期刊文献+
共找到1,189篇文章
< 1 2 60 >
每页显示 20 50 100
Effects of internals on macroscopic fluid dynamics in a bubble column
1
作者 Shijie Liu Jin Liang +4 位作者 Qin Li Hui Yu Haoliang Wang Xiangyang Li Chao Yang 《Chinese Journal of Chemical Engineering》 2025年第1期19-29,共11页
The effects of internals on liquid mixing and gas-liquid mass transfer have rarely been investigated in bubble columns,and the commonly used measurement method overestimates significantly overall gas holdup.Firstly,ga... The effects of internals on liquid mixing and gas-liquid mass transfer have rarely been investigated in bubble columns,and the commonly used measurement method overestimates significantly overall gas holdup.Firstly,gas holdup measurement method is improved by conducting multi-point liquid level measurement and using net fluid volume instead of bed volume to calculate gas holdup.Then,a stable conductivity method for liquid macromixing has been established by shielding large bubbles using#16nylon mesh.Subsequently,the influences of internal coverage(=12.6%,18.9% and 25.1%) on macroscopic fluid dynamics in a bubble column with a free wall area are systematically investigated.It is found that the presence of internals has a notable effect on macroscopic fluid dynamics.The overall gas holdup and gas-liquid volumetric mass transfer coefficient decrease,and the macromixing time decreases with the increase of internal cross-sectional area coverage.These are mainly caused by the uneven distribution of airflow due to the low resistance in the free wall area.This design makes maintenance easier,but in reality,the reactor performance has decreased.Further improvements will be made to the reactor performance based on such a configuration through flow guidance using baffles. 展开更多
关键词 Bubble column INTERNALS Macroscopic fluid dynamics MIXING Mass transfer
在线阅读 下载PDF
Fine-tuning a large language model for automating computational fluid dynamics simulations
2
作者 Zhehao Dong Zhen Lu Yue Yang 《Theoretical & Applied Mechanics Letters》 2025年第3期219-225,共7页
Configuring computational fluid dynamics(CFD)simulations typically demands extensive domain expertise,limiting broader access.Although large language models(LLMs)have advanced scientific computing,their use in automat... Configuring computational fluid dynamics(CFD)simulations typically demands extensive domain expertise,limiting broader access.Although large language models(LLMs)have advanced scientific computing,their use in automating CFD workflows is underdeveloped.We introduce a novel approach centered on domain-specific LLM adaptation.By fine-tuning Qwen2.5-7B-Instruct on NL2FOAM,our custom dataset of 28,716 natural language-to-OpenFOAM configuration pairs with chain-of-thought(CoT)annotations enables direct translation from natural language descriptions to executable CFD setups.A multi-agent system orchestrates the process,autonomously verifying inputs,generating configurations,running simulations,and correcting errors.Evaluation on a benchmark of 21 diverse flow cases demonstrates state-of-the-art performance,achieving 88.7%solution accuracy and 82.6%first-attempt success rate.This significantly outperforms larger general-purpose models such as Qwen2.5-72B-Instruct,DeepSeek-R1,and Llama3.3-70B-Instruct,while also requiring fewer correction iterations and maintaining high computational efficiency.The results highlight the critical role of domain-specific adaptation in deploying LLM assistants for complex engineering workflows.Our code and fine-tuned model have been deposited at https://github.com/YYgroup/AutoCFD. 展开更多
关键词 Large language models Fine-tuning Computational fluid dynamics Automated CFD Multi-agent system
在线阅读 下载PDF
Fluid Dynamics of Quantum Dot Inks:Non-Newtonian Behavior and Precision Control in Advanced Printing
3
作者 Zhen Gong Siyu Chen +11 位作者 Zhenyu Feng Dawang Li Le Zhang Meiting Xu Yanping Lin Huixin Huang Dan Jiang Caiyi Wu Yichun Ke Zhonghui Du Ning Zhao Hongbo Liu 《Fluid Dynamics & Materials Processing》 2025年第9期2101-2129,共29页
Quantumdot inks(QDIs)represent an emerging functionalmaterial that integrates nanotechnology and fluid engineering,demonstrating significant application potential in flexible optoelectronics and high-color gamut displ... Quantumdot inks(QDIs)represent an emerging functionalmaterial that integrates nanotechnology and fluid engineering,demonstrating significant application potential in flexible optoelectronics and high-color gamut displays.Their wide applicability is due to a unique quantum confinement effect that enables precise spectral tunability and solution-processable properties.However,the complex fluid dynamics associated with QDIs at micro-/nano-scales severely limit the accuracy of inkjet printing and pattern deposition.This review systematically addresses recent advances in the hydrodynamics of QDIs,establishing scientific mechanisms and key technical breakthroughs from an interdisciplinary perspective.Current research has focused on three optimization directions:(1)regulating ligand structures to enhance colloidal stability,flow consistency,and anti-shear performance