期刊文献+
共找到92,182篇文章
< 1 2 250 >
每页显示 20 50 100
Fluid evolution and fragmentation characteristics under high pressure water jet impact on thermal rock 被引量:1
1
作者 Jianming Shangguan Zhaolong Ge +2 位作者 Qinglin Deng Yuhuai Cui Zhi Yao 《International Journal of Mining Science and Technology》 2025年第3期483-497,共15页
In the application of high-pressure water jet assisted breaking of deep underground rock engineering,the influence mechanism of rock temperature on the rock fragmentation process under jet action is still unclear.Ther... In the application of high-pressure water jet assisted breaking of deep underground rock engineering,the influence mechanism of rock temperature on the rock fragmentation process under jet action is still unclear.Therefore,the fluid evolution characteristics and rock fracture behavior during jet impingement were studied.The results indicate that the breaking process of high-temperature rock by jet impact can be divided into four stages:initial fluid-solid contact stage,intense thermal exchange stage,perforation and fracturing stage,and crack propagation and penetration stage.With the increase of rock temperature,the jet reflection angles and the time required for complete cooling of the impact surface significantly decrease,while the number of cracks and crack propagation rate significantly increase,and the rock breaking critical time is shortened by up to 34.5%.Based on numerical simulation results,it was found that the center temperature of granite at 400℃ rapidly decreased from 390 to 260℃ within 0.7 s under jet impact.In addition,a critical temperature and critical heat flux prediction model considering the staged breaking of hot rocks was established.These findings provide valuable insights to guide the water jet technology assisted deep ground hot rock excavation project. 展开更多
关键词 fluid evolution Fragmentation characteristics Fracture process Water jet Thermal rock
在线阅读 下载PDF
Fluid therapy in acute pancreatitis comparing balanced solutions and normal saline:A systematic review,meta-analysis and trial sequential analysis 被引量:1
2
作者 Lin Gao Hsiang-Wei Wang +4 位作者 Zi-Rui Liu Yi-Zhen Xu Lu Ke Wei-Qin Li John A Windsor 《Hepatobiliary & Pancreatic Diseases International》 2025年第4期371-380,共10页
Background:Isotonic crystalloids are recommended as the first choice for fluid therapy in acute pan-creatitis(AP),with normal saline(NS)and lactate Ringer’s(LR)used most often.Evidence based recom-mendations on the t... Background:Isotonic crystalloids are recommended as the first choice for fluid therapy in acute pan-creatitis(AP),with normal saline(NS)and lactate Ringer’s(LR)used most often.Evidence based recom-mendations on the type of fluid are conflicting and generally come from small single-center randomized controlled trials(RCTs).We therefore conducted a systematic review and meta-analysis to compare the effect of balanced solutions(BS)versus NS on patient-centered clinical outcomes in AP.Methods:From four databases searched up to October 2024,we included only RCTs of adult patients with AP that compared the use of BS(including LR,acetate Ringer’s,etc.)with NS.The primary out-come was the disease advances from AP to moderately severe and severe AP(MSAP/SAP).Trial sequential analyses(TSA)were conducted to control for type-I and type-II errors and Grading of Recommendations Assessment,Development,and Evaluation(GRADE)was used to assess the quality of evidence.Results:Six RCTs were identified and included,involving 260 patients treated with BS and 298 patients with NS.Patients who received the BS had less MSAP/SAP[odds ratio(OR)=0.50,95%confidence in-terval(CI):0.29 to 0.85,P=0.01,I^(2)=0%;5 studies,299 patients],reduced the need of ICU admission(OR=0.60,95%CI:0.39 to 0.93,P=0.02,I^(2)=0%;5 studies,507 patients)and shorter length of hospital stay[mean difference(MD)=-0.88,95%CI:-1.48 to-0.28,P=0.004,I^(2)=0%;6 studies,558 patients;confirmed by TSA with high certainty]compared with those who received NS.The evidence for most of the clinical outcomes was rated as moderate to low due to the risk of bias,imprecision and inconsistency.Conclusions:BS,compared with NS,was associated with improved clinical outcomes in patients with AP.However,given the moderate to low quality of evidence for most of the outcomes assessed,further trials are warranted. 展开更多
关键词 Acute pancreatitis fluid therapy Normal saline Balanced solution Systematic review
暂未订购
