期刊文献+
共找到8,036篇文章
< 1 2 250 >
每页显示 20 50 100
Fluid flow simulations of Tamusu mudstone at various clay contents
1
作者 Jingchun Feng Hongdan Yu +1 位作者 Diansen Yang Weizhong Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6362-6372,共11页
Accurately characterizing the pore structure of Tamusu mudstone and simulating fluid flow within it are crucial for assessing underground disposal of high-level radioactive waste(HLW)in this formation.Modeling mudston... Accurately characterizing the pore structure of Tamusu mudstone and simulating fluid flow within it are crucial for assessing underground disposal of high-level radioactive waste(HLW)in this formation.Modeling mudstone presents challenges due to its multiscale pore structure and the necessity that accounts for the effects of high clay content.A method for constructing a dual-scale pore network model(PNM)for the Tamusu mudstone,which considers the hydrological expansion of clays,was proposed.This model integrates N2 adsorption data with focused ion beam/scanning electron microscopy(FIB/SEM)images and labels pores based on clay content.Simulations of single-phase flow were conducted to validate the proposed model.Additionally,the influences of cell number,connectivity,slip effects,and clay minerals on permeability were examined.The findings indicate that a configuration of 45×45×45 cells adequately represents the model.The permeability of the Tamusu mudstone,about 1020 m^(2),aligns with the experimental values.During the simulation,Knudsen diffusion is considered.Factors such as increased roughness,tortuosity,clay content,and water film thickness decrease the permeability,whereas increased connectivity enhances permeability.In the model,numerical coordination numbers 2 and 3 are deemed suitable for the Tamusu mudstone.The proposed model is effective as a tool for constructing and simulating fluid flow in the Tamusu mudstone. 展开更多
关键词 Tamusu mudstone Clay mineral Multiscale pore network model fluid flow PERMEABILITY
在线阅读 下载PDF
Fourier neural operator for high-resolution fluid flow simulation based on low-resolution data:the vorticity equation as an example
2
作者 Hongchao Qu Xiongbo Zheng +1 位作者 Lihong Yang Zhenya Song 《Acta Oceanologica Sinica》 2025年第6期165-177,共13页
In oceanic and atmospheric science,finer resolutions have become a prevailing trend in all aspects of development.For high-resolution fluid flow simulations,the computational costs of widely used numerical models incr... In oceanic and atmospheric science,finer resolutions have become a prevailing trend in all aspects of development.For high-resolution fluid flow simulations,the computational costs of widely used numerical models increase significantly with the resolution.Artificial intelligence methods have attracted increasing attention because of their high precision and fast computing speeds compared with traditional numerical model methods.The resolution-independent Fourier neural operator(FNO)presents a promising solution to the still challenging problem of high-resolution fluid flow simulations based on low-resolution data.Accordingly,we assess the potential of FNO for high-resolution fluid flow simulations using the vorticity equation as an example.We assess and compare the performance of FNO in multiple high-resolution tests varying the amounts of data and the evolution durations.When assessed with finer resolution data(even up to number of grid points with 1280×1280),the FNO model,trained at low resolution(number of grid points with 64×64)and with limited data,exhibits a stable overall error and good accuracy.Additionally,our work demonstrates that the FNO model takes less time than the traditional numerical method for high-resolution simulations.This suggests that FNO has the prospect of becoming a cost-effective and highly precise model for high-resolution simulations in the future.Moreover,FNO can make longer high-resolution predictions while training with less data by superimposing vorticity fields from previous time steps as input.A suitable initial learning rate can be set according to the frequency principle,and the time intervals of the dataset need to be adjusted according to the spatial resolution of the input when training the FNO model.Our findings can help optimize FNO for future fluid flow simulations. 展开更多
关键词 Fourier neural operator high-resolution simulation fluid flow vorticity equation
暂未订购
An improved fluid flow algorithm for hydraulic fracturing:Optimizing domain volume and crack pressure update strategies
3
作者 Wei Zhang Jing Bi +3 位作者 Yu Zhao Yongfa Zhang Chaolin Wang Yang Pan 《International Journal of Mining Science and Technology》 2025年第4期639-657,共19页
