期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
CAD/CAE OF THE WORKING CHARACTERISTICS OF A NEW TYPE OF FLUID COUPLING SHOCK ABSORBER 被引量:4
1
作者 Yang Ping Zhong Yifang Zhou JiSchool of Mechanical Science and Engineering, Huazhong University of Science and Technology,Wuhan 430074, ChinaLiu Yong Guilin Institute of Electronic Technology 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2002年第3期222-227,共6页
For purpose of simulation of the working characteristics of a new type offluid coupling shock absorber for vibration protection of sensitive equipment, a physical model ispresented by analyzing the internal fluid dyna... For purpose of simulation of the working characteristics of a new type offluid coupling shock absorber for vibration protection of sensitive equipment, a physical model ispresented by analyzing the internal fluid dynamic phenomenon with respect to the coupling shockabsorber and implemented in MATLAB software package. Using the model it is possible to evaluate theimportance of different factors for design of the shock absorber. In the meantime, the key-modelmachine is designed for coupling dynamic test. Comparisons with experimental results confirm thevalidity of the model. So the CAD/CAE software has been developed in MATLAB for design andexperimental test of the new coupling shock absorber. 展开更多
关键词 fluid coupling shock absorber Working characteristics MODEL SIMULATION
在线阅读 下载PDF
Analysis of influence of heat exchangerfouling on heat transfer performancebased on thermal fluid coupling 被引量:1
2
作者 HUANG Si MURAD Tariq +2 位作者 NIU Qifeng LIN Guangtang CHEN Jianxun 《排灌机械工程学报》 CSCD 北大核心 2023年第7期695-700,共6页
A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid do... A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid domains under three different fouling conditions: fouling inside the tube, fouling outside the tube, and fouling inside the shell. The flow field, temperature, and pressure distributions in the heat exchanger were solved numerically to analyze the heat transfer performance parameters, such as thermal resistance. It is found that the pressure drop of the heat exchanger and the thermal resistance of the tube wall increase by nearly 30% and 20%, respectively, when the relative fouling thickness reaches 10%. The fouling inside the tube has more impact on the heat transfer performance of the heat exchanger, and the fouling inside the shell has less impact. 展开更多
关键词 shell-tube heat exchanger thermal fluid coupling fouling thermal resistance heat transfer analysis
在线阅读 下载PDF
Research on the Motion Characteristics of Suction Valve Plate Based on Fluid Structure Coupling
3
作者 Chuncong BAI Guangchen XU Huiyan ZHAO 《Mechanical Engineering Science》 2024年第2期9-13,共5页
The air valve is the core component of the cyclic operation of the compressor cylinder,and its structure and performance largely determine whether the reciprocating compressor can operate more efficiently and economic... The air valve is the core component of the cyclic operation of the compressor cylinder,and its structure and performance largely determine whether the reciprocating compressor can operate more efficiently and economically.On the basis of analyzing the basic structure and working principle of the air valve,this article mainly studies the motion characteristics of the suction valve plate.Based on fluid structure coupling mechanics and using ADINA software as a platform,numerical simulation analysis was conducted on the suction valve of a certain compressor model.Studying the stress of the valve plate and the variation of its upper and lower surface pressure with the opening and closing of the valve plate during the suction process of the compressor provides theoretical guidance for the rationality of the design of the air valve and related components,thereby improving the service life of the air valve and the working efficiency of the compressor. 展开更多
关键词 reciprocating compressor fluid structure coupling tongue spring valve motion characteristics
在线阅读 下载PDF
Assessment of slurry chamber clogging alleviation during ultra-large-diameter slurry tunnel boring machine tunneling in hard-rock using computational fluid dynamics-discrete element method:A case study
4
作者 Yidong Guo Xinggao Li +2 位作者 Dalong Jin Hongzhi Liu Yingran Fang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期4715-4734,共20页