Microscopic pore-throat structure and fluid mobility of tight sandstone reservoirs in multi-provenance systems,Triassic Yanchang formation,Jiyuan area,Ordos Basin 被引量:1
3
作者 Quanpei Zhang Chen Yang +5 位作者 Ye Gu Yu Tian Hui Liu Wen Xiao Zhikun Wang Zhongrong Mi 《Energy Geoscience》 2025年第2期381-393,共13页
The tight sandstone reservoirs in the first sub-member of Chang 7 member(Chang 71)of Triassic Yanchang Formation in the Jiyuan area,Ordos Basin,show significant variations in microscopic pore-throat structure(PTS)and ... The tight sandstone reservoirs in the first sub-member of Chang 7 member(Chang 71)of Triassic Yanchang Formation in the Jiyuan area,Ordos Basin,show significant variations in microscopic pore-throat structure(PTS)and fluid mobility due to the influences of the northeast and northwest dual provenance systems.This study performed multiple experimental analyses on nine samples from the area to determine the petrological and petrophysical properties,as well as the PTS characteristics of reservoirs in different provenance-controlled regions.On this basis,the pore-throat size distribution(PSD)obtained from high-pressure mercury injection(HPMI)was utilized to convert the NMR movable fluid T2spectrum,allowing for quantitative characterization of the full PSD and the occurrence characteristics of movable fluids.A systematic analysis was conducted on the primary controlling factors affecting fluid mobility in the reservoir.The results indicated that the lithology in the eastern and western regions is lithic arkose.The eastern sandstones,being farther from the provenance,exhibit higher contents of feldspar and lithic fragments,along with the development of more dissolution pores.The reservoir possesses good petrophysical properties,low displacement pressure,and high pore-throat connectivity and homogeneity,indicating strong fluid mobility.In contrast,the western sandstones,being nearer to the provenance,exhibit poor grain sorting,high contents of lithic fragments,strong compaction and cementation effects,resulting in poor petrophysical properties,and strong pore-throat heterogeneity,revealing weak fluid mobility.The range of full PSD in the eastern reservoir is wider than that in the western reservoir,with relatively well-developed macropores.The macropores are the primary space for occurrence of movable fluids,and controls the fluid mobility of the reservoir.The effective porosity of movable fluids(EPMF)quantitatively represents the pore space occupied by movable fluids within the reservoir and correlates well with porosity,permeability,and PTS parameters,making it a valuable parameter for evaluating fluid mobility.Under the multi-provenance system,the eastern and western reservoirs underwent different sedimentation and diagenesis processes,resulting in differential distribution of reservoir mineral components and pore types,which in turn affects the PTS heterogeneity and reservoir quality.The composition and content of reservoir minerals are intrinsic factors influencing fluid mobility,while the microscopic PTS is the primary factor controlling it.Low clay mineral content,welldeveloped macropores,and weak pore-throat heterogeneity all contribute to the storage and seepage of reservoir fluids. 展开更多
关键词 Pore-throat structure fluid mobility Tight sandstone reservoir Multi-provenance system Ordos Basin
在线阅读 下载PDF
Status of anxiety and depression among chronic heart failure patients:Factors influencing poor fluid restriction adherence 被引量:1
4
作者 Yun-Tao Luo Ai-Zhi Ou +5 位作者 Di-Sha Lin Hong Li Fang Zhou Yue-Mei Liu Xin-Ping Ye Xu Deng 《World Journal of Psychiatry》 2025年第6期128-138,共11页
BACKGROUND Anxiety and depression are prevalent among patients with chronic heart failure(CHF)and can adversely contribute to treatment adherence and clinical outcomes.Poor fluid restriction adherence is a widespread ... BACKGROUND Anxiety and depression are prevalent among patients with chronic heart failure(CHF)and can adversely contribute to treatment adherence and clinical outcomes.Poor fluid restriction adherence is a widespread challenge in the management of CHF.To effectively manage disease progression and alleviate symptoms,it is crucial to identify key influencing factors to facilitate the implementation of targeted interventions.AIM To investigate the status of anxiety and depression among patients with CHF and determine the factors contributing to poor fluid restriction