With the widespread adoption of hydraulic fracturing technology in oil and gas resource development,improving the accuracy and efficiency of fracturing simulations has become a critical research focus.This paper propo... With the widespread adoption of hydraulic fracturing technology in oil and gas resource development,improving the accuracy and efficiency of fracturing simulations has become a critical research focus.This paper proposes an improved fluid flow algorithm,aiming to enhance the computational efficiency of hydraulic fracturing simulations while ensuring computational accuracy.The algorithm optimizes the aperture law and iteration criteria,focusing on improving the domain volume and crack pressure update strategy,thereby enabling precise capture of dynamic borehole pressure variations during injection tests.The effectiveness of the algorithm is verified through three flow-solid coupling cases.The study also analyzes the effects of borehole size,domain volume,and crack pressure update strategy on fracturing behavior.Furthermore,the performance of the improved algorithm in terms of crack propagation rate,micro-crack formation,and fluid pressure distribution was further evaluated.The results indicate that while large-size boreholes delay crack initiation,the cracks propagate more rapidly once formed.Additionally,the optimized domain volume calculation and crack pressure update strategy significantly shorten the pressure propagation stage,promote crack propagation,and improve computational efficiency. 展开更多
关键词 Hydraulic fracturing fluid flow algorithm Domain volume optimization Crack pressure update Borehole size
在线阅读 下载PDF
Effects of multi-scale wave-induced fluid flow on seismic dispersion,attenuation and frequency-dependent anisotropy in periodic-layered porous-cracked media
4
作者 Zhao-Yun Zong Yan-Wen Feng +1 位作者 Fu-Bin Chen Guang-Zhi Zhang 《Petroleum Science》 2025年第2期684-696,共13页
The wave-induced fluid flow(WIFF) occurring in the ubiquitous layered porous media(e.g.,shales)usually causes the appreciable seismic energy dissipation,which further leads to the frequency dependence of wave velocity... The wave-induced fluid flow(WIFF) occurring in the ubiquitous layered porous media(e.g.,shales)usually causes the appreciable seismic energy dissipation,which further leads to the frequency dependence of wave velocity(i.e.,dispersion) and elastic anisotropy parameters.The relevant knowledge is of great importance for geofluid discrimination and hydrocarbon exploration in the porous shale reservoirs.We derive the wave equations for a periodic layered transversely isotropy medium with a vertical axis of symmetry(VTI) concurrently with the annular cracks(PLPC medium) based on the periodic-layered model and anisotropic Biot's theory,which simultaneously incorporate the effects of microscopic squirt fluid flow,mesoscopic interlayer fluid flow and macroscopic global fluid flow.Notably,the microscopic squirt shorten fluid flow emerges between the annular-shaped cracks and stiff pores,which generates one attenuation peak.Specifically,we first establish the stress-strain relationship and pore fluid pressure in a PLPC medium,and then use them to derive the wave equations by means of the Newton's second law.The plane analysis is implemented on the wave equations to yield the analytic solutions for phase velocities and attenuation factors of four waves,namely,fast P-wave,slow P-wave,SV-wave and SH-wave,and the anisotropy parameters can be therefore computed.Simulation results show that P-wave velocity have three attenuation peaks throughout the full frequency band,which respectively correspond to the influences of interlayer flow,the squirt flow and the Biot flow.Through the results of seismic velocity dispersion and attenuation at different incident angles,we find that the WIFF mechanism also has a significant impact on the dispersion characteristics of elastic anisotropy parameters within the low-mid frequency band.Moreover,it is shown that several poroelastic parameters,such as layer thickness ratio,crack aspect ratio and crack density have notable influence on seismic dispersion and attenuation.We compare the proposed modeled velocities with that given by the existing theory to confirm its validity.Our formulas and result can provide a better understanding of wave propagation in PLPC medium by considering the unified impacts of micro-,meso-and macro-scale WIFF mechanisms,which potentially lays a theoretical basis of rock physics for seismic interpretation. 展开更多
关键词 Wave-induced fluid flow Multi-scale wave equations ANISOTROPY Dispersion and attenuation
原文传递
Three-dimensional simulation of pore scale fluid flow in granular ore media with realistic geometry 被引量:5
5
作者 杨保华 吴爱祥 +2 位作者 王春来 牛文鑫 刘金枝 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第12期3081-3086,共6页