while mitigating nanoparticle aggregation;(2)incorporating low-viscosity or high-volatility solvents and surface tension modifiers to modify droplet dynamic characteristics and suppress the“coffee-ring”effect;(3)integrating advanced technologies such as electrohydrodynamic jetting and microfluidic targeted deposition to achieve submicron pattern resolution and high film uniformity,expanding adaptability in flexible electronics,biosensing,and anti-counterfeiting printing.A comparison of current technical routes and critical performance indicators has identified the dominant variables that influence QDI macroscopic/microscopic properties.A comprehensive analytical framework is presented which spans material structure,rheological behavior,manufacturing processes,and functional characteristics.Moreover,a proposed engineering‘structure–parameter–behavior–performance’serves to link core–shell structure,formulation parameters(e.g.,viscosity and surface tension),fluidic behavior(e.g.,shear thinning and Marangoni flow),and device performance(e.g.,resolution and photoluminescence efficiency).The findings provide theoretical support and decision-making guidance for the large-scale application and interdisciplinary expansion of QDIs. 展开更多
关键词 Quantum dot ink fluid dynamics inkjet printing microfluidic technology rheological property
在线阅读 下载PDF
Relevant Fluid Dynamics Aspects of the Internal Ballistics in a Small-Scale Hybrid Thruster
4
作者 Sergio Cassese Riccardo Guida +2 位作者 Daniele Trincone Stefano Mungiguerra Raffaele Savino 《Fluid Dynamics & Materials Processing》 2025年第6期1299-1337,共39页
Robust numerical tools are essential for enabling the use of hybrid rocket engines(HREs)in future space applications.In this context,Computational Fluid Dynamics(CFD)transient simulations can be employed to analyse an... Robust numerical tools are essential for enabling the use of hybrid rocket engines(HREs)in future space applications.In this context,Computational Fluid Dynamics(CFD)transient simulations can be employed to analyse and predict relevant fluid dynamics phenomena within the thrust chamber of small-scale HREs.This work applies such techniques to investigate two unexpected behaviours observed in a 10 N-class hydrogen peroxide-based hybrid thruster:an uneven regression rate during High-Density Polyethylene(HDPE)and Acrylonitrile Butadiene Styrene(ABS)fuel tests,and non-negligible axial consumption in the ABS test case.The present study seeks to identify their fluid-dynamic origins by analysing key aspects of the thruster’s internal ballistics.The impact of recirculation zones and mixing on regression rates is quantified,as is the effect of grain heating on performance.Although already known in the present scientific literature,these phenomena prove to become particularly relevant for small-scale engines.Furthermore,the study demonstrates how appropriate numerical tools can replicate experimental findings,helping to foresee and mitigate undesirable behaviours in the design phases of future HRE propulsion systems.CFD results match the final HDPE grain geometry,reproducing the uneven port diameters with a maximum error below 9%.For ABS,axial regression is accurately captured,confirming the model’s reliability.Furthermore,average regression rates differ by only 1.60%and 1.20%for HDPE and ABS,respectively,while mass consumption is reproduced within 1.70%for HDPE and 3.01%for ABS.Overall,the results of the work demonstrate the reliability of the numerical approach adopted.This enriches the analysis capabilities devoted to 10 N-class engines,provides an additional tool for simulating the internal ballistics of small-scale hybrid thrusters,and integrates the existing literature with new insights into their fluid dynamics. 展开更多
关键词 Computational fluid dynamics Transient CFD Simulations Hybrid Thrusters Hydrogen Peroxide CubeSats
在线阅读 下载PDF
Fluid Dynamics Research on Erbium Laser-Assisted Chemical Preparation for Root Canal Therapy:A Review
5
作者 Kedi Jihu Xinyu He Jizhi Zhao 《Journal of Clinical and Nursing Research》 2025年第4期43-49,共7页
Microbial infection is a principal etiological factor in pulp and periapical diseases,necessitating effective root canal therapy(RCT)for thorough decontamination of the root canal system.However,conventional mechanica... Microbial infection is a principal etiological factor in pulp and periapical diseases,necessitating effective root canal therapy(RCT)for thorough decontamination of the root canal system.However,conventional mechanical and chemical preparation methods remain inadequate,often leaving significant portions of the canal uncleaned and contributing to persistent infection.The advent of erbium laser-assisted chemical preparation has demonstrated significant potential in enhancing root canal disinfection through advanced fluid dynamics mechanisms,particularly cavitation and photoacoustic streaming.This review explores the fundamental principles governing fluid dynamics in erbium laser-assisted irrigation,with a focus on primary and secondary cavitation effects.The interaction between erbium laser energy and