The Donalda gold deposit in the southern part of the Archean Abitibi greenstone belt consists mainly of a subhonzontal gold-quartz vein perpendicular to subvertical shear zones.The 0.3—0.5 m thick vein is characteriz...The Donalda gold deposit in the southern part of the Archean Abitibi greenstone belt consists mainly of a subhonzontal gold-quartz vein perpendicular to subvertical shear zones.The 0.3—0.5 m thick vein is characterized by vein-parallel banding structures indicating multiple episodes of fracture opening and mineral precipitation.Measurement of the c-axis of primary growth quartz indicates that quartz preferentially grew perpendicular to the fracture,suggesting open space filling and/or extensional nature of the fracture.Measurement of the orientations of microfractures,veinlets and fluid—inclusion planes(FIPs) crosscutting primary growth quartz indicates that the vein minerals were subject to a vertical maximum principal stress(σ_1),which is inconsistent with the subhorizontalσ_1 inferred from the regional stress field with N—S shortening.This apparent discrepancy is explained by invoking episodic fluid pressure fluctuation between supralithostatic and hydrostatic regimes accompanied by episodic opening and closing of the sub-horizontal fracture.When fluid pressure was higher than the lithostatic value,the fracture was opened and primary growth minerals were precipitated,whereas when fluid pressure decreased toward the hydrostatic value,the hanging wall of the fracture collapsed,causing collision of protruding primary growth minerals from both sides of the fracture and resulting in formation of vein-parallel deformation bands.The columns where the two facing sides of the fracture collided were subject to higher-than-lithostatic stress due to the bridging effect and reduced support surface area,explaining the development of verticalσ_1.This hypothesis is consistent the fault-valve model,and explains the flipping ofσ_1 without having to change the regional stress field.展开更多
The flow control at low Reynolds numbers is one of the most promising technologies in the field of aerodynamics,and it is also an important source of the innovation for novel aircraft.In this study,a new way of nonlin...The flow control at low Reynolds numbers is one of the most promising technologies in the field of aerodynamics,and it is also an important source of the innovation for novel aircraft.In this study,a new way of nonlinear flow control by interaction between two flexible flaps is proposed,and their flow control mechanism is studied employing the self-constructed immersed boundary-lattice Boltzmann-finite element method(IB-LB-FEM).The effects of the difference in material properties and flap length between the two flexible flaps on the nonlinear flow control of the airfoil are discussed.It is suggested that the relationship between the deformation of the two flexible flaps and the evolution of the vortex under the fluid-structure interaction(FSI).It is shown that the upstream flexible flap plays a key role in the flow control of the two flexible flaps.The FSI effect of the upstream flexible flap will change the unsteady flow behind it and affect the deformation of the downstream flexible flap.Two flexible flaps with different material properties and different lengths will change their own FSI characteristics by the induced vortex,effectively suppressing the flow separation on the airfoil’s upper surface.The interaction of two flexible flaps plays an extremely important role in improving the autonomy and adjustability of flow control.The numerical results will provide a theoretical basis and technical guidance for the development and application of a new flap passive control technology.展开更多
We propose a suite of strategies for the parallel solution of fully implicit monolithic fluid-structure interaction(FSI).The solver is based on a modeling approach that uses the velocity and pressure as the primitive ...We propose a suite of strategies for the parallel solution of fully implicit monolithic fluid-structure interaction(FSI).The solver is based on a modeling approach that uses the velocity and pressure as the primitive variables,which offers a bridge between computational fluid dynamics(CFD)and computational structural dynamics.The spatiotemporal discretization leverages the variational multiscale formulation and the generalized-αmethod as a means of providing a robust discrete scheme.In particular,the time integration scheme does not suffer from the overshoot phenomenon and optimally dissipates high-frequency spurious modes in both subproblems of FSI.Based on the chosen fully implicit scheme,we systematically develop a combined suite of nonlinear and linear solver strategies.Invoking a block factorization of the Jacobian matrix,the Newton-Raphson procedure is reduced to solving two smaller linear systems in the multi-corrector stage.The first is of the elliptic type,indicating that the algebraic multigrid method serves as a well-suited option.The second exhibits a two-by-two block structure that is analogous to the system arising in CFD.Inspired by prior studies,the additive Schwarz domain decomposition method and the block-factorization-based preconditioners are invoked to address the linear problem.Since the number of unknowns matches in both subdomains,it is straightforward to balance loads when parallelizing the algorithm for distributed-memory architectures.We use two representative FSI benchmarks to demonstrate the robustness,efficiency,and scalability of the overall FSI solver framework.In particular,it is found that the developed FSI solver is comparable to the CFD solver in several aspects,including fixed-size and isogranular scalability as well as robustness.展开更多
The implicit partition algorithm used to solve fluid–structure coupling problems has high accuracy,but it requires a long computation time.In this paper,a semi-implicit fluid–structure coupling algorithm based on mo...The implicit partition algorithm used to solve fluid–structure coupling problems has high accuracy,but it requires a long computation time.In this paper,a semi-implicit fluid–structure coupling algorithm based on modal force prediction-correction is proposed to improve the computational efficiency.In the pre-processing stage,the fluid domain is assumed to be a pseudo-elastic solid and merged with the solid domain to form a holistic system,and the normalized modal information of the holistic system is calculated and stored.During the sub-step cycle,the modal superposition method is used to obtain the response of the holistic system with the predicted modal force as the load,so that the deformation of the structure and the updating of the fluid mesh can be achieved simultaneously.After solving the Reynolds-averaged Navier-Stokes equations in the fluid domain,the predicted modal force is corrected and a new sub-step cycle is started until the converged result is obtained.In this method,the computation of the fluid equations and the updating of the dynamic mesh are done implicitly,while the deformation of the structure is done explicitly.Two numerical cases,vortex induced oscillation of an elastic beam and fluid–structure interaction of a final stage blade,are used to verify the efficiency and accuracy of the proposed algorithm.The results show that the proposed method achieves the same accuracy as the implicit method while the computational time is reduced.In the case of the vortex-induced oscillation problem,the computational time can be reduced to 18.6%.In the case of the final stage blade vibration,the computational time can be reduced to 53.8%.展开更多
The fluid-structure interaction(FSI)in aircraft hydraulic pipeline systems is of great concern because of the damage it causes.To accurately predict the vibration characteristic of long hydraulic pipelines with curved...The fluid-structure interaction(FSI)in aircraft hydraulic pipeline systems is of great concern because of the damage it causes.To accurately predict the vibration characteristic of long hydraulic pipelines with curved segments,we studied the frequency-domain modeling and solution method for FSI in these pipeline systems.Fourteen partial differential equations(PDEs)are utilized to model the pipeline FSI,considering both frequency-dependent friction and bending-flexibility modification.To address the numerical instability encountered by the traditional transfer matrix method(TMM)in solving relatively complex pipelines,an improved TMM is proposed for solving the PDEs in the frequency domain,based on the matrix-stacking strategy and matrix representation of boundary conditions.The proposed FSI model and improved solution method are validated by numerical cases and experiments.An experimental rig of a practical hydraulic system,consisting of an aircraft engine-driven pump,a Z-shaped aero-hydraulic pipeline,and a throttle valve,was constructed for testing.The magnitude ratio of acceleration to pressure is introduced to evaluate the theoretical and experimental results,which indicate that the proposed model and solution method are effective in practical applications.The methodology presented in this paper can be used as an efficient approach for the vibrational design of aircraft hydraulic pipeline systems.展开更多