The images of granular ore media were captured by X-ray CT scanner. Combined with digital image processing and finite element techniques, the three-dimensional geometrical model, which represents the realistic pore st... The images of granular ore media were captured by X-ray CT scanner. Combined with digital image processing and finite element techniques, the three-dimensional geometrical model, which represents the realistic pore structure of the media, was constructed. With this model, three dimensional pore scale fluid flow among particles was simulated. Then the distributions of fluid flow velocity and pressure were analyzed and the hydraulic conductivity was calculated. The simulation results indicate the fluid flow behaviors are mainly dominated by the volume and topological structure of pore space. There exist obvious preferential flow and leaching blind zones simultaneously in the medium. The highest velocities generally occur in those narrow pores with high pressure drops. The hydraulic conductivity obtained by simulation is the same order of magnitude as the laboratory test result, which denotes the validity of the model. The pore-scale and macro-scale are combined and the established geometrical model can be used for the simulations of other phenomena during heap leaching process. 展开更多
关键词 granular ore medium heap leaching computed tomography pore-scale fluid flow 3D finite element model
在线阅读 下载PDF
Three-dimensional turbulent model of heat transfer and fluid flow in GTAW process 被引量:1
6
作者 董志波 徐艳利 +3 位作者 魏艳红 马瑞 王淑娟 翟国富 《China Welding》 EI CAS 2010年第2期23-27,共5页
A two-equation K-ε turbulent fluid flow model is built to model the heat transfer and fluid flow in gas tungsten arc welding (GTAW) process of stainless steel S US310 and S US316. This model combines the buoyancy f... A two-equation K-ε turbulent fluid flow model is built to model the heat transfer and fluid flow in gas tungsten arc welding (GTAW) process of stainless steel S US310 and S US316. This model combines the buoyancy force, lorentz force and marangni force as the driving forces of thefluidflow in the weld pool. The material properties are functions of temperature in this model. The simulated results show that the molten metal flowing outward is mainly caused by the marangoni convection, which makes the weld pool become wider and shallower. The comparison of the weld pool shape of SUS310 and SUS316 shows that the slight differences of the value of thermal conductivity mainly attributes to the difference of the weld pool shape and the distinction of heat transport in laminar and turbulent model makes large diversity in the simulated results. 展开更多
关键词 heat transfer fluid flow GTAW K-ε turbulent fluid flow model
在线阅读 下载PDF
3D topographic correction of the BSR heat flow and detection of focused fluid flow
7
作者 何涛 李洪林 邹长春 《Applied Geophysics》 SCIE CSCD 2014年第2期197-206,254,共11页
The bottom-simulating reflector(BSR) is a seismic indicator of the bottom of a gas hydrate stability zone. Its depth can be used to calculate the seafloor surface heat flow. The calculated BSR heat flow variations i... The bottom-simulating reflector(BSR) is a seismic indicator of the bottom of a gas hydrate stability zone. Its depth can be used to calculate the seafloor surface heat flow. The calculated BSR heat flow variations include disturbances from two important factors:(1) seafloor topography, which focuses the heat flow over regions of concave topography and defocuses it over regions of convex topography, and(2) the focused warm fluid flow within the accretionary prism coming from depths deeper than BSR. The focused fluid flow can be detected if the contribution of the topography to the BSR heat flow is removed. However, the analytical equation cannot solve the topographic effect at complex seafloor regions. We prove that 3D finite element method can model the topographic effect on the regional background heat flow with high accuracy, which can then be used to correct the topographic effect and obtain the BSR heat flow under the condition of perfectly flat topography. By comparing the corrected BSR heat flow with the regional background heat flow, focused fluid flow regions can be detected that are originally too small and cannot be detected using present-day equipment. This method was successfully applied to the midslope region of northern Cascadia subducting margin. The results suggest that the Cucumber Ridge and its neighboring area are positive heat flow anomalies, about 10%–20% higher than the background heat flow after 3D topographic correction. Moreover, the seismic imaging associated the positive heat flow anomaly areas with seabed fracture–cavity systems. This suggests flow of warm gas-carrying fluids along these high-permeability pathways, which could result in higher gas hydrate concentrations. 展开更多
关键词 gas hydrate BSR 3D finite element heat flow fluid flow
在线阅读 下载PDF
Application of Stochastic Fracture Network with Numerical Fluid Flow Simulations to Groundwater Flow Modeling in Fractured Rocks
8
作者 Wang Mingyu The University of Arizona, Tucson, Arizona, USA 85721 Department of Water Resources and Environmental Engineering, China University of Geosciences, Beijing 100083Chen Jinsong Wan Li Department of Water Resources and Environmental Engineering 《Journal of China University of Geosciences》 SCIE CSCD 2001年第3期240-248,共9页