To fundamentally alleviate the excavation chamber clogging during slurry tunnel boring machine(TBM)advancing in hard rock,large-diameter short screw conveyor was adopted to slurry TBM of Qingdao Jiaozhou Bay Second Un... To fundamentally alleviate the excavation chamber clogging during slurry tunnel boring machine(TBM)advancing in hard rock,large-diameter short screw conveyor was adopted to slurry TBM of Qingdao Jiaozhou Bay Second Undersea Tunnel.To evaluate the discharging performance of short screw conveyor in different cases,the full-scale transient slurry-rock two-phase model for a short screw conveyor actively discharging rocks was established using computational fluid dynamics-discrete element method(CFD-DEM)coupling approach.In the fluid domain of coupling model,the sliding mesh technology was utilized to describe the rotations of the atmospheric composite cutterhead and the short screw conveyor.In the particle domain of coupling model,the dynamic particle factories were established to produce rock particles with the rotation of the cutterhead.And the accuracy and reliability of the CFD-DEM simulation results were validated via the field test and model test.Furthermore,a comprehensive parameter analysis was conducted to examine the effects of TBM operating parameters,the geometric design of screw conveyor and the size of rocks on the discharging performance of short screw conveyor.Accordingly,a reasonable rotational speed of screw conveyor was suggested and applied to Jiaozhou Bay Second Undersea Tunnel project.The findings in this paper could provide valuable references for addressing the excavation chamber clogging during ultra-large-diameter slurry TBM tunneling in hard rock for similar future. 展开更多
关键词 Slurry tunnel boring machine(TBM) Short screw conveyor Slurry chamber clogging Computational fluid dynamics-discrete element method(CFD-DEM)coupled modeling Engineering application
在线阅读 下载PDF
Numerical Simulation of Temperature Distribution and ThermalStress Field in a Turbine Blade with Multilayer-Structure TBCs by a Fluid–Solid Coupling Method 被引量:17
5
作者 W.Z.Tang L.Yang +3 位作者 W.Zhu Y.C.Zhou J.W.Guo C.LU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第5期452-458,共7页
To study the temperature distribution and thermal-stress field in different service stages, a two-dimensional model of a turbine blade with thermal barrier coatings is developed, in which the conjugate heat transfer a... To study the temperature distribution and thermal-stress field in different service stages, a two-dimensional model of a turbine blade with thermal barrier coatings is developed, in which the conjugate heat transfer analysis and the decoupled thermal-stress calculation method are adopted. Based on the simulation results, it is found that a non-uniform distribution of temperature appears in different positions of the blade surface, which has directly impacted on stress field. The maximum temperature with a value of 1030 ℃ occurs at the leading edge. During the steady stage, the maximum stress of thermally grown oxide (TGO) appears in the middle of the suction side, reaching 3.75 GPa. At the end stage of cooling, the maximum compressive stress of TGO with a value of-3.5 GPa occurs at the leading edge. Thus, it can be predicted that during the steady stage the dangerous regions may locate at the suction side, while the leadine edge mav be more Drone to failure on cooling. 展开更多
关键词 Thermal barrier coatings Temperature distribution Thermal-stress field Conjugate heat transfer Decoupled thermal-stress calculation fluid–solid coupling
原文传递
Thermal-Fluid-Structure Coupling Analysis of Flexible Corrugated Cryogenic Hose 被引量:1
6
作者 YANG Liang LIU Miao-er +6 位作者 LIU Yun LI Fang-qiu FAN Jia-kun LIU Fu-peng LU Zhao-kuan YANG Jian-ye YAN Jun 《China Ocean Engineering》 SCIE EI CSCD 2022年第4期658-665,共8页
This work presents a numerical investigation of the thermal–fluid–structure coupling behavior of the liquid natural gas(LNG)transported in the flexible corrugated cryogenic hose.A three-dimensional model of the corr... This work presents a numerical investigation of the thermal–fluid–structure coupling behavior of the liquid natural gas(LNG)transported in the flexible corrugated cryogenic hose.A three-dimensional model of the corrugated hose structure composed of multiple layers of different materials is established and coupled with turbulent LNG flow and heat transfer models in the commercial software ANSYS Workbench.The flow transport behavior,heat transfer across the hose layers,and structural response caused by the flow are analyzed.Parametric studies are performed to evaluate the impacts of inlet flow rate and thermal conductivity of insulation material on the temperature and structural stress of the corrugated hose.The study found that,compared with a regular operating condition,higher inlet flow velocities not only suppress the heat gain of the LNG but also lower the flow-induced structural stress.The insulation layer exhibits excellent performance in maintaining the temperature at the fluid–structure interface,showing little temperature change with respect to material thermal conductivity and ambient temperature.The simulation results may contribute to the research and design of the flexible corrugated cryogenic hoses and provide guidance for safer and more efficient field operations. 展开更多