The multi-body flexible morphing airfoil can improve the aerodynamic characteristics based on different flight missions continuously.Recently researches have focused on the unsteady aerodynamic characteristics of flex...The multi-body flexible morphing airfoil can improve the aerodynamic characteristics based on different flight missions continuously.Recently researches have focused on the unsteady aerodynamic characteristics of flexible wings under passive actuation.However,the unsteady aerodynamic characteristics with the fluid-structure interaction effects in the multi-body active actuation process of morphing airfoil deserve further investigation.In this paper,a fluid-structure coupled simulation method for multi-body flexible morphing airfoil with active actuation subsystem was investigated,and the aerodynamic characteristics during deformation were compared with different skin flexibility,flow field environment,actuation mode and actuation time.The numerical results show that for the steady aerodynamic,the skin flexibility can improve the stability efficiency.In the unsteady process,the change trend of the transient lift coefficient and pitching moment are consistent with those of the active drive characteristics,while the instantaneous lift-drag ratio coefficient is greatly affected by the driving mode and can be improved by increasing the driving duration.展开更多
During the implementation of CO_(2) fracturing for oil and gas development,the force transfer effect caused by the unsteady flow of high-pressure CO_(2) fluid can lead to forced vibration of the tubing and ensuing str...During the implementation of CO_(2) fracturing for oil and gas development,the force transfer effect caused by the unsteady flow of high-pressure CO_(2) fluid can lead to forced vibration of the tubing and ensuing structural fatigue.In this study,a forced vibration analysis of tubing under CO_(2) fracturing conditions is carried out by taking into account the fluid-structure coupling and related interaction forces by means of the method of characteristics(MOC).The results show that for every 1 m^(3)/min increase in pumping displacement,the fluid flow rate increases up to 3.67 m/s.The flow pressure in the pipe tends to be consistent with the pumping pressure at the initial stage and then decreases with an increase in the pump starting time.When the pumping pressure increases by 10 MPa,the additional stress in the tubing increases by 11.8%,and the peak value of the additional stress at the bottom of the well is the largest.The temperature in the tubing grows with well depth,which causes a phase change in CO_(2) due to heat absorption.At this time the pressure in the tubing decreases,the fluid flow rate increases by about 1.12 m/s,and the additional stress grows by about 1.5 MPa.展开更多
Fluid-structure interaction(FSI)of gas-liquid two-phase fow in the horizontal pipe is investigated numerically in the present study.The volume of fluid model and standard k-e turbulence model are integrated to simulat...Fluid-structure interaction(FSI)of gas-liquid two-phase fow in the horizontal pipe is investigated numerically in the present study.The volume of fluid model and standard k-e turbulence model are integrated to simulate the typical gas-liquid two-phase fow patterns.First,validation of the numerical model is conducted and the typical fow patterns are consistent with the Baker chart.Then,the FSI framework is established to investigate the dynamic responses of the interaction between the horizontal pipe and gas-liquid two-phase fow.The results show that the dynamic response under stratified fow condition is relatively flat and the maximum pipe deformation and equivalent stress are 1.8 mm and 7.5 MPa respectively.Meanwhile,the dynamic responses induced by slug fow,wave fow and annular fow show obvious periodic fuctuations.Furthermore,the dynamic response characteristics under slug flow condition are maximum;the maximum pipe deformation and equivalent stress can reach 4mm and 17.5 MPa,respectively.The principal direction of total deformation is different under various flow patterns.Therefore,the periodic equivalent stress will form the cyclic impact on the pipe wall and affect the fatigue life of the horizontal pipe.The present study may serve as a reference for FSI simulation under gas-liquid two-phase transport conditions.展开更多
Based on global initiatives such as the clean energy transition and the development of renewable energy,the pumped storage power station has become a new and significant way of energy storage and regulation,and its co...Based on global initiatives such as the clean energy transition and the development of renewable energy,the pumped storage power station has become a new and significant way of energy storage and regulation,and its construction environment is more complex than that of a traditional reservoir.In particular,the stability of the rock strata in the underground reservoirs is affected by the seepage pressure and rock stress,which presents some challenges in achieving engineering safety and stability.Using the advantages of the numerical simulation method in dealing deal with nonlinear problems in engineering stability,in this study,the stability of the underground reservoir of the Shidangshan(SDS)pumped storage power station was numerically calculated and quantitatively analyzed based on fluid-structure coupling theory,providing an important reference for the safe operation and management of the underground reservoir.First,using the COMSOL software,a suitablemechanicalmodel was created in accordance with the geological structure and project characteristics of the underground reservoir.Next,the characteristics of the stress field,displacement field,and seepage field after excavation of the underground reservoir were simulated in light of the seepage effect of groundwater on the nearby rock of the underground reservoir.Finally,based on the construction specifications and Molar-Coulomb criterion,a thorough evaluation of the stability of the underground reservoir was performed through simulation of the filling and discharge conditions and anti-seepage strengthening measures.The findings demonstrate that the numerical simulation results have a certain level of reliability and are in accordance with the stress measured in the project area.The underground reservoir excavation resulted in a maximum displacement value of the rock mass around the caverns of 3.56 mm in a typical section,and the safety coefficient of the parts,as determined using the Molar-Coulomb criterion,was higher than 1,indicating that the project as a whole is in a stable state.展开更多
The centrifugal pump is a prevalent power equipment widely used in different engineering patterns,and the impeller blade wrap angle significantly impacts its performance.A numerical investigation was conducted to anal...The centrifugal pump is a prevalent power equipment widely used in different engineering patterns,and the impeller blade wrap angle significantly impacts its performance.A numerical investigation was conducted to analyze the influence of the blade wrap angle on flow characteristics and energy distribution of a centrifugal pump evaluated as a low specific speed with a value of 69.This study investigates six impellermodels that possess varying blade wrap angles(95°,105°,115°,125°,135°,and 145°)that were created while maintaining the same volute and other geometrical characteristics.The investigation of energy loss was conducted to evaluate the values of total and entropy generation rates(TEG,EGR).The fluid-structure interaction was considered numerically using the software tools ANSYS Fluent and ANSYSWorkbench.The elastic structural dynamic equation was used to estimate the structural response,while the shear stress transport k–ωturbulence model was utilized for the fluid domain modeling.The findings suggest that the blade wrap angle has a significant influence on the efficiency of the pump.The impeller featuring a blade wrap angle of 145°exhibits higher efficiency,with a notable increase of 3.76%relative to the original model.Variations in the blade wrap angle impact the energy loss,shaft power,and pump head.The model with a 145°angle exhibited a maximum equivalent stress of 14.8MPa and a total deformation of 0.084 mm.The results provide valuable insights into the intricate flow mechanism of the centrifugal pump,particularly when considering various blade wrap angles.展开更多
A fluid-structure interaction approach is proposed in this paper based onNon-Ordinary State-Based Peridynamics(NOSB-PD)and Updated Lagrangian Particle Hydrodynamics(ULPH)to simulate the fluid-structure interaction pro...A fluid-structure interaction approach is proposed in this paper based onNon-Ordinary State-Based Peridynamics(NOSB-PD)and Updated Lagrangian Particle Hydrodynamics(ULPH)to simulate the fluid-structure interaction problem with large geometric deformation and material failure and solve the fluid-structure interaction problem of Newtonian fluid.In the coupled framework,the NOSB-PD theory describes the deformation and fracture of the solid material structure.ULPH is applied to describe the flow of Newtonian fluids due to its advantages in computational accuracy.The framework utilizes the advantages of NOSB-PD theory for solving discontinuous problems and ULPH theory for solving fluid problems,with good computational stability and robustness.A fluidstructure coupling algorithm using pressure as the transmission medium is established to deal with the fluidstructure interface.The dynamic model of solid structure and the PD-ULPH fluid-structure interaction model involving large deformation are verified by numerical simulations.The results agree with the analytical solution,the available experimental data,and other numerical results.Thus,the accuracy and effectiveness of the proposed method in solving the fluid-structure interaction problem are demonstrated.The fluid-structure interactionmodel based on ULPH and NOSB-PD established in this paper provides a new idea for the numerical solution of fluidstructure interaction and a promising approach for engineering design and experimental prediction.展开更多