adherence.METHODS Three hundred CHF patients seeking medical treatment at The First Hospital of Hunan University of Traditional Chinese Medicine between June 2021 and June 2023 were included in the study.Questionnaires,including the Psychosomatic Symptom Scale,Self-Rating Anxiety Scale,Self-Rating Depression Scale,and Fluid Restriction Adherence Questionnaire were administered to patients.Based on their anxiety and depression scores,patients were categorized into anxiety/depression and non-anxiety/depression groups,as well as fluid restriction adherence and fluid restriction non-adherence groups.General patient data were collected,and univariate and logistic regression analyses were conducted to determine the occurrence of depression and anxiety.Logistic regression analysis was used to identify independent factors influencing fluid restriction adherence.RESULTS Statistically significant differences in age,New York Heart Association(NYHA)grading,marital status,educational attainment,and family support were observed between depressed and non-depressed CHF patients(P<0.05).Age,NYHA grading,marital status,educational attainment,and family support were identified as factors influencing the development of depression.The anxiety and non-anxiety groups differed statistically in terms of gender,age,NYHA grading,smoking history,alcohol consumption history,monthly income,educational attainment,and family support(P<0.05).Gender,smoking,alcohol consumption,monthly income,and educational attainment affected anxiety in these patients.The fluid restriction adherence rate was 28.0%,and thirst sensation,anxiety,and depression were identified as independent influencing factors.CONCLUSION CHF patients are susceptible to anxiety and depression,with multiple associated influencing factors.Moreover,anxiety and depression are independent factors that can influence fluid restriction adherence in these patients. 展开更多
关键词 Chronic heart failure ANXIETY DEPRESSION fluid restriction adherence
暂未订购
CFD investigation in the temperature effect on coal catalytic hydrogasification in the pressurized bubbling fluidized bed 被引量:1
5
作者 Yin Zhang Shuai Yan +3 位作者 Zihong Xia Caixia Chen Xuan Qu Jicheng Bi 《Chinese Journal of Chemical Engineering》 2025年第2期205-217,共13页
Temperature is a critical factor influencing the performance of coal catalytic hydrogasification in bubbling fluidized bed gasifiers.Numerical simulations at various temperatures(1023 K,1073 K,1123 K,and 1173 K)are co... Temperature is a critical factor influencing the performance of coal catalytic hydrogasification in bubbling fluidized bed gasifiers.Numerical simulations at various temperatures(1023 K,1073 K,1123 K,and 1173 K)are conducted to elucidate the mechanisms by which temperature affects bubble size,global reaction performance,and particle-scale reactivity.The simulation results indicate that bubble size increases at elevated temperatures,while H_(2)-char hydrogasification reactivity is enhanced.Particle trajectory analyses reveal that particles sized between 100 and 250μm undergo intense char hydrogasification in the dense phase,contributing to the formation of hot spots.To assess the impact of temperature on the particle-scale flow-transfer-reaction process,the dimensionless quantities of Reynolds,Nusselt,and Sherwood numbers,along with the solids dispersion coefficient,are calculated.It is found that higher temperatures inhibit bubble-induced mass and heat transfer.In general,3 MPa,1123 K,and 3-4 fluidization numbers are identified as the optimal conditions for particles ranging from 0 to350μm.These findings provide valuable insights into the inherent interactions between temperature and gas-particle reaction. 展开更多
关键词 fluidIZED-BED GASIFICATION Computational fluid dynamics
在线阅读 下载PDF
Particle transport in fractured geo-energy reservoirs considering the effect of fluid inertia and turbulent flow:A review 被引量:1
6
作者 E.A.A.V.Edirisinghe M.S.A.Perera +2 位作者 D.Elsworth S.K.Matthai E.Goudeli 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1906-1939,共34页