关键词 flexible corrugated cryogenic hose LNG computational fluid dynamics thermal–fluid–structure coupling
在线阅读 下载PDF
VIBRATION NUMERICAL ANALYSIS OF COUNTER-ROTATING TURBINE WITH WAKE-FLOW USING FLUID-STRUCTURE INTERACTION METHOD 被引量:3
7
作者 赵振华 吕文亮 +1 位作者 陈伟 吴铁鹰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第1期66-72,共7页
The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented ... The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented by using ANSYS/CFX software.Interaction of aerodynamics and solid mechanics coupling in the computation is applied.In some rating of turbine,stress distribution and vibration characteristics of low pressure turbine(LPT)blade are computed.The wake aerodynamic forces and LPT blade vibration are transformed in frequency domain using fast Fourier transform(FFT)method.The results show that under wake aerodynamic force excitation,the first order modal vibration is more easily aroused and the higher order response cannot be ignored.Moreover,with different temperature fields,the vibration responses of blade are also different. 展开更多
关键词 counter-rotating turbine fluid and structure coupling vibration responses numerical analysis
在线阅读 下载PDF
Nitrogen injection for enhanced coal seam gas extraction(N2-ECGE):A simulation study
8
作者 Feng Du Yiyang Zhang +2 位作者 Kai Wang Jiazhi Sun Yuanyuan Xu 《Earth Energy Science》 2025年第2期193-202,共10页
As energy demand increases,the depth of mining is increasing,and methane disasters grow more serious,efficient extraction of methane is the ultimate method of preventing and controlling methane disasters.The objective... As energy demand increases,the depth of mining is increasing,and methane disasters grow more serious,efficient extraction of methane is the ultimate method of preventing and controlling methane disasters.The objectives for this research are to explore the efficiency of N_(2) injection to enhance gas extraction from coal seams(N_(2)-ECGE)and its impact on coal seam permeability.By developing a fluid-solid coupling model and using COMSOL Multiphysics to perform numerical simulations,the changes in gas pressure,methane content,gas production,output rate and permeability of coal seams were comparatively analyzed under the two methods of direct extraction and N_(2)-ECGE.The research results show that N_(2)-ECGE can significantly improve the coal seam gas pressure and reduce the coal seam CH_(4) content,and the larger the N_(2) injection pressure the more significant the reduction effect.Meanwhile,N_(2)-ECGE can significantly increase the CH_(4) extraction and output rate,and the increase of N_(2) pressure further improves the extraction efficiency.In addition,the pressure of nitrogen injection has a remarkable effect on coal seam permeability,high pressure of nitrogen injection can increase the permeability in the time of no disturbance,but the rate of permeability decreases more quickly after disturbed.The effect of strain due to adsorption desorption on coal seam permeability dominates.Despite model construction limitations,this research offers essential theoretical and practical direction for N_(2) injection to enhance the permeability evolution law of coal seam gas extraction process. 展开更多
关键词 Coal seam gas PERMEABILITY Nitrogen injection extraction fluid solid coupling Numerical simulation
在线阅读 下载PDF
Stagnation-point flow of couple stress fluid with melting heat transfer 被引量:3
9
作者 T.HAYAT M.MUSTAFA +1 位作者 Z.IQBAL A.ALSAEDI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第2期167-176,共10页
Melting heat transfer in the boundary layer flow of a couple stress fluid over a stretching surface is investigated. The developed differential equations are solved for homotopic solutions. It is observed that the vel... Melting heat transfer in the boundary layer flow of a couple stress fluid over a stretching surface is investigated. The developed differential equations are solved for homotopic solutions. It is observed that the velocity and the boundary layer thickness are decreasing functions of the couple stress fluid parameter. However, the temperature and surface heat transfer increase when the values of the couple stress fluid parameter increase. The velocity and temperature fields increase with an increase in the melting process of the stretching sheet. 展开更多
关键词 couple stress fluid melting heat transfer stagnation-point flow series solution
在线阅读 下载PDF
Controlling Roll Temperature by Fluid-Solid Coupled Heat Transfer 被引量:2
10
作者 Jing-Feng Zou Li-Feng Ma +3 位作者 Guo-Hua Zhang Zhi-Quan Huang Jin-Bao Lin Peng-Tao Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第5期66-79,共14页