To examine the similarities and differences in the evolution of cavity,wetting and dynamics of a highspeed,oblique water-entry projectile with different positive angles of attack,a comparative analysis has been conduc...To examine the similarities and differences in the evolution of cavity,wetting and dynamics of a highspeed,oblique water-entry projectile with different positive angles of attack,a comparative analysis has been conducted based on the numerical results of two mathematical models,the rigid-body model and fluid-structure interaction model.In addition,the applicable scope of the above two methods,and the structural response characteristics of the projectile have also been investigated.Our results demonstrate that:(1) The impact loads and angular motion of the projectile of the rigid-body method are more likely to exhibit periodic variations due to the periodic tail slap,its range of positive angles of attack is about α<2°.(2) When the projectile undergone significant wetting,a strong coupling effect is observed among wetting,structural deformation,and projectile motion.With the applied projectile shape,it is observed that,when the projectile bends,the final wetting position is that of Part B(cylinder of body).With the occu rrence of this phenomenon,the projectile ballistics beco me completely unstable.(3) The force exerted on the lower surface of the projectile induced by wetting is the primary reason of the destabilization of the projectile traj ectory and structu ral deformation failure.Bending deformation is most likely to appear at the junction of Part C(cone of body) and Part D(tail).The safe angles of attack of the projectile stability are found to be about α≤2°.展开更多
While the moisture content of soil affects significantly the blast impulse of shallow buried explosives,the role of surface-covering water(SCW)on soil in such blast impulse remains elusive.A combined experimental and ...While the moisture content of soil affects significantly the blast impulse of shallow buried explosives,the role of surface-covering water(SCW)on soil in such blast impulse remains elusive.A combined experimental and numerical study has been carried out to characterize the effect of SCW on transferred impulse and loading magnitude of shallow buried explosives.Firstly,blast tests of shallow buried explosives were conducted,with and without the SCW,to quantitatively assess the blast loading impulse.Subsequently,finite element(FE)simulations were performed and validated against experimental measurement,with good agreement achieved.The validated FE model was then employed to predict the dynamic response of a fully-clamped metallic circular target,subjected to the explosive impact of shallow buried explosives with SCW,and explore the corresponding physical mechanisms.It was demonstrated that shallow buried explosives in saturated soil generate a greater impulse transferred towards the target relative to those in dry soil.The deformation displacement of the target plate is doubled.Increasing the height of SCW results in enhanced center peak deflection of the loaded target,accompanied by subsequent fall,due to the variation of deformation pattern of the loaded target from concentrated load to uniform load.Meanwhile,the presence of SCW increases the blast impulse transferred towards the target by three times.In addition,there exists a threshold value of the burial depth that maximizes the impact impulse.This threshold exhibits a strong sensitivity to SCW height,decreasing with increasing SCW height.An empirical formula for predicting threshold has been provided.Similar conclusions can be drawn for different explosive masses.The results provide technical guidance on blast loading intensity and its spatial distribution considering shallow buried explosives in coast-land battlefields,which can ultimately contribute to better protective designs.展开更多
The conventional honey production is dominated by fragmented,small-scale individual farming models.The traditional approach of honey-harvesting involving manual beehive frames extraction,beeswax layer excision and cen...The conventional honey production is dominated by fragmented,small-scale individual farming models.The traditional approach of honey-harvesting involving manual beehive frames extraction,beeswax layer excision and centrifugal honey separation,expose beekeepers to potential bee stings and frequently compromise honeycomb integrity.To address these limitations,we designed an automated honey-harvesting robot capable of autonomous frame extraction and beeswax removal.The robot mainly consists of a mobile mechanism equipped with image recognition for beehive localization,a magnetic adsorption-based beehive frame handling device(60.8 N maximum suction)coupled with a cross-slide mechanism for precise frame manipulation,and a thermal beeswax layer-melting apparatus,with optimal melting parameters(15 m/s airflow at 90℃ for 30 seconds)determined through rigorous thermal flow simulations utilizing FLUENT/Mechanical software.Field experiments demonstrated beehive frames handling success rate exceeding 85%,beeswax layer removal efficacy over 80% and damage of honeycombs below 30%.The experiment results validate the robot's operational reliability and its capacity to automate critical harvesting procedures.This study significantly reduces the labor intensity for beekeepers,effectively eliminates the risk of direct human-bee contact and improves the removal of beeswax layer,thereby catalyzing the modernization of the beekeeping industry.展开更多
This paper investigates the influence of the spanwise-distributed trailing-edge camber morphing on the dynamic stall characteristics of a finite-span wing at Re=2×10^(5).The mathematical model of the spanwise-dis...This paper investigates the influence of the spanwise-distributed trailing-edge camber morphing on the dynamic stall characteristics of a finite-span wing at Re=2×10^(5).The mathematical model of the spanwise-distributed trailing-edge camber morphing is established based on Chebyshev polynomials,and the deformed wing surface is modeled by a spline surface according to the rib's morphing in the chordwise direction.The Computational Fluid Dynamics(CFD)method is adopted to obtain flow-field results and aerodynamic forces.The SST-γmodel is introduced and the overset mesh technique is adopted.The numerical results show that the spanwisedistributed trailing-edge morphing obviously changes the aerodynamic and energy transfer characteristics of the dynamic stall.Especially when the phase difference between the trailing-edge motion and the wing pitch is-π/2,the interaction between the three-dimensional(3-D)Leading-Edge Vortex(LEV)and Trailing-Edge Vortex(TEV)is strengthened,and the work done by the aerodynamic force turns negative.This indicates that the trailing-edge deformation has the potential to suppress the oscillation amplitude of stall flutter.We also found that as the trailing-edge camber morphing varies more complexly along the spanwise direction,the suppression effect decreases accordingly.展开更多
Rotating machinery in the aviation industry is increasingly embracing high speeds and miniaturization,and foil dynamic pressure gas bearing has great application value due to its self-lubrication and self-adaptive def...Rotating machinery in the aviation industry is increasingly embracing high speeds and miniaturization,and foil dynamic pressure gas bearing has great application value due to its self-lubrication and self-adaptive deformation characteristics.This study explores the interaction mechanism between micro-scale variable-sectional shearing flow with hyper-rotation speeds and a three-layer elastic foil assembly through bidirectional aero-elastic coupling in a Multi-layer Thrust Gas Foil Bearing(MTGFB).The bearing capacity of the MTGFB varies non-linearly with the decrease of gas film clearance,while the collaborative deformation of the three-layer elastic foil assembly can deal with different load conditions.As the load capacity increases,the enhanced dynamic pressure effect causes the top foil to evolve from a single arch to multiple arches.The hydrodynamic effects in the gas film evolve to form multiple segmented wedges with different pitch ratios,while the peak pressure of the gas film always occurs near the vaults of the top foil.As the rotational speed frequency approaches the natural frequency,the resonance of the gas film and elastic foil assembly system occurs,and a phase delay occurs between the pressure pulsation and the vibration of foils.The load capacity of the MTGFB also depends on the elastic moduli of the elastic foil assembly.Increasing the elastic modulus decreases the deformation amplitude of the top foil,whereas it increases those of the backboard and middle foil,increasing the load capacity.展开更多
