domain is assumed to be a pseudo-elastic solid and merged with the solid domain to form a holistic system,and the normalized modal information of the holistic system is calculated and stored.During the sub-step cycle,the modal superposition method is used to obtain the response of the holistic system with the predicted modal force as the load,so that the deformation of the structure and the updating of the fluid mesh can be achieved simultaneously.After solving the Reynolds-averaged Navier-Stokes equations in the fluid domain,the predicted modal force is corrected and a new sub-step cycle is started until the converged result is obtained.In this method,the computation of the fluid equations and the updating of the dynamic mesh are done implicitly,while the deformation of the structure is done explicitly.Two numerical cases,vortex induced oscillation of an elastic beam and fluid–structure interaction of a final stage blade,are used to verify the efficiency and accuracy of the proposed algorithm.The results show that the proposed method achieves the same accuracy as the implicit method while the computational time is reduced.In the case of the vortex-induced oscillation problem,the computational time can be reduced to 18.6%.In the case of the final stage blade vibration,the computational time can be reduced to 53.8%.
基金Project supported by the National Natural Science Foundation of China(No.11972112)the Fundamental Research Funds for the Central Universities of China(Nos.N2103024 and N2103002)the Major Projects of Aero-Engines and Gasturbines(No.J2019-I-0008-0008)。
文摘The dynamic characteristics of a single liquid-filled pipe have been broadly studied in the previous literature.The parallel liquid-filled pipe(PLFP)system is also widely used in engineering,and its structure is more complex than that of a single pipe.However,there are few reports about the dynamic characteristics of the PLFPs.Therefore,this paper proposes improved frequency modeling and solution for the PLFPs,involving the logical alignment principle and coupled matrix processing.The established model incorporates both the fluid-structure interaction(FSI)and the structural coupling of the PLFPs.The validity of the established model is verified by modal experiments.The effects of some unique parameters on the dynamic characteristics of the PLFPs are discussed.This work provides a feasible method for solving the FSI of multiple pipes in parallel and potential theoretical guidance for the dynamic analysis of the PLFPs in engineering.
文摘Unsteady currents fluids flowing through a baffle with holes found in a mobile storage tank are complex to analyze. This study aims to evaluate the effects of fluid structure interactions (FSI) on baffles in tanks carried on mobile trucks that, more often than not, experience sloshing phenomenon engulfed by turbulences behaviors with respect to different motions of the truck. Mindful of the different types of baffles that are used in the tanks to limit sloshing wave activities and improve safety by allowing fluid to pass through carefully designed holes that are also placed in a specific pattern, the fluid structure interaction around a baffle with a hole is evaluated here through computing. Passing through the solver in COMSOL, an equivalent design tank and baffle with a hole is discretized to point form such that the fluid flowing through each point is evaluated and interpreted on a point graph generated with respect to each point located on the tank or baffle hole. The result obtained not only shows the effects of FSI as a function of turbulence kinetic energy per individual point but also the contour pressure field and velocity magnitude of the entire system.
基金Universiti Putra Malaysia,for providing funds for this project through Grant UPM GP-IPM/2019/9675000.
文摘Paravalvular Leakage(PVL)has been recognized as one of the most dangerous complications in relation to Transcathether Aortic Valve Implantation(TAVI)activities.However,data available in the literature about Fluid Structure Interaction(FSI)for this specific problem are relatively limited.In the present study,the fluid and structure responses of the hemodynamics along the patient aorta model and the aortic wall deformation are studied with the aid of numerical simulation taking into account PVL and 100%TAVI valve opening.In particular,the aorta without valve(AWoV)is assumed as the normal condition,whereas an aorta with TAVI 26 mm for 100%Geometrical Orifice Area(GOA)is considered as the patient aorta with PVL complication.A 3D patient-specific aorta model is elaborated using the MIMICS software.Implantation of the identical TAVI valve of Edward SAPIEN XT 26(Edwards Lifes ciences,Irvine,California)is considered.An undersized 26 mm TAVI valve with 100%valve opening is selected to mimic the presence of PVL at the aortic annulus.The present research indicates that the existence of PVL can increase the blood velocity,pressure drop and WSS in comparison to normal conditions,thereby paving the way to the development of recirculation flow,thrombus formation,aorta wall collapse,aortic rupture and damage of endothelium.