The continuum approach in fluid flow modeling is generally applied to porous geological media, but has limited applicability to fractured rocks. With the presence of a discrete fracture network relatively sparsely dis... The continuum approach in fluid flow modeling is generally applied to porous geological media, but has limited applicability to fractured rocks. With the presence of a discrete fracture network relatively sparsely distributed in the matrix, it may be difficult or erroneous to use a porous medium fluid flow model with continuum assumptions to describe the fluid flow in fractured rocks at small or even large field scales. A discrete fracture fluid flow approach incorporating a stochastic fracture network with numerical fluid flow simulations could have the capability of capturing fluid flow behaviors such as inhomogeneity and anisotropy while reflecting the changes of hydraulic features at different scales. Moreover, this approach can be implemented to estimate the size of the representative elementary volume (REV) in order to find out the scales at which a porous medium flow model could be applied, and then to determine the hydraulic conductivity tensor for fractured rocks. The following topics are focused on in this study: (a) conceptual discrete fracture fluid flow modeling incorporating a stochastic fracture network with numerical flow simulations; (b) estimation of REV and hydraulic conductivity tensor for fractured rocks utilizing a stochastic fracture network with numerical fluid flow simulations; (c) investigation of the effect of fracture orientation and density on the hydraulic conductivity and REV by implementing a stochastic fracture network with numerical fluid flow simulations, and (d) fluid flow conceptual models accounting for major and minor fractures in the 2 D or 3 D flow fields incorporating a stochastic fracture network with numerical fluid flow simulations. 展开更多
关键词 discrete fracture fluid flow approach fractured rocks hydraulic conductivity tensor major fractures minor fractures numerical fluid flow simulations representative elementary volume stochastic fracture network.
在线阅读 下载PDF
Relationship between the transition frequency of local fluid flow and the peak frequency of attenuation 被引量:1
9
作者 曹呈浩 张宏兵 +1 位作者 潘益鑫 滕新保 《Applied Geophysics》 SCIE CSCD 2016年第1期156-165,221,共11页
Local fluid flow(LFF) at the mesoscopic scale is the main dissipation mechanism of seismic waves in heterogeneous porous media within the seismic frequency band.LFF is easily influenced by the structure and boundary... Local fluid flow(LFF) at the mesoscopic scale is the main dissipation mechanism of seismic waves in heterogeneous porous media within the seismic frequency band.LFF is easily influenced by the structure and boundary conditions of the porous media,which leads to different behaviors of the peak frequency of attenuation.The associated transition frequency can provide detailed information about the trend of LFF;therefore,research on the transition frequency of LFF and its relationship with the peak frequency of the corresponding attenuation(i.e.,inverse of quality factor) facilitates the detailed understanding of the effect of inner structures and boundary conditions in porous media.In this study,we firstly obtain the transition frequency of fluid flux based on Biot's theory of poroelasticity and the fast Fourier transform algorithm in a sample containing one repeating unit cell(RUC).We then analyze changes of these two frequencies in porous media with different porous properties.Finally,we extend our analysis to the influence of the undrained boundary condition on the transition frequency and peak frequency in porous media with multiple RUCs.This setup can facilitate the understanding of the effect from the undrained boundary condition.Results demonstrate that these two frequencies have the same trend at low water saturation,but amplitude variations differ between the frequencies as the amount of saturation increases.However,for cases of high water saturation,both the trend and the amplitude variation of these two frequencies fit well with each other. 展开更多
关键词 Local fluid flow peak frequency transition frequency saturation boundary condition
在线阅读 下载PDF
Numerical modelling of structural controls on fluid flow and mineralization 被引量:14
10
作者 J.Robinson P.M.Schaubs 《Geoscience Frontiers》 SCIE CAS 2011年第3期449-461,共13页
This paper presents the results of a set of numerical models focussing on structural controls on hydrothermal mineralization. We first give an overview of natural phenomena of structurally-controlled ore formation and... This paper presents the results of a set of numerical models focussing on structural controls on hydrothermal mineralization. We first give an overview of natural phenomena of structurally-controlled ore formation and the background theory and mechanisms for such controls. We then provide the results of a group of simple 2D numerical models validated through comparison with Cu-vein structure observed near the Shilu Copper deposit (Yangchun, Guangdong Province, China) and finally a case study of 3D numerical modelling applied to the Hodgkinson Province in North Queensland (Australia). Two modelling approaches, discrete deformation modelling and continuum coupled deformation and fluid flow modelling, are involved. The 2D model-derived patterns are remarkably consistent with the Cu-vein structure from the Shilu Copper deposit, and show that both modelling approaches can realistically simulate the mechanical behaviours of shear and dilatant fractures. The continuum coupled deformation and fluid flow model indicates that pattern of the Cu- veins near the Shilu deposit is the result of shear strain localization, development of dilation and fluid focussing into the dilatant fracture segments. The 3D case-study models (with deformation and fluid flow coupling) on the Hodgkinson Province generated a number of potential gold mineralization 展开更多