Stall flutter poses great challenges to flight safety.To alleviate this problem,a steady blowing control considering the perturbation and wake-induced vibration at a large angle of attack is developed in this paper,wh...Stall flutter poses great challenges to flight safety.To alleviate this problem,a steady blowing control considering the perturbation and wake-induced vibration at a large angle of attack is developed in this paper,where two blowings are configured on upper and lower tail surfaces to suppress the stall flutter.The stall flutter with one-degree-of-freedom is first evaluated by numerical simulation.The equation of motion for stall flutter is solved by the Newmark-β method.Then,the stall flutter responses for five blowing speeds,i.e.,0,4,12,20,and 28 m/s under the airspeed range of 3–9 m/s,are studied in detail.The stall flutter suppression mechanism can be summarized as follows:a large blowing speed can inject energy into the boundary layer and enhance the high-pressure zone,which delays the flow separation on the suction surface.In this way,the formation of the leading-edge separation vortex is suppressed.Thus,the dynamic stall vortex is weakened and accelerates shedding.In addition,the driving moment is reduced,which leads to a decrement in the stall flutter amplitude.When the blowing speed is 28 m/s(stall flutter amplitude=0.1357 rad),compared with uncontrolled case(stall flutter amplitude=0.6002 rad),the amplitude can decrease by 77.39%,which demonstrates the effectiveness of the proposed steady blowing based active control strategy.展开更多
Image-based computational models have been used for vulnerable plaque progression and rupture predictions,and good results have been reported.However,mechanisms and predictions for plaque erosion are underinvestigated...Image-based computational models have been used for vulnerable plaque progression and rupture predictions,and good results have been reported.However,mechanisms and predictions for plaque erosion are underinvestigated.Patient-specific fluid-structure interaction(FSI)models based on optical coherence tomography(OCT)follow-up data from patients with plaque erosion and who received conservative antithrombotic treatment(using medication,no stenting)to identify risk factors that could be used to predict the treatment outcome.OCT and angiography datawere obtained from10 patientswho received conservative antithrombotic treatment.Five participants had worse outcomes(WOG,stenosis severity≥70%at one-year follow-up),while the other five had better outcomes(BOG,stenosis severity<70%at one-year follow-up).Patient-specific 3D FSI models were constructed to obtain morphological and biomechanical risk factor values(a total of nine risk factors)for comparison and prediction.A logistic regressionmodel was used to identify optimal predictors with the best treatment outcome prediction accuracies.Our results indicated that the combination of wall shear stress(WSS),lipid percent,and thrombus burden was the best group predictor according to the mean area under the curve(AUC)of 0.96(90%confidence interval=(0.85,1.00)).WSS was the best single predictor withmean AUC=0.70(90%confidence interval=(0.20,1.00)).Thrombus burden was the only risk factor showing statistically significant group difference,suggesting its crucial role in the outcomes of conservative anti-thrombotic therapy.This pilot study indicated that integratingmorphological and biomechanical risk factors could improve treatment outcome prediction accuracy in patients with plaque erosion compared to predictions using single predictors.Large-scale patient studies are needed to further validate our findings.展开更多
The role of hydrodynamic effect in the meeting of multiple fish is a fascinating topic.The interactions of two self-propelled flexi-ble plates swimming in opposite directions horizontally and maintaining a certain lat...The role of hydrodynamic effect in the meeting of multiple fish is a fascinating topic.The interactions of two self-propelled flexi-ble plates swimming in opposite directions horizontally and maintaining a certain lateral distance are numerically simulated using a penalty-immersed boundary method.The effects of the flapping phase and lateral distance on the propulsive performance of two fish meetings are analyzed.Results show that,when two plates meet,if their leading edges diverge laterally,the individual plate can efficiently and rapidly move apart from the other horizontally.If their leading edges converge laterally,the plate motion can be retarded,leading to high energy consumption.Moreover,an increasing lateral distance between two plates significantly weakens the fluid-structure interactions,resulting in an exponential decline in mean cruising speed.A quantitative force analysis based on vortex dynamic theory is performed to gain physics insight into the hydrodynamic interaction mechanism.It is found that lateral separation between the two leading edges enhances the vorticity generation and boundary vorticity flux on the surface of the plate,subsequently reinforcing the thrust effect and increasing horizontal velocity.This study offers insight into the hydro-dynamic mechanisms of the fluid-structure interactions among fish moving toward each other and suggests potential strategies for enhancing the maneuverability of robotic fish in complex environment.展开更多
This paper proposes a novel three-directional functionally graded(3D FG)vibration energy harvesting model based on a bimorph pipe structure.A rectangular pipe has material properties that vary continuously along the a...This paper proposes a novel three-directional functionally graded(3D FG)vibration energy harvesting model based on a bimorph pipe structure.A rectangular pipe has material properties that vary continuously along the axial,width,and height directions,and a steady fluid flows inside the pipe.Two piezoelectric layers are attached to the upper and lower surfaces of the pipe,and are connected in series with a load resistance.The output electricity is predicted theoretically and validated by finite element(FE) simulation.The complex mechanisms regulating the energy harvesting performance are investigated,focusing particularly on the effects of 3D FG material(FGM) parameters,load resistance,fluid-structure interaction(FSI),and geometry.Numerical results indicate that among several material gradient parameters,the axial gradient index has the most significant impact.Increasing the axial and height gradient indices can markedly enhance the energy harvesting performance.The optimal resistances differ between the first two modes.Overall,the maximum power is generated at lower resistances.The FSI effect can also improve the energy harvesting performance;however,higher flow velocities may destabilize the system,causing failure of harvesting energy.This research is capable of providing new insights into the design of a pipe energy harvester in engineering applications.展开更多
文摘The Donalda gold deposit in the southern part of the Archean Abitibi greenstone belt consists mainly of a subhonzontal gold-quartz vein perpendicular to subvertical shear zones.The 0.3—0.5 m thick vein is characterized by vein-parallel banding structures indicating multiple episodes of fracture opening and mineral precipitation.Measurement of the c-axis of primary growth quartz indicates that quartz preferentially grew perpendicular to the fracture,suggesting open space filling and/or extensional nature of the fracture.Measurement of the orientations of microfractures,veinlets and fluid—inclusion planes(FIPs) crosscutting primary growth quartz indicates that the vein minerals were subject to a vertical maximum principal stress(σ_1),which is inconsistent with the subhorizontalσ_1 inferred from the regional stress field with N—S shortening.This apparent discrepancy is explained by invoking episodic fluid pressure fluctuation between supralithostatic and hydrostatic regimes accompanied by episodic opening and closing of the sub-horizontal fracture.When fluid pressure was higher than the lithostatic value,the fracture was opened and primary growth minerals were precipitated,whereas when fluid pressure decreased toward the hydrostatic value,the hanging wall of the fracture collapsed,causing collision of protruding primary growth minerals from both sides of the fracture and resulting in formation of vein-parallel deformation bands.The columns where the two facing sides of the fracture collided were subject to higher-than-lithostatic stress due to the bridging effect and reduced support surface area,explaining the development of verticalσ_1.This hypothesis is consistent the fault-valve model,and explains the flipping ofσ_1 without having to change the regional stress field.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.92371201,52192633,11872293,and 92152301)the Natural Science Basic Research Program of Shaanxi(Grant Nos.2024JC-YBQN-0008,and 2022JC-03)+1 种基金Shaanxi Key Research and Development Program(Grant No.2022ZDLGY02-07)the Joint Natural Science Foundation of China with Guangdong Province for TianHe-II Supercomputer Resources,and the Research Start-up Foundation of Xi’an University of Science and Technology for the High-Level Talent.