water generates vapor bubbles that induce dynamic fluid movement,enhancing the penetration and distribution of irrigants deep within the root canal system.Key factors influencing fluid dynamics intensity,including laser parameters,working tip design,and water medium confinement,are critically analyzed.Furthermore,recent advancements such as Photon-Initiated Photoacoustic Streaming(PIPS),Photoacoustic Synchronized Transients(PHAST),and Shock Wave Enhanced Emission Photoacoustic Streaming(SWEEPS)are reviewed in the context of their ability to improve fluid motion and irrigation efficacy.While these laser-assisted techniques offer promising improvements over traditional methods,challenges remain in optimizing energy parameters and mitigating the constraints imposed by confined root canal environments.Future research should focus on refining fluid dynamics models and conducting clinical studies to validate the efficacy of these innovations.This review aims to provide a comprehensive overview of current developments in fluid dynamics research related to erbium laser-assisted chemical preparation,offering insights into its potential as an advanced modality for root canal disinfection. 展开更多
关键词 Root canal therapy Laser adjunctive therapy Erbium Laser fluid dynamics Infection control
暂未订购
A Review of Computational Fluid Dynamics Techniques and Methodologies in Vertical Axis Wind Turbine Development
6
作者 Ahmad Fazlizan Wan Khairul Muzammil Najm Addin Al-Khawlani 《Computer Modeling in Engineering & Sciences》 2025年第8期1371-1437,共67页
This review provides a comprehensive and systematic examination of Computational Fluid Dynamics(CFD)techniques and methodologies applied to the development of Vertical Axis Wind Turbines(VAWTs).Although VAWTs offer si... This review provides a comprehensive and systematic examination of Computational Fluid Dynamics(CFD)techniques and methodologies applied to the development of Vertical Axis Wind Turbines(VAWTs).Although VAWTs offer significant advantages for urban wind applications,such as omnidirectional wind capture and a compact,ground-accessible design,they face substantial aerodynamic challenges,including dynamic stall,blade-wake interactions,and continuously varying angles of attack throughout their rotation.The review critically evaluates how CFD has been leveraged to address these challenges,detailing the modelling frameworks,simulation setups,mesh strategies,turbulence models,and boundary condition treatments adopted in the literature.Special attention is given to the comparative performance of 2-D vs.3-D simulations,static and dynamic meshing techniques(sliding,overset,morphing),and the impact of near-wall resolution on prediction fidelity.Moreover,this review maps the evolution of CFD tools in capturing key performance indicators including power coefficient,torque,flow separation,and wake dynamics,while highlighting both achievements and current limitations.The synthesis of studies reveals best practices,identifies gaps in simulation fidelity and validation strategies,and outlines critical directions for future research,particularly in high-fidelity modelling and cost-effective simulation of urban-scale VAWTs.By synthesizing insights from over a hundred referenced studies,this review serves as a consolidated resource to advance VAWT design and performance optimization through CFD.These include studies on various aspects such as blade geometry refinement,turbulence modeling,wake interaction mitigation,tip-loss reduction,dynamic stall control,and other aerodynamic and structural improvements.This,in turn,supports their broader integration into sustainable energy systems. 展开更多
关键词 Computational fluid dynamics vertical axis wind turbine turbulence models AIRFOILS urban wind
在线阅读 下载PDF
The Convergence of Computational Fluid Dynamics and Machine Learning in Oncology:A Review
7
作者 Wan Mohd Faizal Nurul Musfirah Mazlan +3 位作者 Shazril Imran Shaukat Chu Yee Khor Ab Hadi Mohd Haidiezul Abdul Khadir Mohamad Syafiq 《Computer Modeling in Engineering & Sciences》 2025年第8期1335-1369,共35页
Conventional oncology faces challenges such as suboptimal drug delivery,tumor heterogeneity,and therapeutic resistance,indicating a need formore personalized,andmechanistically grounded and predictive treatment strate... Conventional oncology faces challenges such as suboptimal drug delivery,tumor heterogeneity,and therapeutic resistance,indicating a need formore personalized,andmechanistically grounded and predictive treatment strategies.This review explores the convergence of Computational Fluid Dynamics(CFD)and Machine Learning(ML)as an integrated framework to address these issues in modern cancer therapy.The paper discusses recent advancements where CFD models simulate complex tumor microenvironmental conditions,like interstitial fluid pressure(IFP)and drug perfusion,and ML enhances simulation workflows,automates image-based segmentation,and enhances predictive accuracy.The synergy between CFD and ML improves scalability and enables patientspecific treatment planning.Methodologically,it coversmulti-scalemodeling approaches,nanotherapeutic simulations,imaging integration,and emerging AI-driven frameworks.The paper identifies gaps in current applications,including the need for robust clinical validation,real-time model adaptability,and ethical data integration.Future directions suggest that CFD–ML hybrids could serve as digital twins for tumor evolution,offering insights for adaptive therapies.The review advocates for a computationally augmented oncology ecosystem that combines biological complexity with engineering precision for next-generation cancer care. 展开更多