关键词 Structural control DILATION fluid flow MINERALIZATION Numerical modelling Shilu Cu-deposit Hodgkinson Province
在线阅读 下载PDF
Effects of hydrocarbon generation on fluid flow in the Ordos Basin and its relationship to uranium mineralization 被引量:12
11
作者 Chunji Xue Guoxiang Chi Wei Xue 《Geoscience Frontiers》 SCIE CAS 2011年第3期439-447,共9页
The Ordos Basin of North China is not only an important uranium mineralization province, but also a major producer of oil, gas and coal in China. The genetic relationship between uranium mineralization and hydrocarbon... The Ordos Basin of North China is not only an important uranium mineralization province, but also a major producer of oil, gas and coal in China. The genetic relationship between uranium mineralization and hydrocarbons has been recognized by a number of previous studies, but it has not been well understood in terms of the hydrodynamics of basin fluid flow. We have demonstrated in a previous study that the preferential localization of Cretaceous uranium mineralization in the upper part of the Ordos Jurassic section may have been related to the interface between an upward flowing, reducing fluid and a downward flowing, oxidizing fluid. This interface may have been controlled by the interplay between fluid overpressure related to disequilibrium sediment compaction and which drove the upward flow, and topographic relief, which drove the downward flow. In this study, we carried out numerical modeling for the contribution of oil and gas generation to the development of fluid overpressure, in addition to sedi- ment compaction and heating. Our results indicate that when hydrocarbon generation is taken into account, fluid overpressure during the Cretaceous was more than doubled in comparison with the simu- lation when hydrocarbon generation was not considered. Furthermore, fluid overpressure dissipation at the end of sedimentation slowed down relative to the no-hydrocarbon generation case. These results suggest that hydrocarbon generation may have played an important role in uranium mineralization, not only in providing reducing agents required for the mineralization, but also in contributing to the driving force to maintain the upward flow. 展开更多
关键词 Ordos Basin Uranium deposits HYDRODYNAMICS Hydrocarbon generation fluid overpressure fluid flow Numerical modeling
在线阅读 下载PDF
Evaluation of gas wettability and its effects on fluid distribution and fluid flow in porous media 被引量:11
12
作者 Jiang Guancheng Li Yingying Zhang Min 《Petroleum Science》 SCIE CAS CSCD 2013年第4期515-527,共13页
The special gas wettability phenomenon of reservoir rocks has been recognized by more and more researchers.It has a significant effect on efficient development of unconventional reservoirs.First,based on the preferent... The special gas wettability phenomenon of reservoir rocks has been recognized by more and more researchers.It has a significant effect on efficient development of unconventional reservoirs.First,based on the preferentially gas-covered ability and surface free energy changes,definition and evaluation methods have been established.Second,a method for altering rock wettability and its mechanisms have been studied,surface oriented phenomena of functional groups with low surface energy are the fundamental reason for gas wettability alteration of rock.Third,the effect of gas wettability on the surface energy,electrical properties and dilatability are investigated.Last,the effects of gas wettability on capillary pressure,oil/gas/water distribution and flow are investigated with capillary tubes and etchedglass network models.The gas wettability theory of reservoir rocks has been initially established,which provides theoretical support for the efficient production of unconventional reservoirs and has great significance. 展开更多
关键词 Gas-wetting fluorocarbon copolymer contact angle capillary pressure surface free energy surface property fluid flow in porous media
原文传递
Multiple Dolomitization and Fluid Flow Events in the Precambrian Dengying Formation of Sichuan Basin,Southwestern China 被引量:11
13
作者 PENG Bo LI Zongxing +6 位作者 LI Guorong LIU Chenglin ZHU Shifa ZHANG Wang ZUO Yinhui GUO Yingchun WEI Xiaojie 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2018年第1期311-332,共22页