文摘The flow control at low Reynolds numbers is one of the most promising technologies in the field of aerodynamics,and it is also an important source of the innovation for novel aircraft.In this study,a new way of nonlinear flow control by interaction between two flexible flaps is proposed,and their flow control mechanism is studied employing the self-constructed immersed boundary-lattice Boltzmann-finite element method(IB-LB-FEM).The effects of the difference in material properties and flap length between the two flexible flaps on the nonlinear flow control of the airfoil are discussed.It is suggested that the relationship between the deformation of the two flexible flaps and the evolution of the vortex under the fluid-structure interaction(FSI).It is shown that the upstream flexible flap plays a key role in the flow control of the two flexible flaps.The FSI effect of the upstream flexible flap will change the unsteady flow behind it and affect the deformation of the downstream flexible flap.Two flexible flaps with different material properties and different lengths will change their own FSI characteristics by the induced vortex,effectively suppressing the flow separation on the airfoil’s upper surface.The interaction of two flexible flaps plays an extremely important role in improving the autonomy and adjustability of flow control.The numerical results will provide a theoretical basis and technical guidance for the development and application of a new flap passive control technology.
基金This work was supported by the National Natural Science Foundation of China(Grant No.12172160)Shenzhen Science and Technology Program(Grant No.JCYJ20220818100600002)+1 种基金South-ern University of Science and Technology(Grant No.Y01326127)the Department of Science and Technology of Guangdong Province(Grant Nos.2020B1212030001 and 2021QN020642).
文摘We propose a suite of strategies for the parallel solution of fully implicit monolithic fluid-structure interaction(FSI).The solver is based on a modeling approach that uses the velocity and pressure as the primitive variables,which offers a bridge between computational fluid dynamics(CFD)and computational structural dynamics.The spatiotemporal discretization leverages the variational multiscale formulation and the generalized-αmethod as a means of providing a robust discrete scheme.In particular,the time integration scheme does not suffer from the overshoot phenomenon and optimally dissipates high-frequency spurious modes in both subproblems of FSI.Based on the chosen fully implicit scheme,we systematically develop a combined suite of nonlinear and linear solver strategies.Invoking a block factorization of the Jacobian matrix,the Newton-Raphson procedure is reduced to solving two smaller linear systems in the multi-corrector stage.The first is of the elliptic type,indicating that the algebraic multigrid method serves as a well-suited option.The second exhibits a two-by-two block structure that is analogous to the system arising in CFD.Inspired by prior studies,the additive Schwarz domain decomposition method and the block-factorization-based preconditioners are invoked to address the linear problem.Since the number of unknowns matches in both subdomains,it is straightforward to balance loads when parallelizing the algorithm for distributed-memory architectures.We use two representative FSI benchmarks to demonstrate the robustness,efficiency,and scalability of the overall FSI solver framework.In particular,it is found that the developed FSI solver is comparable to the CFD solver in several aspects,including fixed-size and isogranular scalability as well as robustness.
基金support of the National Natural Science Foundation of China(No.51675406)the Basic Research Project Group,China(No.514010106-205)。
文摘The implicit partition algorithm used to solve fluid–structure coupling problems has high accuracy,but it requires a long computation time.In this paper,a semi-implicit fluid–structure coupling algorithm based on modal force prediction-correction is proposed to improve the computational efficiency.In the pre-processing stage,the fluid domain is assumed to be a pseudo-elastic solid and merged with the solid domain to form a holistic system,and the normalized modal information of the holistic system is calculated and stored.During the sub-step cycle,the modal superposition method is used to obtain the response of the holistic system with the predicted modal force as the load,so that the deformation of the structure and the updating of the fluid mesh can be achieved simultaneously.After solving the Reynolds-averaged Navier-Stokes equations in the fluid domain,the predicted modal force is corrected and a new sub-step cycle is started until the converged result is obtained.In this method,the computation of the fluid equations and the updating of the dynamic mesh are done implicitly,while the deformation of the structure is done explicitly.Two numerical cases,vortex induced oscillation of an elastic beam and fluid–structure interaction of a final stage blade,are used to verify the efficiency and accuracy of the proposed algorithm.The results show that the proposed method achieves the same accuracy as the implicit method while the computational time is reduced.In the case of the vortex-induced oscillation problem,the computational time can be reduced to 18.6%.In the case of the final stage blade vibration,the computational time can be reduced to 53.8%.
基金supported by the National Natural Science Foundation of China(Nos.51975025 and 51890822)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(No.2016QNRC001)the National Key Research and Development Program of China(No.2019YFB2004500)。
文摘The fluid-structure interaction(FSI)in aircraft hydraulic pipeline systems is of great concern because of the damage it causes.To accurately predict the vibration characteristic of long hydraulic pipelines with curved segments,we studied the frequency-domain modeling and solution method for FSI in these pipeline systems.Fourteen partial differential equations(PDEs)are utilized to model the pipeline FSI,considering both frequency-dependent friction and bending-flexibility modification.To address the numerical instability encountered by the traditional transfer matrix method(TMM)in solving relatively complex pipelines,an improved TMM is proposed for solving the PDEs in the frequency domain,based on the matrix-stacking strategy and matrix representation of boundary conditions.The proposed FSI model and improved solution method are validated by numerical cases and experiments.An experimental rig of a practical hydraulic system,consisting of an aircraft engine-driven pump,a Z-shaped aero-hydraulic pipeline,and a throttle valve,was constructed for testing.The magnitude ratio of acceleration to pressure is introduced to evaluate the theoretical and experimental results,which indicate that the proposed model and solution method are effective in practical applications.The methodology presented in this paper can be used as an efficient approach for the vibrational design of aircraft hydraulic pipeline systems.