基金Project supported by the National Natural Science Foundation of China(No.10832007)the Shanghai Leading Academic Discipline Project(No.B206)
文摘The closely coupled approach combined with the finite volume method (FVM) solver and the finite element method (FEM) solver is used to investigate the fluid-structure interaction (FSI) of a three-dimensional cantilevered hydrofoil in the water tunnel. The FVM solver and the coupled approach are verified and validated by compar- ing the numerical predictions with the experimental measurements, and good agreement is obtained concerning both the lift on the foil and the tip displacement. In the noncav- itating flow, the result indicates that the growth of the initial incidence angle and the Reynolds number improves the deformation of the foil, and the lift on the foil is increased by the twist deformation. The normalized twist angle and displacement along the span of the hydrofoil for different incidence angles and Reynolds numbers are almost uniform. For the cavitation flow, it is shown that the small amplitude vibration of the foil has limited influence on the developing process of the partial cavity, and the quasi two-dimensional cavity shedding does not change the deformation mode of the hydrofoil. However, the frequency spectrum of the lift on the foil contains the frequency which is associated with the first bend frequency of the hydrofoil.
文摘The effects of the renal artery stenosis (RAS) on the blood flow and vessel walls are investigated. The pulsatile blood flow through an anatomically realistic model of the abdominal aorta and renal arteries reconstructed from CT-scan images is simulated, which incorporates the fluid-structure interaction (FSI). In addition to the investigation of the RAS effects on the wall shear stress and the displacement of the vessel wall, it is determined that the RAS leads to decrease in the renal mass flow. This may cause the activation of the renin-angiotension system and results in severe hypertension.
基金supported by the National Natural Science Foundations of China(Nos.50821063 and 50823004)973 Program(No.2007CB714701)the Fundamental Research Funds for the Central Universities(No.2010XS34)
文摘Based on the train-track coupling dynamics and high-speed train aerodynamics, this paper deals with an improved algorithm for fluid-structure interaction of high-speed trains. In the algorithm, the data communication between fluid solver and structure solver is avoided by inserting the program of train-track coupling dynamics into fluid dynamics program, and the relaxation factor concerning the load boundary of the fluid-structure interface is introduced to improve the fluctuation and convergence of aerodynamic forces. With this method, the fluid-structure dynamics of a highspeed train are simulated under the condition that the velocity of crosswind is 13.8 m/s and the train speed is 350 km/h. When the relaxation factor equals 0.5, the fluctuation of aerodynamic forces is lower and its convergence is faster than in other cases. The side force and lateral displacement of the head train are compared between off-line simulation and co-simulation. Simulation results show that the fluid-structure interaction has a significant influence on the aerodynam- ics and attitude of the head train under crosswind conditions. In addition, the security indexes of the head train worsen after the fluid-structure interaction calculation. Therefore, the fluid-structure interaction calculation is necessary for high-speed trains.