Particle-fluid two-phase flows in rock fractures and fracture networks play a pivotal role in determining the efficiency and effectiveness of hydraulic fracturing operations,a vital component in unconventional oil and... Particle-fluid two-phase flows in rock fractures and fracture networks play a pivotal role in determining the efficiency and effectiveness of hydraulic fracturing operations,a vital component in unconventional oil and gas extraction.Central to this phenomenon is the transport of proppants,tiny solid particles injected into the fractures to prevent them from closing once the injection is stopped.However,effective transport and deposition of proppant is critical in keeping fracture pathways open,especially in lowpermeability reservoirs.This review explores,then quantifies,the important role of fluid inertia and turbulent flows in governing proppant transport.While traditional models predominantly assume and then characterise flow as laminar,this may not accurately capture the complexities inherent in realworld hydraulic fracturing and proppant emplacement.Recent investigations highlight the paramount importance of fluid inertia,especially at the high Reynolds numbers typically associated with fracturing operations.Fluid inertia,often overlooked,introduces crucial forces that influence particle settling velocities,particle-particle interactions,and the eventual deposition of proppants within fractures.With their inherent eddies and transient and chaotic nature,turbulent flows introduce additional complexities to proppant transport,crucially altering proppant settling velocities and dispersion patterns.The following comprehensive survey of experimental,numerical,and analytical studies elucidates controls on the intricate dynamics of proppant transport under fluid inertia and turbulence-towards providing a holistic understanding of the current state-of-the-art,guiding future research directions,and optimising hydraulic fracturing practices. 展开更多
关键词 Two-phase flows Rock fractures Proppant transport fluid inertia Turbulent flows Hydraulic fracturing
在线阅读 下载PDF
Impact of Pollutant Concentration and Particle Deposition on the Radiative Flow of Casson-Micropolar Fluid between Parallel Plates
7
作者 Ghaliah Alhamzi Badr Saad T.Alkahtani +2 位作者 Ravi Shanker Dubey Vinutha Kalleshachar Neelima Nizampatnam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期665-690,共26页
Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing po... Assessing the behaviour and concentration of waste pollutants deposited between two parallel plates is essential for effective environmental management.Determining the effectiveness of treatment methods in reducing pollution scales is made easier by analysing waste discharge concentrations.The waste discharge concentration analysis is useful for assessing how effectively wastewater treatment techniques reduce pollution levels.This study aims to explore the Casson micropolar fluid flow through two parallel plates with the influence of pollutant concentration and thermophoretic particle deposition.To explore the mass and heat transport features,thermophoretic particle deposition and thermal radiation are considered.The governing equations are transformed into ordinary differential equations with the help of suitable similarity transformations.The Runge-Kutta-Fehlberg’s fourthfifth order technique and shooting procedure are used to solve the reduced set of equations and boundary conditions.The integration of a neural network model based on the Levenberg-Marquardt algorithm serves to improve the accuracy of predictions and optimize the analysis of parameters.Graphical outcomes are displayed to analyze the characteristics of the relevant dimensionless parameters in the current problem.Results reveal that concentration upsurges as the micropolar parameter increases.The concentration reduces with an upsurge in the thermophoretic parameter.An upsurge in the external pollutant source variation and the local pollutant external source parameters enhances mass transport.The surface drag force declines for improved values of porosity and micropolar parameters. 展开更多
关键词 Micropolar fluid thermal radiation porous medium thermophoretic particle deposition waste discharge concentration
在线阅读 下载PDF
Fluid-based moderate collision avoidance for UAV formation in 3-D low-altitude environments 被引量:1
8
作者 Menghua ZHANG Honglun WANG +5 位作者 Zhiyu LI Yanxiang WANG Xianglun ZHANG Qiang TANG Shichao MA Jianfa WU 《Chinese Journal of Aeronautics》 2025年第6期533-551,共19页