基金supported by the National Natural Science Foundation of China(Nos.52192633,11872293)the Natural Science Foundation of Shaanxi Province,China(No.2022JC-03)。
文摘The multi-body flexible morphing airfoil can improve the aerodynamic characteristics based on different flight missions continuously.Recently researches have focused on the unsteady aerodynamic characteristics of flexible wings under passive actuation.However,the unsteady aerodynamic characteristics with the fluid-structure interaction effects in the multi-body active actuation process of morphing airfoil deserve further investigation.In this paper,a fluid-structure coupled simulation method for multi-body flexible morphing airfoil with active actuation subsystem was investigated,and the aerodynamic characteristics during deformation were compared with different skin flexibility,flow field environment,actuation mode and actuation time.The numerical results show that for the steady aerodynamic,the skin flexibility can improve the stability efficiency.In the unsteady process,the change trend of the transient lift coefficient and pitching moment are consistent with those of the active drive characteristics,while the instantaneous lift-drag ratio coefficient is greatly affected by the driving mode and can be improved by increasing the driving duration.
基金funded by National Natural Science Foundation of China(Grant No.52105209)funded by the National Engineering Research Centre for Oil and Gas Drilling and Completion Technology(Grant No.F2023199).
文摘During the implementation of CO_(2) fracturing for oil and gas development,the force transfer effect caused by the unsteady flow of high-pressure CO_(2) fluid can lead to forced vibration of the tubing and ensuing structural fatigue.In this study,a forced vibration analysis of tubing under CO_(2) fracturing conditions is carried out by taking into account the fluid-structure coupling and related interaction forces by means of the method of characteristics(MOC).The results show that for every 1 m^(3)/min increase in pumping displacement,the fluid flow rate increases up to 3.67 m/s.The flow pressure in the pipe tends to be consistent with the pumping pressure at the initial stage and then decreases with an increase in the pump starting time.When the pumping pressure increases by 10 MPa,the additional stress in the tubing increases by 11.8%,and the peak value of the additional stress at the bottom of the well is the largest.The temperature in the tubing grows with well depth,which causes a phase change in CO_(2) due to heat absorption.At this time the pressure in the tubing decreases,the fluid flow rate increases by about 1.12 m/s,and the additional stress grows by about 1.5 MPa.
基金the National Natural Science Foundation of China(No.51779143)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(No.SL2020ZD101)the Cultivation of Scientific Research Ability of Young Talents of Shanghai Jiao Tong University(No.19X100040072)。
文摘Fluid-structure interaction(FSI)of gas-liquid two-phase fow in the horizontal pipe is investigated numerically in the present study.The volume of fluid model and standard k-e turbulence model are integrated to simulate the typical gas-liquid two-phase fow patterns.First,validation of the numerical model is conducted and the typical fow patterns are consistent with the Baker chart.Then,the FSI framework is established to investigate the dynamic responses of the interaction between the horizontal pipe and gas-liquid two-phase fow.The results show that the dynamic response under stratified fow condition is relatively flat and the maximum pipe deformation and equivalent stress are 1.8 mm and 7.5 MPa respectively.Meanwhile,the dynamic responses induced by slug fow,wave fow and annular fow show obvious periodic fuctuations.Furthermore,the dynamic response characteristics under slug flow condition are maximum;the maximum pipe deformation and equivalent stress can reach 4mm and 17.5 MPa,respectively.The principal direction of total deformation is different under various flow patterns.Therefore,the periodic equivalent stress will form the cyclic impact on the pipe wall and affect the fatigue life of the horizontal pipe.The present study may serve as a reference for FSI simulation under gas-liquid two-phase transport conditions.
基金funded by the BeijingNatural Science Foundation of China(8222003)National Natural Science Foundation of China(41807180).
文摘Based on global initiatives such as the clean energy transition and the development of renewable energy,the pumped storage power station has become a new and significant way of energy storage and regulation,and its construction environment is more complex than that of a traditional reservoir.In particular,the stability of the rock strata in the underground reservoirs is affected by the seepage pressure and rock stress,which presents some challenges in achieving engineering safety and stability.Using the advantages of the numerical simulation method in dealing deal with nonlinear problems in engineering stability,in this study,the stability of the underground reservoir of the Shidangshan(SDS)pumped storage power station was numerically calculated and quantitatively analyzed based on fluid-structure coupling theory,providing an important reference for the safe operation and management of the underground reservoir.First,using the COMSOL software,a suitablemechanicalmodel was created in accordance with the geological structure and project characteristics of the underground reservoir.Next,the characteristics of the stress field,displacement field,and seepage field after excavation of the underground reservoir were simulated in light of the seepage effect of groundwater on the nearby rock of the underground reservoir.Finally,based on the construction specifications and Molar-Coulomb criterion,a thorough evaluation of the stability of the underground reservoir was performed through simulation of the filling and discharge conditions and anti-seepage strengthening measures.The findings demonstrate that the numerical simulation results have a certain level of reliability and are in accordance with the stress measured in the project area.The underground reservoir excavation resulted in a maximum displacement value of the rock mass around the caverns of 3.56 mm in a typical section,and the safety coefficient of the parts,as determined using the Molar-Coulomb criterion,was higher than 1,indicating that the project as a whole is in a stable state.
文摘The centrifugal pump is a prevalent power equipment widely used in different engineering patterns,and the impeller blade wrap angle significantly impacts its performance.A numerical investigation was conducted to analyze the influence of the blade wrap angle on flow characteristics and energy distribution of a centrifugal pump evaluated as a low specific speed with a value of 69.This study investigates six impellermodels that possess varying blade wrap angles(95°,105°,115°,125°,135°,and 145°)that were created while maintaining the same volute and other geometrical characteristics.The investigation of energy loss was conducted to evaluate the values of total and entropy generation rates(TEG,EGR).The fluid-structure interaction was considered numerically using the software tools ANSYS Fluent and ANSYSWorkbench.The elastic structural dynamic equation was used to estimate the structural response,while the shear stress transport k–ωturbulence model was utilized for the fluid domain modeling.The findings suggest that the blade wrap angle has a significant influence on the efficiency of the pump.The impeller featuring a blade wrap angle of 145°exhibits higher efficiency,with a notable increase of 3.76%relative to the original model.Variations in the blade wrap angle impact the energy loss,shaft power,and pump head.The model with a 145°angle exhibited a maximum equivalent stress of 14.8MPa and a total deformation of 0.084 mm.The results provide valuable insights into the intricate flow mechanism of the centrifugal pump,particularly when considering various blade wrap angles.