基金the financial support provided by the Office of Naval Research(ONR) through grant number N00014-09-1-1204 (managed by Dr. Ki-Han Kim)supported in part by the National Research Foundation of Korea (NRF)grant funded by the Korea government (MEST) through the GCRC-SOP Grant No. 2012-0004783
文摘The objective of this paper is to present and to validate a new hybrid coupling (HC) algorithm for modeling of fluid-structure interaction (FSI) in incompressible, viscous flows. The HC algorithm is able to avoid numerical instability issues associated with artificial added mass effects, which are often encountered by standard loosely coupled (LC) and tightly coupled (TC) algorithms, when modeling the FSI response of flexible structures in incompressible flow. The artificial added mass effect is caused by the lag in exchange of interfacial displacements and forces between the fluid and solid solvers in partitioned algorithms. The artificial added mass effect is much more prominent for light/flexible struc- tures moving in water, because the fluid forces are in the same order of magnitude as the solid forces, and because the speed at which numerical errors propagate in an incom- pressible fluid. The new HC algorithm avoids numerical instability issues associated with artificial added mass effects by embedding Theodorsen's analytical approximation of the hydroelastic forces in the solution process to obtain better initial estimates of the displacements. Details of the new HC algorithm are presented. Numerical validation studies are shown for the forced pitching response of a steel and a plastic hydrofoil. The results show that the HC algorithm is able to converge faster, and is able to avoid numerical insta- bility issues, compared to standard LC and TC algorithms, when modeling the transient FSI response of a plastic hydrofoil. Although the HC algorithm is only demonstrated for a NACA0009 hydrofoil subject to pure pitching motion, the method can be easily extended to model general 3-D FSI response and stability of complex, flexible structures in turbulent, incompressible, multiphase flows.
基金The project supported by the National Natural Science Foundation of China(10672036,10472025 and 10421002)the Natural Science Foundation of Liaoning Province(20032109)
文摘In this paper, the authors present airflow field characteristics of human upper airway and soft palate movement attitude during breathing. On the basis of the data taken from the spiral computerized tomography images of a healthy person and a patient with Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS), three-dimensional models of upper airway cavity and soft palate are reconstructed by the method of surface rendering. Numerical simulation is performed for airflow in the upper airway and displacement of soft palate by fluid-structure interaction analysis. The reconstructed threedimensional models precisely preserve the original configuration of upper airways and soft palate. The results of the pressure and velocity distributions in the airflow field are quantitatively determined, and the displacement of soft palate is presented. Pressure gradients of airway are lower for the healthy person and the airflow distribution is quite uniform in the case of free breathing. However, the OSAHS patient remarkably escalates both the pressure and velocity in the upper airway, and causes higher displacement of the soft palate. The present study is useful in revealing pathogenesis and quantitative mutual relationship between configuration and function of the upper airway as well as in diagnosingdiseases related to anatomical structure and function of the upper airway.
基金supported by the National Natural Science Foundation of China(No.11172137)the Aeronautical Science Foundation of China(No.20122910001)
文摘The inflation of a five-ring cone parachute with the airflow velocity of 18 m/s is studied based on the simplified arbitrary Lagrange Euler (SALE)/fluid-structure interaction (FSI) method. The numerical results of the canopy shape, stability, opening load, and drag area are obtained, and they are well consistent with the experimental data gained from wind tunnel tests. The method is then used to simulate the opening process under different velocities. It is found that the first load shock affected by the velocity often occurs at the end of the initial inflation stage. For the first time, the phenomena that the inflation distance proportion coefficient increases and the dynamic load coefficient decreases, respectively, with the increase in the velocity are revealed. The above proposed method is competent to solve the large deformation problem without empirial coefficients, and can collect more space-time details of fluid-structure-motion information when it is compared with the traditional method.
文摘Fluid-structure interaction (FSI) is essentially a dynamic phenomenon and always exists in fluid-filled pipe system. The four-equation model, which has been proved to be effective to describe and predict the phenomenon of FSI due to friction coupling and Poisson coupling being taken into account, is utilized to describe the FSI of fluid-filled pipe system. Terse compatibility equations are educed by the method of characteristics (MOC) to describe the fluid-filled pipe system. To shorten computing time needed to get the solutions under the condition of keeping accuracy requirement, two steps are adopted, firstly the time step Δt and divided number of the straight pipe are optimized, sec-ondly the mesh spacing Δz close to boundary is subdivided in several submeshes automatically ac-cording to the speed gradient of fluid. The mathematical model and arithmetic are validated by com-parisons between simulation solutions of two straight pipe systems and experiment known from lit-erature.