Aiming to address the Unmanned Aerial Vehicle(UAV) formation collision avoidance problem in Three-Dimensional(3-D) low-altitude environments where dense various obstacles exist, a fluid-based path planning framework n... Aiming to address the Unmanned Aerial Vehicle(UAV) formation collision avoidance problem in Three-Dimensional(3-D) low-altitude environments where dense various obstacles exist, a fluid-based path planning framework named the Formation Interfered Fluid Dynamical System(FIFDS) with Moderate Evasive Maneuver Strategy(MEMS) is proposed in this study.First, the UAV formation collision avoidance problem including quantifiable performance indexes is formulated. Second, inspired by the phenomenon of fluids continuously flowing while bypassing objects, the FIFDS for multiple UAVs is presented, which contains a Parallel Streamline Tracking(PST) method for formation keeping and the traditional IFDS for collision avoidance. Third, to rationally balance flight safety and collision avoidance cost, MEMS is proposed to generate moderate evasive maneuvers that match up with collision risks. Comprehensively containing the time and distance safety information, the 3-D dynamic collision regions are modeled for collision prediction. Then, the moderate evasive maneuver principle is refined, which provides criterions of the maneuver amplitude and direction. On this basis, an analytical parameter mapping mechanism is designed to online optimize IFDS parameters. Finally, the performance of the proposed method is validated by comparative simulation results and real flight experiments using fixed-wing UAVs. 展开更多
关键词 Unmanned aerial vehicle Formation collision avoidance:3-D low-altitude environments Interfered fluid dynamical system 3-D dynamic collision region
原文传递
Simulation and Experimental Analysis of Mechanical Properties of a Bidirectional Adjustable Magnetorheological Fluid Damper
9
作者 YANG Zhi−rong YE Zhong−min +2 位作者 LIU Jin−liang RAO Zhu−shi XIAO Wang−qiang 《船舶力学》 北大核心 2025年第6期1000-1012,共13页
The aim of this study is to address the issues associated with traditional magnetorheological fluid(MRF)dampers,such as insufficient damping force after power failure and susceptibility to settlement.In order to achie... The aim of this study is to address the issues associated with traditional magnetorheological fluid(MRF)dampers,such as insufficient damping force after power failure and susceptibility to settlement.In order to achieve this,a bidirectional adjustable MRF damper was designed and developed.Magnetic field simulation analysis was conducted on the damper,along with simulation analysis on its dynamic characteristics.The dynamic characteristics were ultimately validated through experimental testing on the material testing machine,thereby corroborating the theoretical simulation results.Concurrently,this process generated valuable test data for subsequent implementation of the semi-active vibration control system.The simulation and test results demonstrate that the integrated permanent magnet effectively accomplishes bidirectional regulation.The magnetic induction intensity of the damping channel is 0.2 T in the absence of current,increases to 0.5 T when a maximum forward current of 4 A is applied,and becomes 0 T when a maximum reverse current of 3.8 A is applied.When the excitation amplitude is 8 mm and the frequency is 2 Hz,with the applied currents varying,the maximum damping force reaches 8 kN,while the minimum damping force measures at 511 N.Additionally,at zero current,the damping force stands at 2 kN,which aligns closely with simulation results.The present paper can serve as a valuable reference for the design and research of semi-active MRF dampers. 展开更多
关键词 magnetorheological fluid(MRF) DAMPER permanent magnet finite element analysis test of mechanical properties
在线阅读 下载PDF
Trace Element Geochemistry and Sr-Nd Isotopic Characteristics of Scheelite from the Gejiu Sn-Cu-(W)Ore District:Constraints on Tungsten Sources and Evolution of W-bearing Hydrothermal Fluids
10
作者 HAN Zhang LI Chao +4 位作者 CHEN Yaokun YAN Qinggao YANG Fucheng WEI Chao JIANG Xiaojun 《Acta Geologica Sinica(English Edition)》 2025年第4期1093-1104,共12页