基金open foundation of the Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanicsthe Open Foundation of Hubei Key Laboratory of Engineering Structural Analysis and Safety Assessment.
文摘A fluid-structure interaction approach is proposed in this paper based onNon-Ordinary State-Based Peridynamics(NOSB-PD)and Updated Lagrangian Particle Hydrodynamics(ULPH)to simulate the fluid-structure interaction problem with large geometric deformation and material failure and solve the fluid-structure interaction problem of Newtonian fluid.In the coupled framework,the NOSB-PD theory describes the deformation and fracture of the solid material structure.ULPH is applied to describe the flow of Newtonian fluids due to its advantages in computational accuracy.The framework utilizes the advantages of NOSB-PD theory for solving discontinuous problems and ULPH theory for solving fluid problems,with good computational stability and robustness.A fluidstructure coupling algorithm using pressure as the transmission medium is established to deal with the fluidstructure interface.The dynamic model of solid structure and the PD-ULPH fluid-structure interaction model involving large deformation are verified by numerical simulations.The results agree with the analytical solution,the available experimental data,and other numerical results.Thus,the accuracy and effectiveness of the proposed method in solving the fluid-structure interaction problem are demonstrated.The fluid-structure interactionmodel based on ULPH and NOSB-PD established in this paper provides a new idea for the numerical solution of fluidstructure interaction and a promising approach for engineering design and experimental prediction.
基金supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX24_0714).
文摘To examine the similarities and differences in the evolution of cavity,wetting and dynamics of a highspeed,oblique water-entry projectile with different positive angles of attack,a comparative analysis has been conducted based on the numerical results of two mathematical models,the rigid-body model and fluid-structure interaction model.In addition,the applicable scope of the above two methods,and the structural response characteristics of the projectile have also been investigated.Our results demonstrate that:(1) The impact loads and angular motion of the projectile of the rigid-body method are more likely to exhibit periodic variations due to the periodic tail slap,its range of positive angles of attack is about α<2°.(2) When the projectile undergone significant wetting,a strong coupling effect is observed among wetting,structural deformation,and projectile motion.With the applied projectile shape,it is observed that,when the projectile bends,the final wetting position is that of Part B(cylinder of body).With the occu rrence of this phenomenon,the projectile ballistics beco me completely unstable.(3) The force exerted on the lower surface of the projectile induced by wetting is the primary reason of the destabilization of the projectile traj ectory and structu ral deformation failure.Bending deformation is most likely to appear at the junction of Part C(cone of body) and Part D(tail).The safe angles of attack of the projectile stability are found to be about α≤2°.
基金supported by the National Natural Science Foundation of China(Grant Nos.12002156,11972185,12372136)Research Fund of State Key Laboratory of Mechanics and Control for Aerospace Structures(Grant No.MCMS-I-0222K01)。
文摘While the moisture content of soil affects significantly the blast impulse of shallow buried explosives,the role of surface-covering water(SCW)on soil in such blast impulse remains elusive.A combined experimental and numerical study has been carried out to characterize the effect of SCW on transferred impulse and loading magnitude of shallow buried explosives.Firstly,blast tests of shallow buried explosives were conducted,with and without the SCW,to quantitatively assess the blast loading impulse.Subsequently,finite element(FE)simulations were performed and validated against experimental measurement,with good agreement achieved.The validated FE model was then employed to predict the dynamic response of a fully-clamped metallic circular target,subjected to the explosive impact of shallow buried explosives with SCW,and explore the corresponding physical mechanisms.It was demonstrated that shallow buried explosives in saturated soil generate a greater impulse transferred towards the target relative to those in dry soil.The deformation displacement of the target plate is doubled.Increasing the height of SCW results in enhanced center peak deflection of the loaded target,accompanied by subsequent fall,due to the variation of deformation pattern of the loaded target from concentrated load to uniform load.Meanwhile,the presence of SCW increases the blast impulse transferred towards the target by three times.In addition,there exists a threshold value of the burial depth that maximizes the impact impulse.This threshold exhibits a strong sensitivity to SCW height,decreasing with increasing SCW height.An empirical formula for predicting threshold has been provided.Similar conclusions can be drawn for different explosive masses.The results provide technical guidance on blast loading intensity and its spatial distribution considering shallow buried explosives in coast-land battlefields,which can ultimately contribute to better protective designs.
基金National Natural Science Foundation of China(31700644)Shandong Province Postdoctoral Innovation Project(SDCX-ZG-202400195)。
文摘The conventional honey production is dominated by fragmented,small-scale individual farming models.The traditional approach of honey-harvesting involving manual beehive frames extraction,beeswax layer excision and centrifugal honey separation,expose beekeepers to potential bee stings and frequently compromise honeycomb integrity.To address these limitations,we designed an automated honey-harvesting robot capable of autonomous frame extraction and beeswax removal.The robot mainly consists of a mobile mechanism equipped with image recognition for beehive localization,a magnetic adsorption-based beehive frame handling device(60.8 N maximum suction)coupled with a cross-slide mechanism for precise frame manipulation,and a thermal beeswax layer-melting apparatus,with optimal melting parameters(15 m/s airflow at 90℃ for 30 seconds)determined through rigorous thermal flow simulations utilizing FLUENT/Mechanical software.Field experiments demonstrated beehive frames handling success rate exceeding 85%,beeswax layer removal efficacy over 80% and damage of honeycombs below 30%.The experiment results validate the robot's operational reliability and its capacity to automate critical harvesting procedures.This study significantly reduces the labor intensity for beekeepers,effectively eliminates the risk of direct human-bee contact and improves the removal of beeswax layer,thereby catalyzing the modernization of the beekeeping industry.
基金co-supported by the National Natural Science Foundation of China(No.12472332)。
文摘This paper investigates the influence of the spanwise-distributed trailing-edge camber morphing on the dynamic stall characteristics of a finite-span wing at Re=2×10^(5).The mathematical model of the spanwise-distributed trailing-edge camber morphing is established based on Chebyshev polynomials,and the deformed wing surface is modeled by a spline surface according to the rib's morphing in the chordwise direction.The Computational Fluid Dynamics(CFD)method is adopted to obtain flow-field results and aerodynamic forces.The SST-γmodel is introduced and the overset mesh technique is adopted.The numerical results show that the spanwisedistributed trailing-edge morphing obviously changes the aerodynamic and energy transfer characteristics of the dynamic stall.Especially when the phase difference between the trailing-edge motion and the wing pitch is-π/2,the interaction between the three-dimensional(3-D)Leading-Edge Vortex(LEV)and Trailing-Edge Vortex(TEV)is strengthened,and the work done by the aerodynamic force turns negative.This indicates that the trailing-edge deformation has the potential to suppress the oscillation amplitude of stall flutter.We also found that as the trailing-edge camber morphing varies more complexly along the spanwise direction,the suppression effect decreases accordingly.