The Precambrian Dengying Formation is a set of large-scale,extensively dolomitized,carbonate reservoirs occurring within the Sichuan Basin.Petrographic and geochemical studies reveal dolomitization was a direct result... The Precambrian Dengying Formation is a set of large-scale,extensively dolomitized,carbonate reservoirs occurring within the Sichuan Basin.Petrographic and geochemical studies reveal dolomitization was a direct result of precipitation by chemically distinct fluids occurring at different times and at different intensities.Based on this evidence,dolomitization and multiple fluid flow events are analyzed,and three types of fluid evolution models are proposed.Results of analysis show that Precambrian Dengying Formation carbonates were deposited in a restricted peritidal environment(630-542 Ma).A high temperature and high Mg2+concentration seawater was a direct result of dolomitization for the micrite matrix,and for fibrous aragonite in primary pores.Geochemical evidence shows lowδ18O values of micritic dolomite varying from-1.29%o to-4.52%o PDB,abundant light rare earth elements(REEs),and low dolomite order degrees.Microbes and meteoric water significantly altered dolomite original chemical signatures,resulting in algal micritic dolomite and the fine-grained,granular,dolosparite dolomite having very negativeδ18O values.Finely crystalline cement dolomite(536.3-280 Ma)and coarsely crystalline cement dolomite have a higher crystallization degree and higher order degree.The diagenetic sequence and fluid inclusion evidence imply a linear correlation between their burial depth and homogenization temperatures,which closely resemble the temperature of generated hydrocarbon.Compared with finely crystalline dolomite,precipitation of coarsely crystalline dolomite was more affected by restricted basinal fluids.In addition,there is a trend toward a more negativeδ18O value,higher salinity,higher Fe and Mn concentrations,REE-rich.Two periods of hydrothermal fluids are identified,as the exceptionally high temperatures as opposed to the temperatures of burial history,in addition to the presence of high salinity fluid inclusions.The early hydrothermal fluid flow event was characterized by hot magnesium-and silicon-rich fluids,as demonstrated by the recrystallized matrix dolomite that is intimately associated with flint,opal,and microcrystalline quartz in intergranular or intercrystalline pores.This event was likely the result of a seafloor hydrothermal chimney eruption during Episode I of the Tongwan Movement(536.3-5.5 Ma).In contrast,later hydrothermal fluids,which caused precipitation of saddle dolomite,were characterized by high salinity(15-16.05wt%NaCI equivalent)and homogenization temperatures(250 to 265℃),δ18O values that were more enriched,and REE signatures.Geochemical data and the paragenetic sequence indicate that this hydrothermal fluid was related to extensive Permian large igneous province activity(360-280 Ma).This study demonstrates the presence of complicated dolomitization processes occurring during various paleoclimates,tectonic cycles,and basinal fluids flow;results are a useful reference for these dolomitized Precambrian carbonates reservoirs. 展开更多
关键词 PRECAMBRIAN DOLOMITE geological fluid flow meteoric water hydrothermal activity SichuanBasin
在线阅读 下载PDF
Effect of Thermal Buoyancy on Fluid Flow and Inclusion Motion in Tundish without Flow Control Devices——Part II :Inclusion Motion 被引量:8
14
作者 ZHANG Li-feng 《Journal of Iron and Steel Research International》 SCIE CAS CSCD 2005年第5期11-17,共7页
Following up the fluid flow simulation in a 60 t tundish, the trajectories of inclusions in the 60 t tundish without flow control are simulated by considering the force balance between the drag force and the inertial ... Following up the fluid flow simulation in a 60 t tundish, the trajectories of inclusions in the 60 t tundish without flow control are simulated by considering the force balance between the drag force and the inertial buoyancy force. The Stochastic model yields more accurate inclusion motion than the non-Stochastic model due to including the effect of the turbulent fluctuation. The average residence time of inclusions decreases with increasing size. The thermal buoyancy favors inclusions removal especially the small inclusions. Using solute transport like the dye injection in water model and copper addition in the real steel tundish cannot accurately study the motion of the inclusions. In the simulation, more than 68% inclusions bigger than 10μm are removed to the top, and less than 32% enters the mold. The thermal buoyancy has little effect on the fraction of inclusions moved to the top of the inlet zone, and it mainly favors the removal of inclusions smaller than 100μm to the top surface of the outlet zone. For inclusions bigger than 100μm, the effect of thermal buoyancy on their motion can be ignored compared to the inertial buoyancy effect. 展开更多
关键词 numerical simulation thermal buoyancy fluid flow INCLUSION solute particle Stochastic model TRAJECTORY residence time
在线阅读 下载PDF
Focused fluid flow in the Baiyun Sag, northern South China Sea: implications for the source of gas in hydrate reservoirs 被引量:11
15
作者 陈端新 吴时国 +3 位作者 董冬冬 米立军 付少英 施和生 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2013年第1期178-189,共12页