关键词 Computational fluid dynamics(CFD) machine learning(ML) cancer modeling drug delivery simulation tumor microenvironment
在线阅读 下载PDF
Evaluations of large language models in computational fluid dynamics:Leveraging,learning and creating knowledge
8
作者 Long Wang Lei Zhang Guowei He 《Theoretical & Applied Mechanics Letters》 2025年第3期207-218,共12页
This paper investigates the capabilities of large language models(LLMs)to leverage,learn and create knowledge in solving computational fluid dynamics(CFD)problems through three categories of baseline problems.These ca... This paper investigates the capabilities of large language models(LLMs)to leverage,learn and create knowledge in solving computational fluid dynamics(CFD)problems through three categories of baseline problems.These categories include(1)conventional CFD problems that can be solved using existing numerical methods in LLMs,such as lid-driven cavity flow and the Sod shock tube problem;(2)problems that require new numerical methods beyond those available in LLMs,such as the recently developed Chien-physics-informed neural networks for singularly perturbed convection-diffusion equations;and(3)problems that cannot be solved using existing numerical methods in LLMs,such as the ill-conditioned Hilbert linear algebraic systems.The evaluations indicate that reasoning LLMs overall outperform non-reasoning models in four test cases.Reasoning LLMs show excellent performance for CFD problems according to the tailored prompts,but their current capability in autonomous knowledge exploration and creation needs to be enhanced. 展开更多
关键词 Large language models Computational fluid dynamics Machine learning
在线阅读 下载PDF
Rotating tank experiments for the study of geophysical fluid dynamics 被引量:1
9
作者 Changming DONG Xiaojie LU +6 位作者 Yuli LIU Guoqing HAN Minghan FU Qian CAO Yang ZHANG Xu CHEN Yeping YUAN 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第5期1385-1398,共14页
Geophysical fluid dynamics(GFD)is an interdisciplinary field that studies the large-scale motion of fluids in the natural world.With a wide range of applications such as weather forecasts and climate prediction,GFD em... Geophysical fluid dynamics(GFD)is an interdisciplinary field that studies the large-scale motion of fluids in the natural world.With a wide range of applications such as weather forecasts and climate prediction,GFD employs various research approaches including in-situ observations,satellite measurements,numerical simulations,theoretical analysis,artificial intelligence,and physical model experiments in laboratory.Among these approaches,rotating tank experiments provide a valuable tool for simulating naturally-occurring fluid motions in laboratories.With proportional scaling and proper techniques,scientists can reproduce multi-scale physical processes of stratified fluids in the rotation system,which allows for the simulation of essential characteristics of fluid motions in the atmosphere and oceans.In this review,rotating tanks of various scales in the world are introduced,as these tanks have been actively used to explore fundamental scientific questions in ocean and atmosphere dynamics.To illustrate the GFD experiments,three representative cases are presented to demonstrate the frontier achievements in the the GFD study by using rotating tank experiments:mesoscale eddies in the ocean,convection processes,and plume dynamics.Detailed references for the experimental procedures are provided.Future studies are encouraged to further explore the utilization of rotating tanks with improvements in experimental design and integration of other research methods.This is a promising direction of GFD to help enhance our understanding of the complex nature of fluid motions in the natural world and to address the challenges posed by global environmental changes. 展开更多
关键词 laboratory experiment rotating tank geophysical fluid dynamics(GFD)
在线阅读 下载PDF
Advances and challenges in developing a stochastic model for multi-scale fluid dynamic simulation:One-dimensional turbulence
10
作者 Chongpei CHEN Tianyun GAO +2 位作者 Jianhan LIANG Lin ZHANG Mingbo SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第11期1-23,共23页