基金the financial support from the National Natural Science Foundation of China(No.52206091)the Aeronautical Science Foundation of China(No.201928052008)the Natural Science Foundation of Jiangsu Province,China(No.BK20210303)。
文摘Rotating machinery in the aviation industry is increasingly embracing high speeds and miniaturization,and foil dynamic pressure gas bearing has great application value due to its self-lubrication and self-adaptive deformation characteristics.This study explores the interaction mechanism between micro-scale variable-sectional shearing flow with hyper-rotation speeds and a three-layer elastic foil assembly through bidirectional aero-elastic coupling in a Multi-layer Thrust Gas Foil Bearing(MTGFB).The bearing capacity of the MTGFB varies non-linearly with the decrease of gas film clearance,while the collaborative deformation of the three-layer elastic foil assembly can deal with different load conditions.As the load capacity increases,the enhanced dynamic pressure effect causes the top foil to evolve from a single arch to multiple arches.The hydrodynamic effects in the gas film evolve to form multiple segmented wedges with different pitch ratios,while the peak pressure of the gas film always occurs near the vaults of the top foil.As the rotational speed frequency approaches the natural frequency,the resonance of the gas film and elastic foil assembly system occurs,and a phase delay occurs between the pressure pulsation and the vibration of foils.The load capacity of the MTGFB also depends on the elastic moduli of the elastic foil assembly.Increasing the elastic modulus decreases the deformation amplitude of the top foil,whereas it increases those of the backboard and middle foil,increasing the load capacity.
基金co-supported by the National Natural Science Foundation of China(Nos.52472394,52425211,52201327,52272360)。
文摘Stall flutter poses great challenges to flight safety.To alleviate this problem,a steady blowing control considering the perturbation and wake-induced vibration at a large angle of attack is developed in this paper,where two blowings are configured on upper and lower tail surfaces to suppress the stall flutter.The stall flutter with one-degree-of-freedom is first evaluated by numerical simulation.The equation of motion for stall flutter is solved by the Newmark-β method.Then,the stall flutter responses for five blowing speeds,i.e.,0,4,12,20,and 28 m/s under the airspeed range of 3–9 m/s,are studied in detail.The stall flutter suppression mechanism can be summarized as follows:a large blowing speed can inject energy into the boundary layer and enhance the high-pressure zone,which delays the flow separation on the suction surface.In this way,the formation of the leading-edge separation vortex is suppressed.Thus,the dynamic stall vortex is weakened and accelerates shedding.In addition,the driving moment is reduced,which leads to a decrement in the stall flutter amplitude.When the blowing speed is 28 m/s(stall flutter amplitude=0.1357 rad),compared with uncontrolled case(stall flutter amplitude=0.6002 rad),the amplitude can decrease by 77.39%,which demonstrates the effectiveness of the proposed steady blowing based active control strategy.
基金supported in part by National Sciences Foundation of China grants 11972117a Jiangsu Province Science and Technology Agency under grant number BE2016785+4 种基金support from Natural Science Foundation of China(81827806 and 62135002)support from Natural Science Foundation of China(81722025)Key R&D Project of Heilongjiang Province grant 2022ZX06C07support from the Natural Science Foundation of Shandong Province under grant number ZR2024QA110Shandong Province Medical Health Science and Technology Project(Nos.202425020256,and 202403010254).
文摘Image-based computational models have been used for vulnerable plaque progression and rupture predictions,and good results have been reported.However,mechanisms and predictions for plaque erosion are underinvestigated.Patient-specific fluid-structure interaction(FSI)models based on optical coherence tomography(OCT)follow-up data from patients with plaque erosion and who received conservative antithrombotic treatment(using medication,no stenting)to identify risk factors that could be used to predict the treatment outcome.OCT and angiography datawere obtained from10 patientswho received conservative antithrombotic treatment.Five participants had worse outcomes(WOG,stenosis severity≥70%at one-year follow-up),while the other five had better outcomes(BOG,stenosis severity<70%at one-year follow-up).Patient-specific 3D FSI models were constructed to obtain morphological and biomechanical risk factor values(a total of nine risk factors)for comparison and prediction.A logistic regressionmodel was used to identify optimal predictors with the best treatment outcome prediction accuracies.Our results indicated that the combination of wall shear stress(WSS),lipid percent,and thrombus burden was the best group predictor according to the mean area under the curve(AUC)of 0.96(90%confidence interval=(0.85,1.00)).WSS was the best single predictor withmean AUC=0.70(90%confidence interval=(0.20,1.00)).Thrombus burden was the only risk factor showing statistically significant group difference,suggesting its crucial role in the outcomes of conservative anti-thrombotic therapy.This pilot study indicated that integratingmorphological and biomechanical risk factors could improve treatment outcome prediction accuracy in patients with plaque erosion compared to predictions using single predictors.Large-scale patient studies are needed to further validate our findings.
基金joined PI of Westlake University(Grant Nos.041030150118 and 103110556022101)Scientific Research Funding Project of Westlake University(Grant No.2021WUFP017).
文摘The role of hydrodynamic effect in the meeting of multiple fish is a fascinating topic.The interactions of two self-propelled flexi-ble plates swimming in opposite directions horizontally and maintaining a certain lateral distance are numerically simulated using a penalty-immersed boundary method.The effects of the flapping phase and lateral distance on the propulsive performance of two fish meetings are analyzed.Results show that,when two plates meet,if their leading edges diverge laterally,the individual plate can efficiently and rapidly move apart from the other horizontally.If their leading edges converge laterally,the plate motion can be retarded,leading to high energy consumption.Moreover,an increasing lateral distance between two plates significantly weakens the fluid-structure interactions,resulting in an exponential decline in mean cruising speed.A quantitative force analysis based on vortex dynamic theory is performed to gain physics insight into the hydrodynamic interaction mechanism.It is found that lateral separation between the two leading edges enhances the vorticity generation and boundary vorticity flux on the surface of the plate,subsequently reinforcing the thrust effect and increasing horizontal velocity.This study offers insight into the hydro-dynamic mechanisms of the fluid-structure interactions among fish moving toward each other and suggests potential strategies for enhancing the maneuverability of robotic fish in complex environment.
基金Project supported by the National Natural Science Foundation of China (Nos. 12372025 and 12072311)。
文摘This paper proposes a novel three-directional functionally graded(3D FG)vibration energy harvesting model based on a bimorph pipe structure.A rectangular pipe has material properties that vary continuously along the axial,width,and height directions,and a steady fluid flows inside the pipe.Two piezoelectric layers are attached to the upper and lower surfaces of the pipe,and are connected in series with a load resistance.The output electricity is predicted theoretically and validated by finite element(FE) simulation.The complex mechanisms regulating the energy harvesting performance are investigated,focusing particularly on the effects of 3D FG material(FGM) parameters,load resistance,fluid-structure interaction(FSI),and geometry.Numerical results indicate that among several material gradient parameters,the axial gradient index has the most significant impact.Increasing the axial and height gradient indices can markedly enhance the energy harvesting performance.The optimal resistances differ between the first two modes.Overall,the maximum power is generated at lower resistances.The FSI effect can also improve the energy harvesting performance;however,higher flow velocities may destabilize the system,causing failure of harvesting energy.This research is capable of providing new insights into the design of a pipe energy harvester in engineering applications.