The origin and migration of natural gas and the accumulation of gas hydrates within the Pearl River Mouth Basin of the northern South China Sea are poorly understood. Based on high-resolution 2D/3D seismic data, three... The origin and migration of natural gas and the accumulation of gas hydrates within the Pearl River Mouth Basin of the northern South China Sea are poorly understood. Based on high-resolution 2D/3D seismic data, three environments of focused fluid flow: gas chimneys, mud diapirs and active faults have been identified. Widespread gas chimneys that act as important conduits for fluid flow are located below bottom simulating reflections and above basal uplifts. The occurrence and evolution of gas chimneys can be divided into a violent eruptive stage and a quiet seepage stage. For most gas chimneys, the strong eruptions are deduced to have happened during the Dongsha Movement in the latest Miocene, which are observed below Pliocene strata and few active faults develop above the top of the Miocene. The formation pressures of the Baiyun Sag currently are considered to be normal, based on these terms: 1) Borehole pressure tests with pressure coefficients of 1.043-l.047; 2) The distribution of gas chimneys is limited to strata older than the Pliocene; 3) Disseminated methane hydrates, rather than fractured hydrates, are found in the hydrate samples; 4) The gas hydrate is mainly charged with biogenic gas rather than thermogenic gas based on the chemical tests from gas hydrates cores. However, periods of quiet focused fluid flow also enable the establishment of good conduits for the migration of abundant biogenic gas and lesser volumes ofthermogenic gas. A geological model goveming fluid flow has been proposed to interpret the release of overpressure, the migration of fluids and the formation of gas hydrates, in an integrated manner. This model suggests that gas chimneys positioned above basal uplifts were caused by the Dongsha Movement at about 5.5 Ma. Biogenic gas occupies the strata above the base of the middle Miocene and migrates slowly into the gas chimney columns. Some of the biogenic gas and small volumes ofthermogenic gas eventually contribute to the formation of the gas hydrates. 展开更多
关键词 gas hydrate thermogenic gas biogenic gas Dongsha Movement focused fluid flow SouthChina Sea
原文传递
Heat transfer and fluid flow and their effects on the solidification microstructure in full-penetration laser welding of aluminum sheet 被引量:10
16
作者 Shaoning Geng Ping Jiang +2 位作者 Xinyu Shao Lingyu Guo Xuesong Gao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第11期50-63,共14页
Understanding the behaviors of heat transfer and fluid flow in weld pool and their effects on the solidification microstructure are significant for performance improvement of laser welds.This paper develops a three-di... Understanding the behaviors of heat transfer and fluid flow in weld pool and their effects on the solidification microstructure are significant for performance improvement of laser welds.This paper develops a three-dimensional numerical model to understand the multi-physical processes such as heat transfer,melt convection and solidification behavior in full-penetration laser welding of thin 5083 aluminum sheet.Solidification parameters including temperature gradient G and solidification rate R,and their combined forms are evaluated to interpret solidification microstructure.The predicted weld dimensions and the microstructure morphology and scale agree well with experiments.Results indicate that heat conduction is the dominant mechanism of heat transfer in weld pool,and melt convection plays a critical role in microstructure scale.The mushy zone shape/size and solidification parameters can be modulated by changing process parameters.Dendritic structures form because of the low G/R value.The scale of dendritic structures can be reduced by increasing GR via decreasing heat input.The columnar to equiaxed transition is predicted quantitatively via the process related G^3/R.These findings illustrate how heat transfer and fluid flow affect the solidification parameters and hence the microstructure,and show how to improve microstructure by optimizing the process. 展开更多
关键词 Laser welding Heat transfer fluid flow Solidification microstructure ALUMINUM
原文传递
Fluid Flow and Heat Transfer Modeling of AC Arc in Ferrosilicon Submerged Arc Furnace 被引量:7
17
作者 M Mohebi Moghadam S H Seyedein M Reza Aboutalebi 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2010年第9期14-18,共5页