Currently, when magnesium alloy sheet is rolled, the method of controlling roll temperature is simple and inaccurate. Furthermore, roll temperature has a large influence on the quality of magnesium alloy sheet; theref... Currently, when magnesium alloy sheet is rolled, the method of controlling roll temperature is simple and inaccurate. Furthermore, roll temperature has a large influence on the quality of magnesium alloy sheet; therefore, a new model using circular fluid flow control roll temperature has been designed. A fluid heat transfer structure was designed, the heat transfer process model of the fluid heating roll was simplified, and the finite di erence method was used to cal?culate the heat transfer process. Fluent software was used to simulate the fluid?solid coupling heat transfer, and both the trend and regularity of the temperature field in the heat transfer process were identified. The results show that the heating e ciency was much higher than traditional heating methods(when the fluid heat of the roll and tempera?ture distribution of the roll surface was more uniform). Moreover, there was a bigger temperature di erence between the input and the output, and after using reverse flow the temperature di erence decreased. The axial and circum?ferential temperature distributions along the sheet were uniform. Both theoretical calculation results and numerical simulation results of the heat transfer between fluid and roll were compared. The error was 1.8%–12.3%, showing that the theoretical model can both forecast and regulate the temperature of the roll(for magnesium alloy sheets) in the rolling process. 展开更多
关键词 Magnesium alloy fluid heating Heat transfer model Numerical simulation of fluid?solid coupling
在线阅读 下载PDF
Peristaltic flow of couple stress fluid through uniform porous medium 被引量:2
11
作者 A.ALSAEDI N.ALI +1 位作者 D.TRIPATHI T.HAYAT 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第4期469-480,共12页
Investigation concerning peristaltic motion of couple stress fluid is made. An incompressible couple stress fluid occupies the porous medium. Mathematical anal- ysis is presented through large wavelength and low Reyno... Investigation concerning peristaltic motion of couple stress fluid is made. An incompressible couple stress fluid occupies the porous medium. Mathematical anal- ysis is presented through large wavelength and low Reynolds number. Exact analytical expressions of axial velocity, volume flow rate, pressure gradient, and stream function are calculated as a function of couple stress parameter. The essential feature of the analysis is a full description of influence of couple stress parameter and permeability parameter on the pressure, frictional force, mechanical efficiency, and trapping. 展开更多
关键词 PERISTALSIS couple stress fluid porous medium mechanical efficiency trapping
在线阅读 下载PDF
Seepage-heat transfer coupling process of low temperature return water injected into geothermal reservoir in carbonate rocks in Xian County,China 被引量:2
12
作者 WANG Yan LIU Yan-guang +3 位作者 BIAN Kai ZHANG Hong-liang QIN Shen-jun WANG Xiao-jun 《Journal of Groundwater Science and Engineering》 2020年第4期305-314,共10页
Fracture seepage and heat transfer in the geothermal reservoir of carbonate rocks after the reinjection of low temperature geothermal return water is a complex coupling process,which is also the frontier of geothermal... Fracture seepage and heat transfer in the geothermal reservoir of carbonate rocks after the reinjection of low temperature geothermal return water is a complex coupling process,which is also the frontier of geothermal production and reinjection research.Based on the research of cascade comprehensive development of geothermal resources in Beijing-Tianjin-Hebei(Xian County),the carbonate geothermal reservoir of Wumishan formation in the geothermal field in Xian County is investigated.With the development of the discrete fracture network model and the coupling model of seepage and heat transfer,the numerical solution of seepage field and temperature field with known fracture network is reached using the finite element software COMSOL,and the coupling process of seepage flow and heat in carbonate rocks is revealed.The results show that the distribution of temperature field of fractured rocks in geothermal reservoir of carbonate rocks has strong non-uniformity and anisotropy.The fracture network is interpenetrated,which constitutes the dominant channel of water conduction,and along which the fissure water moves rapidly.Under the influence of convective heat transfer and conductive heat transfer,one of the main factors to be considered in the study of thermal breakthrough is to make the cold front move forward rapidly.When the reinjection and production process continues for a long time and the temperature of the geothermal reservoir on the pumping side drops to a low level,the temperature of bedrocks is still relatively high and continues to supply heat to the fissure water,so that the temperature of the thermal reservoir on the pumping side will not decrease rapidly to the water temperature at the inlet of reinjection,but will gradually decrease after a long period of time,showing an obvious long tail effect.The distribution of fractures will affect the process of seepage and heat transfer in carbonate reservoirs,which should be considered in the study of fluid thermal coupling in carbonate reservoirs. 展开更多