The modeling of turbulence,especially the high-speed compressible turbulence encountered in aerospace engineering,has always being a significant challenge in terms of balancing efficiency and accuracy.Most traditional... The modeling of turbulence,especially the high-speed compressible turbulence encountered in aerospace engineering,has always being a significant challenge in terms of balancing efficiency and accuracy.Most traditional models typically show limitations in universality,accuracy,and reliance on past experience.The stochastic multi-scale models show great potential in addressing these issues by representing turbulence across all characteristic scales in a reduced-dimensional space,maintaining sufficient accuracy while reducing computational cost.This review systematically summarizes advances in methods related to a widely used and refined stochastic multi-scale model,the One-Dimensional Turbulence(ODT).The advancements in formulations are emphasized for stand-alone incompressible ODT models,stand-alone compressible ODT models,and coupling methods.Some diagrams are also provided to facilitate more readers to understand the ODT methods.Subsequently,the significant developments and applications of stand-alone ODT models and coupling methods are introduced and critically evaluated.Despite the extensively recognized effectiveness of ODT models in low-speed turbulent flows,it is crucial to emphasize that there is still a research gap in the field of ODT coupling methods that are capable of accurately and efficiently simulating complex,three-dimensional,high-speed compressible turbulent flows up to now.Based on an analysis of the advantages and limitations of existing ODT methods,the recent advancement in the conservative compressible ODT model is considered to have provided a promising approach to tackle the modeling challenges of high-speed compressible turbulence.Therefore,this review outlines several recommended new research subjects and challenging issues to inspire further research in simulating complex,three-dimensional,high-speed compressible turbulent flows using ODT models. 展开更多
关键词 TURBULENCE Compressible flow fluid dynamics Turbulence models STOCHASTIC
原文传递
Geophysical fluid dynamics in the hypergravity field
11
作者 Harry Yeh 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2024年第6期3-10,共8页
Hypergravity can be realized by creating a field imposed by centripetal acceleration in a centrifuge apparatus.Such an apparatus is often used to test soil response in geotechnical engineering problems.Here we present... Hypergravity can be realized by creating a field imposed by centripetal acceleration in a centrifuge apparatus.Such an apparatus is often used to test soil response in geotechnical engineering problems.Here we present the potential usage of a centrifuge apparatus to study various topics in hydrodynamics.The scaling law associated with hydrodynamics is first reviewed,and the advantage of controlling the body force is described.One of the perceived disadvantages in such experiments is the unwanted presence of the Coriolis effect in the centrifuge.However,we propose exploiting this effect to our advantage to study geophysical fluid-dynamic problems that occur particularly in the equatorial region. 展开更多
关键词 HYPERGRAVITY SCALING Geophysical fluid dynamics CENTRIFUGE
原文传递
Computational Fluid Dynamics Approach for Predicting Pipeline Response to Various Blast Scenarios: A Numerical Modeling Study
12
作者 Farman Saifi Mohd Javaid +1 位作者 Abid Haleem S.M.Anas 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2747-2777,共31页
Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile fac... Recent industrial explosions globally have intensified the focus in mechanical engineering on designing infras-tructure systems and networks capable of withstanding blast loading.Initially centered on high-profile facilities such as embassies and petrochemical plants,this concern now extends to a wider array of infrastructures and facilities.Engineers and scholars increasingly prioritize structural safety against explosions,particularly to prevent disproportionate collapse and damage to nearby structures.Urbanization has further amplified the reliance on oil and gas pipelines,making them vital for urban life and prime targets for terrorist activities.Consequently,there is a growing imperative for computational engineering solutions to tackle blast loading on pipelines and mitigate associated risks to avert disasters.In this study,an empty pipe model was successfully validated under contact blast conditions using Abaqus software,a powerful tool in mechanical engineering for simulating blast effects on buried pipelines.Employing a Eulerian-Lagrangian computational fluid dynamics approach,the investigation extended to above-surface and below-surface blasts at standoff distances of 25 and 50 mm.Material descriptions in the numerical model relied on Abaqus’default mechanical models.Comparative analysis revealed varying pipe performance,with deformation decreasing as explosion-to-pipe distance increased.The explosion’s location relative to the pipe surface notably influenced deformation levels,a key finding highlighted in the study.Moreover,quantitative findings indicated varying ratios of plastic dissipation energy(PDE)for different blast scenarios compared to the contact blast(P0).Specifically,P1(25 mm subsurface blast)and P2(50 mm subsurface blast)showed approximately 24.07%and 14.77%of P0’s PDE,respectively,while P3(25 mm above-surface blast)and P4(50 mm above-surface blast)exhibited lower PDE values,accounting for about 18.08%and 9.67%of P0’s PDE,respectively.Utilising energy-absorbing materials such as thin coatings of ultra-high-strength concrete,metallic foams,carbon fiber-reinforced polymer wraps,and others on the pipeline to effectively mitigate blast damage is recommended.This research contributes to the advancement of mechanical engineering by providing insights and solutions crucial for enhancing the resilience and safety of underground pipelines in the face of blast events. 展开更多