A two-dimensional mathematical model was developed to describe the heat transfer and fluid flow in an AC arc zone of a ferrosilicon submerged arc furnace. In this model, the time-dependent conservation equations of ma... A two-dimensional mathematical model was developed to describe the heat transfer and fluid flow in an AC arc zone of a ferrosilicon submerged arc furnace. In this model, the time-dependent conservation equations of mass, momentum, and energy in the specified domain of plasma zone were numerically solved by coupling with the Maxwell and Laplace equations for magnetic filed and electric potential, respectively. A control volume-based finite difference method was used to solve the governing equations in cylindrical coordinates. The reliability of the developed model was checked by experimental data from the previous available literature. The results of present model were in good agreement with the given data comparing with other models, because of solving the Maxwell and Laplace equations simul- taneously in order to calculate current density. In addition, parametric studies were carried out to evaluate the effects of electrical current and arc length on flow field and temperature distribution within the arc. According to the computed results, a lower power input led to a higher arc efficiency. 展开更多
关键词 plasma modeling heat transfer fluid flow AC submerged arc furnace
原文传递
Fluid Flow and Interfacial Phenomenon of Slag and Metal in Continuous Casting Tundish With Argon Blowing 被引量:5
18
作者 WANG Jun ZHU Miao-yong ZHOU Hai-bing WANG Ying 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2008年第4期26-31,共6页
The fluid flow and the interfacial phenomenon of slag and metal in tundish with gas blowing were studied with mathematical and physical modeling, and the effects of gas flowrate, the placement of porous beam for the g... The fluid flow and the interfacial phenomenon of slag and metal in tundish with gas blowing were studied with mathematical and physical modeling, and the effects of gas flowrate, the placement of porous beam for the generation of bubbles, and the combination of flow control devices on the flow and slag-metal interface were investigated. The results show that the position of gas bubbling has a significant effect on the flow in tundish, and the placement of porous beam and gas flowrate are the two main factors affecting the entrapment of slag in tundish. The closer the porous beam to the weir, the more reasonable is the flow, which is in favor of the control of slag entrapment in tundish. 展开更多
关键词 continuous casting tundish argon blowing fluid flow interfacial phenomenon SLAG METAL slag entrapment mathematical modeling physical modeling
原文传递
Effect of nozzle type on fluid flow, solidification, and solute transport in mold with mold electromagnetic stirring 被引量:8
19
作者 Ya-dong Wang Li-feng Zhang +1 位作者 Wen Yang Ying Ren 《Journal of Iron and Steel Research International》 SCIE EI CSCD 2022年第2期237-246,共10页
The mathematical model of coupling fluid flow,heat transfer,solidification,solute transport,and the electromagnetic field of the bloom in the upper part of the strand was established with three nozzle types.Then,the f... The mathematical model of coupling fluid flow,heat transfer,solidification,solute transport,and the electromagnetic field of the bloom in the upper part of the strand was established with three nozzle types.Then,the flow field,distribution of the temperature,solidification,and macrosegregation of carbon were investigated and compared by numerical modeling.In the case of the straight submerged entry nozzle(SEN),the molten steel flows down deep into the liquid pool,and the depth of the jet flow reaches about 1.0 m beneath the meniscus.The jetting zone is the high-temperature zone.In the case of two-port SEN and four-port SEN,the flow patterns and distribution of temperature in the central longitudinal section are similar.The jet flow impinges directly on the initially solidified shell and then it is divided into two longitudinal circulations.The heat of molten steel is dissipated along with the longitudinal circulations.The negative segregation band was generated near the bloom surface due to the washing effect by the rotating flow at the solidification front with three nozzle types.The negative segregation deteriorates gradually with the number of ports decreasing. 展开更多
关键词 Submerged entry nozzle fluid flow SOLIDIFICATION Solute transport Mold electromagnetic stirring
原文传递
Fluid Flow Modeling of Arc Plasma and Bath Circulation in DC Electric Arc Furnace 被引量:5
20
作者 WANG Feng-hua JIN Zhi-jian ZHU Zi-shu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2006年第5期7-13,共7页
A mathematical model describing the flow field, heat transfer and the electromagnetic phenomenon in a DC electric arc furnace has been developed. First the governing equations in the arc plasma region are solved and t... A mathematical model describing the flow field, heat transfer and the electromagnetic phenomenon in a DC electric arc furnace has been developed. First the governing equations in the arc plasma region are solved and the calculated results of heat transfer, current density and shear stresses on the anode surface are used as boundary conditions in a model of molten bath. Then a two-dimensional time-dependent model is used to describe the flow field and electromagnetic phenomenon in the molten bath. Moreover, the effect of bottom electrode diameter on the circulation of molten bath is studied. 展开更多
关键词 DC electric arc furnace fluid flow heat transfer molten bath
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部