关键词 Carbonate reservoir Geothermal reinjection Fractured rock mass fluid thermal coupling
在线阅读 下载PDF
Transient analysis of diffusive chemical reactive species for couple stress fluid flow over vertical cylinder 被引量:2
13
作者 H.P.RANI G.J.REDDY C.N.KIM 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第8期985-1000,共16页
The unsteady natural convective couple stress fluid flow over a semi-infinite vertical cylinder is analyzed for the homogeneous first-order chemical reaction effect. The couple stress fluid flow model introduces the l... The unsteady natural convective couple stress fluid flow over a semi-infinite vertical cylinder is analyzed for the homogeneous first-order chemical reaction effect. The couple stress fluid flow model introduces the length dependent effect based on the material constant and dynamic viscosity. Also, it introduces the biharmonic operator in the Navier-Stokes equations, which is absent in the case of Newtonian fluids. The solution to the time-dependent non-linear and coupled governing equations is carried out with an unconditionally stable Crank-Nicolson type of numerical schemes. Numerical results for the transient flow variables, the average wall shear stress, the Nusselt number, and the Sherwood number are shown graphically for both generative and destructive reactions. The time to reach the temporal maximum increases as the reaction constant K increases. The average values of the wall shear stress and the heat transfer rate decrease as K increases, while increase with the increase in the Sherwood number. 展开更多
关键词 couple stress fluid chemical reaction natural convection vertical cylinder finite difference method
在线阅读 下载PDF
Heat transfer analysis of MHD and electroosmotic flow of non-Newtonian fluid in a rotating microfluidic channel:an exact solution 被引量:1
14
作者 T.SIVA S.JANGILI B.KUMBHAKAR 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第7期1047-1062,共16页
The heat transfer of the combined magnetohydrodynamic(MHD)and electroosmotic flow(EOF)of non-Newtonian fluid in a rotating microchannel is analyzed.A couple stress fluid model is scrutinized to simulate the rheologica... The heat transfer of the combined magnetohydrodynamic(MHD)and electroosmotic flow(EOF)of non-Newtonian fluid in a rotating microchannel is analyzed.A couple stress fluid model is scrutinized to simulate the rheological characteristics of the fluid.The exact solution for the energy transport equation is achieved.Subsequently,this solution is utilized to obtain the flow velocity and volume flow rates within the flow domain under appropriate boundary conditions.The obtained analytical solution results are compared with the previous data in the literature,and good agreement is obtained.A detailed parametric study of the effects of several factors,e.g.,the rotational Reynolds number,the Joule heating parameter,the couple stress parameter,the Hartmann number,and the buoyancy parameter,on the flow velocities and temperature is explored.It is unveiled that the elevation in a couple stress parameter enhances the EOF velocity in the axial direction. 展开更多
关键词 microfluidic electric double layer(EDL) electroosmotic flow(EOF) magnetohydrodynamic(MHD) couple stress fluid
在线阅读 下载PDF
Natural convection flow of a couple stress fluid between two vertical parallel plates with Hall and ion-slip effects 被引量:1
15
作者 D.Srinivasacharya K.Kaladhar 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第1期41-50,共10页
The Hall and ion-slip effects on fully developed electrically conducting couple stress fluid flow between vertical parallel plates in the presence of a temperature dependent heat source are investigated. The governing... The Hall and ion-slip effects on fully developed electrically conducting couple stress fluid flow between vertical parallel plates in the presence of a temperature dependent heat source are investigated. The governing non-linear partial differential equations are transformed into a system of ordinary differential equations using similarity transformations. The resulting equations are then solved using the homotopy analysis method (HAM). The effects of the magnetic parameter, Hall parameter, ion-slip parameter and couple stress fluid parameter on velocity and temperature are discussed and shown graphically 展开更多
关键词 Free convection Couple stress fluid Magneto- hydrodynamics Hall and ion-slip effects - HAM
在线阅读 下载PDF
NONLINEAR NUMERICAL ANALYSIS OF A FLEXIBLE ROTOR EQUIPPED WITH SQUEEZE COUPLE STRESS FLUID FILM JOURNAL BEARINGS