关键词 Blast loading computational fluid dynamics computer modeling pipe networks response prediction structural safety
在线阅读 下载PDF
Computational fluid dynamics modeling of rapid pyrolysis of solid waste magnesium nitrate hydrate under different injection methods
13
作者 Wenchang Wu Kefan Yu +1 位作者 Liang Zhao Hui Dong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期224-237,共14页
This study developed a numerical model to efficiently treat solid waste magnesium nitrate hydrate through multi-step chemical reactions.The model simulates two-phase flow,heat,and mass transfer processes in a pyrolysi... This study developed a numerical model to efficiently treat solid waste magnesium nitrate hydrate through multi-step chemical reactions.The model simulates two-phase flow,heat,and mass transfer processes in a pyrolysis furnace to improve the decomposition rate of magnesium nitrate.The performance of multi-nozzle and single-nozzle injection methods was evaluated,and the effects of primary and secondary nozzle flow ratios,velocity ratios,and secondary nozzle inclination angles on the decomposition rate were investigated.Results indicate that multi-nozzle injection has a higher conversion efficiency and decomposition rate than single-nozzle injection,with a 10.3%higher conversion rate under the design parameters.The decomposition rate is primarily dependent on the average residence time of particles,which can be increased by decreasing flow rate and velocity ratios and increasing the inclination angle of secondary nozzles.The optimal parameters are injection flow ratio of 40%,injection velocity ratio of 0.6,and secondary nozzle inclination of 30°,corresponding to a maximum decomposition rate of 99.33%. 展开更多
关键词 MULTI-NOZZLE Computational fluid dynamics Thermal decomposition reaction Pyrolysis furnace
在线阅读 下载PDF
Flow Field Characteristics of Multi-Trophic Artificial Reef Based on Computation Fluid Dynamics
14
作者 HUANG Junlin LI Jiao +3 位作者 LI Yan GONG Pihai GUAN Changtao XIA Xu 《Journal of Ocean University of China》 CAS CSCD 2024年第2期317-327,共11页
On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the ef... On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the effect of spacing between reefs on flow scale and the flow state,were analyzed.Results indicate upwelling,slow flow,and eddy around a single reef.Maximum velocity,height,and volume of upwelling in front of a single reef were positively correlated with inflow velocity.The length and volume of slow flow increased with the increase in inflow velocity.Eddies were present both inside and backward,and vorticity was positively correlated with inflow velocity.Space between reefs had a minor influence on the maximum velocity and height of upwelling.With the increase in space from 0.5 L to 1.5 L(L is the reef lehgth),the length of slow flow in the front and back of the combined reefs increased slightly.When the space was 2.0 L,the length of the slow flow decreased.In four different spaces,eddies were present inside and at the back of each reef.The maximum vorticity was negatively correlated with space from 0.5 L to 1.5 L,but under 2.0 L space,the maximum vorticity was close to the vorticity of a single reef under the same inflow velocity. 展开更多
关键词 artificial reef flow field characteristics computation fluid dynamics multi-trophic structure
在线阅读 下载PDF
An Arbitrarily High Order and Asymptotic Preserving Kinetic Scheme in Compressible Fluid Dynamic
15
作者 Remi Abgrall Fatemeh Nassajian Mojarrad 《Communications on Applied Mathematics and Computation》 EI 2024年第2期963-991,共29页
We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics,both in time and space,which include the relaxation schemes by Jin and Xin.These methods can use the... We present a class of arbitrarily high order fully explicit kinetic numerical methods in compressible fluid dynamics,both in time and space,which include the relaxation schemes by Jin and Xin.These methods can use the CFL number larger or equal to unity on regular Cartesian meshes for the multi-dimensional case.These kinetic models depend on a small parameter that can be seen as a"Knudsen"number.The method is asymptotic preserving in this Knudsen number.Also,the computational costs of the method are of the same order of a fully explicit scheme.This work is the extension of Abgrall et al.(2022)[3]to multidimensional systems.We have assessed our method on several problems for two-dimensional scalar problems and Euler equations and the scheme has proven to be robust and to achieve the theoretically predicted high order of accuracy on smooth solutions. 展开更多
关键词 Kinetic scheme Compressible fluid dynamics High order methods Explicit schemes Asymptotic preserving Defect correction method
在线阅读 下载PDF
Application of Computational Fluid Dynamics and Fluid Structure Interaction Techniques for Calculating the 3D Transient Flow of Journal Bearings Coupled with Rotor Systems 被引量:21
16
作者 LI Qiang YU Guichang +1 位作者 LIU Shulian ZHENG Shuiying 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第5期926-932,共7页
Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simpli... Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simplified physical model and classic Reynolds equation are always applied. While the application of the general computational fluid dynamics (CFD)-fluid structure interaction (FSI) techniques is more beneficial for analysis of the fluid field in a journal bearing when more detailed solutions are needed. This paper deals with the quasi-coupling calculation of transient fluid dynamics of oil film in journal bearings and rotor dynamics with CFD-FSI techniques. The fluid dynamics of oil film is calculated by applying the so-called "dynamic mesh" technique. A new mesh movement approacb is presented while the dynamic mesh models provided by FLUENT are not suitable for the transient oil flow in journal bearings. The proposed mesh movement approach is based on the structured mesh. When the joumal moves, the movement distance of every grid in the flow field of bearing can be calculated, and then the update of the volume mesh can be handled automatically by user defined function (UDF). The journal displacement at each time step is obtained by solving the moving equations of the rotor-bearing system under the known oil film force condition. A case study is carried out to calculate the locus of the journal center and pressure distribution of the journal in order to prove the feasibility of this method. The calculating results indicate that the proposed method can predict the transient flow field of a journal bearing in a rotor-bearing system where more realistic models are involved. The presented calculation method provides a basis for studying the nonlinear dynamic behavior of a general rotor-bearing system. 展开更多
关键词 mesh movement transient flow computational fluid dynamics (CFD) fluid-structure interaction (FSI) journal bearing
在线阅读 下载PDF
Application of computational fluid dynamic to model the hydraulic performance of subsurface flow wetlands 被引量:17
17
作者 FAN Liwei Hai Reti +2 位作者 WANG Wenxing LU Zexiang YANG Zhiming 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2008年第12期1415-1422,共8页
A subsurface flow wetland(SSFW)was simulated using a commercial computational fluid dynamic(CFD)code.The constructed media was simulated using porous media and the liquid resident time distribution(RTD)in the SSFW was... A subsurface flow wetland(SSFW)was simulated using a commercial computational fluid dynamic(CFD)code.The constructed media was simulated using porous media and the liquid resident time distribution(RTD)in the SSFW was obtained using the particle trajectory model.The effect of wetland configuration and operating conditions on the hydraulic performance of the SSFW were investigated.The results indicated that the hydraulic performance of the SSFW was predominantly affected by the wetland configuration.The hydr... 展开更多
关键词 subsurface flow wetland computational fluid dynamic resident time distribution hydraulic performance
在线阅读 下载PDF
Flow Ripple of Axial Piston Pump with Computational Fluid Dynamic Simulation Using Compressible Hydraulic Oil 被引量:21
18
作者 MA Ji'en XU Bing ZHANG Bin YANG Huayong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第1期45-52,共8页
The flow ripple, which is the source of noise in an axial piston pump, is widely studied today with the computational fluid dynamic(CFD) technology development. In the traditional CFD modeling, the fluid compressibi... The flow ripple, which is the source of noise in an axial piston pump, is widely studied today with the computational fluid dynamic(CFD) technology development. In the traditional CFD modeling, the fluid compressibility, which strongly influences the accuracy of the flow ripple simulation results, is often neglected. So a compressible sub-model was added with user defined function(UDF) in the CFD model to predict the flow ripple. At the same time, a test rig of flow ripple was built to study the validity of simulation. The flow ripple of pump was tested with different working parameters, including the rotation speed and the working pressure. The comparisons with experimental results show that the validity of the CFD model with compressible hydraulic oil is acceptable in analyzing the flow tipple characteristics. In this paper, the improved CFD model increases the accuracy of flow ripple rate to about one-magnitude order. Therefore, the compressible model of hydraulic oil is necessary in the flow ripple investigation of CFD simulation. The compressibility of hydraulic oil has significant effect on flow ripple, and the compression ripple takes about 88% of