16
作者 Cai-Wan Chang-Jian Her-Terng Yau 《Acta Mechanica Solida Sinica》 SCIE EI 2007年第4期309-316,共8页
This study performs a dynamic analysis of a rotor supported by two squeeze couple stress fluid film journal bearings with nonlinear suspension. The numerical results show that the stability of the system varies with t... This study performs a dynamic analysis of a rotor supported by two squeeze couple stress fluid film journal bearings with nonlinear suspension. The numerical results show that the stability of the system varies with the non-dimensional speed ratios and the dimensionless parameter l*. It is found that the system is more stable with higher dimensionless parameter l*. Thus it can conclude that the rotor-bearing system lubricated with the couple stress fluid is more stable than that with the conventional Newtonian fluid. The modeling results thus obtained by using the method proposed in this paper can be used to predict the stability of the rotor-bearing system and the undesirable behavior of the rotor and bearing center can be avoided. 展开更多
关键词 couple stress fluid rotor-bearing system BIFURCATION CHAOS SQUEEZE
在线阅读 下载PDF
Exact solutions for different vorticity functions of couple stress fluids
17
作者 Saeed ISLAM Chao-ying ZHOU Xiao-juan RAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第5期672-680,共9页
In this paper, inverse solutions are obtained for the class of 2D steady incompressible couple stress fluid flows. This class consists of flows for which the vorticity distribution is given by ▽2ψ=ψ+f(x,y). The so... In this paper, inverse solutions are obtained for the class of 2D steady incompressible couple stress fluid flows. This class consists of flows for which the vorticity distribution is given by ▽2ψ=ψ+f(x,y). The solutions are obtained by applying the inverse method, which makes certain hypotheses regarding the form of the velocity field and pressure but without making any regarding the boundaries of the domain occupied by the fluid. Inverse solutions are derived for three different forms of f(x,y). 展开更多
关键词 Exact solutions Vorticity functions Beltrami flow Couple stress fluid
在线阅读 下载PDF
An explicit finite element method for dynamic analysis in three-medium coupling system and its application
18
作者 赵成刚 李伟华 +1 位作者 王进廷 李亮 《Acta Seismologica Sinica(English Edition)》 CSCD 2003年第3期272-282,共11页
In this paper, an explicit finite element method to analyze the dynamic responses of three-medium coupled systems with any terrain is developed on the basis of the numerical simulation of the continuous conditions on ... In this paper, an explicit finite element method to analyze the dynamic responses of three-medium coupled systems with any terrain is developed on the basis of the numerical simulation of the continuous conditions on the bounda-ries among fluid saturated porous medium, elastic single-phase medium and ideal fluid medium. This method is a very effective one with the characteristic of high calculating speed and small memory needed because the formulae for this explicit finite element method have the characteristic of decoupling, and which does not need to solve sys-tem of linear equations. The method is applied to analyze the dynamic response of a reservoir with considering the dynamic interactions among water, dam, sediment and basement rock. The vertical displacement at the top point of the dam is calculated and some conclusions are given. 展开更多
关键词 fluid saturated porous medium-elastic single-phase medium-ideal fluid medium coupled system dynamic response analysis explicit finite element method
在线阅读 下载PDF
Mathematical modelling of couple stresses on fluid flow in constricted tapered artery in presence of slip velocity-effects of catheter
19
作者 J.V.R.REDDY D.SRIKANTH S.K.MURTHY 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第8期947-958,共12页
This paper explores the mathematical model for couple stress fluid flow through an annular region. The above model is used for studying the blood flow be-tween the clogged (stenotic) artery and the catheter. The asy... This paper explores the mathematical model for couple stress fluid flow through an annular region. The above model is used for studying the blood flow be-tween the clogged (stenotic) artery and the catheter. The asymmetric nature of the stenosis is considered. The closed form expressions for the physiological parameters such as impedance and shear stress at the wall are obtained. The effects of various geomet-ric parameters and the parameters arising out of the fluid considered are discussed by considering the slip velocity and tapering angle. The study of the above model is very significant as it has direct applications in the treatment of cardiovascular diseases. 展开更多
关键词 blood flow couple stress fluid stenosed artery tapered artery CATHETER
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部