the total flow ripple of pump. Leakage ripple has the lowest proportion of about 4%, and geometrical ripple leakage ripple takes the remnant 8%. Besides, the influence of working parameters was investigated through the CFD simulations and experimental measurements. Comparison results show that the amplitude of flow ripple grows with the increasing of rotation speed and working pressure, and the flow ripple rate is independent of the rotation speed. However, flow ripple rate of piston pump grows with the increasing of working pressure, because the leakage ripple will increase with the pressure growing. The investigation on flow ripple of an axial piston pump using compressible hydraulic oil provides a more validity simulation model for the CFD analyzing and is beneficial to further understanding of the flow ripple characteristics in an axial piston pump. 展开更多
关键词 axial piston pump flow ripple computational fluid dynamics
在线阅读 下载PDF
Urban Green Space Planning Based on Computational Fluid Dynamics Model and Landscape Ecology Principle:A Case Study of Liaoyang City,Northeast China 被引量:10
19
作者 ZHOU Yuan SHI Tiemao +4 位作者 HU Yuanman GAO Chang LIU Miao FU Shilei WANG Shizhe 《Chinese Geographical Science》 SCIE CSCD 2011年第4期465-475,共11页
As a result of environmental degradation,urban green space has become a key issue for urban sustainable development.This paper takes Liaoyang City in Northeast China as an example to develop green space planning using... As a result of environmental degradation,urban green space has become a key issue for urban sustainable development.This paper takes Liaoyang City in Northeast China as an example to develop green space planning using the computational fluid dynamics (CFD) model,landscape ecological principles and Geographical Information System (GIS).Based on the influencing factors of topography,building density and orientation,Shou Mountain,Longding Mountain and the Taizi River were selected as the urban ventilation paths to promote wind and oxygen circulation.Oxygen concentration around the green spaces gradually decreased with wind speed increase and wind direction change.There were obvious negative correlation relationships between the oxygen dispersion concentration and urban layout factors such as the building plot ratio and building density.Comparison with the field measurements found that there was significant correlation relationship between simulated oxygen concentration and field measurements (R 2=0.6415,p<0.001),moreover,simulation precision was higher than 92%,which indicated CFD model was effective for urban oxygen concentration simulation.Only less than 10% areas in Liaoyang City proper needed more green space urgently to improve oxygen concentration,mainly concentrated in Baitai and west Wensheng districts.Based on land-scape ecology principle,green space planning at different spatial scales were proposed to create a green space network system for Liaoyang City,including features such as green wedges,green belts and parks.Totally,about 2012 ha of green space need to be constructed as oxygen sources and ventilation paths.Compared with the current green space pattern,proposed green space planning could improve oxygen concentration obviously.The CFD model and research results in this paper could provide an effective way and theory support for sustainable development of urban green space. 展开更多
关键词 green space computational fluid dynamics oxygen dispersion pattern landscape ecology Liaoyang City proper
在线阅读 下载PDF
Calculation of Metzner Constant for Double Helical Ribbon Impeller by Computational Fluid Dynamic Method 被引量:9
20
作者 张敏革 张吕鸿 +2 位作者 姜斌 尹玉国 李鑫钢 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第5期686-692,共7页
Using the multiple reference frames (MRF) impeller method, the three-dimensional non-Newtonian flow field generated by a double helical ribbon (DHR) impeller has been simulated. The velocity field calculated by th... Using the multiple reference frames (MRF) impeller method, the three-dimensional non-Newtonian flow field generated by a double helical ribbon (DHR) impeller has been simulated. The velocity field calculated by the numerical simulation was similar to the previous studies and the power constant agreed well with the experimental data. Three computational fluid dynamic (CFD) methods, labeled Ⅰ, Ⅱ and Ⅲ, were used to compute the Metzuer constant k5. The results showed that the calculated value from the slop method (method Ⅰ) was consistent with the experimental data. Method Ⅱ, which took the maximal circumference-average shear rate around the impeller as the effective shear rate to compute ks, also showed good agreement with the experiment. However, both methods suffer from the complexity of calculation procedures. A new method (method Ⅲ) was devised in this paper to use the area-weighted average viscosity around the impeller as the effective viscosity for calculating k5. Method Ⅲ showed both good accuracy and ease of use. 展开更多
关键词 computational fluid dynamic double helical ribbon impeller non-Newtonian fluid Metzner constant
在线阅读 下载PDF
上一页 1 2 60 下一页 到第
使用帮助 返回顶部