The Gejiu tin-copper-(tungsten)(Sn-Cu-(W))polymetallic district is located in the southwest of the W-Sn metallogenic belt in the western Youjiang Basin,Yunnan,Southwest China.Abundant W minerals have been identified i... The Gejiu tin-copper-(tungsten)(Sn-Cu-(W))polymetallic district is located in the southwest of the W-Sn metallogenic belt in the western Youjiang Basin,Yunnan,Southwest China.Abundant W minerals have been identified in the region via exploration.However,metallogenic sources and evolution of W remain unclear,and the existing metallogenic model has to be updated to guide further ore prospecting.Elemental and Sr-Nd isotopic data for scheelites assist in the determination of sources and evolution of the W-mineralizing fluids and metals in the district.Based on field geological survey,the scheelites in the Gejiu district can be categorized into three types:altered granite(Type Ⅰ),quartz vein(Type Ⅱ)from the Laochang deposit,and skarn(Type Ⅲ)from the Kafang deposit.Types Ⅰ and Ⅱ scheelites have low molybdenum(Mo)and strontium(Sr)contents,and Type Ⅱ scheelite has lower Sr contents than Type Ⅰ as well as higher Mo and Sr contents than Type Ⅲ scheelites.Varying Mo contents across the scheelite types suggests that the oxygen fugacity varied during ore accumulation.Type Ⅰ and Type Ⅱ scheelites exhibit similar rare earth elements(REE)patterns;Type Ⅲ scheelite contains lower REE content,particularly HREE,compared with the other scheelites.All scheelites exhibit negative Eu anomalies in the chondrite-normalized REE patterns.As the W-mineralization and two-mica granite share close spatial and temporal relationships,the negative Eu anomalies were likely inherited from the two-mica granite.Type Ⅰ and Type Ⅱ scheelites display varied(^(87)Sr/^(86)Sr)_(82 Ma)(0.7090-0.7141)andε_(Nd)(82 Ma)(from−9.9 to−5.4)values,similar to those of granite.However,Type Ⅲ scheelite exhibits lower(^(87)Sr/^(86)Sr)_(82 Ma)(0.7083-0.7087)and lowerε_(Nd)(82 Ma)(from−10.5 to−6.9)values than the two-mica granite.This indicates that the two-mica granite alone did not provide the ore-forming fluids and metals and that the Type Ⅲ scheelite ore-forming fluids likely involved external fluids that were probably derived from carbonate rocks.The implication is that highly differentiated two-mica granites were the source of primary W-bearing metals and fluids,which is consistent with earlier research on the origin of Sn ore-forming materials. 展开更多
关键词 MINERALOGY SCHEELITE Sr-Nd isotope ore-forming fluid fluid evolution
在线阅读 下载PDF
An innovative external drainage device for suprachoroidal fluid: the puncture needle with drainage groove
11
作者 Jing-Wen Hui Xiao-Li Li +2 位作者 Bo Xiao Quan-Hong Han Ying Wang 《International Journal of Ophthalmology(English edition)》 2025年第5期962-964,共3页
Dear Editor,We introduce a novel surgical instrument designed to overcome the challenges in draining fluid from the suprachoroidal space in patients with choroidal detachment.In the evolving landscape of ophthalmic su... Dear Editor,We introduce a novel surgical instrument designed to overcome the challenges in draining fluid from the suprachoroidal space in patients with choroidal detachment.In the evolving landscape of ophthalmic surgeries,procedures that were once considered complex,such as those for choroidal detachment,are becoming increasingly common.Drainage of subchoroidal fluid was derived from 1985[1]with indirect visualization during scleral buckle surgery[2-4]. 展开更多
关键词 surgical instrument scleral buckle surgery draining fluid innovative external drainage device choroidal detachmentare indirect visualization choroidal detachmentin subchoroidal fluid
原文传递
Thermal investigation of water-based radiative magnetized micropolar hybrid nanofluid flow subject to impacts of the Cattaneo–Christov flux model on a variable porous stretching sheet with a machine learning approach
12
作者 Showkat Ahmad Lone Zehba Raizah +3 位作者 Rawan Bossly Fuad SAlduais Afrah Al-Bossly Arshad Khan 《Chinese Physics B》 2025年第6期357-375,共19页
This work investigates water-based micropolar hybrid nanofluid(MHNF) flow on an elongating variable porous sheet.Nanoparticles of diamond and copper have been used in the water to boost its thermal conductivity. The m... This work investigates water-based micropolar hybrid nanofluid(MHNF) flow on an elongating variable porous sheet.Nanoparticles of diamond and copper have been used in the water to boost its thermal conductivity. The motion of the fluid is taken as two-dimensional with the impact of a magnetic field in the normal direction. The variable, permeable, and stretching nature of sheet's surface sets the fluid into motion. Thermal and mass diffusions are controlled through the use of the Cattaneo–Christov flux model. A dataset is generated using MATLAB bvp4c package solver and employed to train an artificial neural network(ANN) based on the Levenberg–Marquardt back-propagation(LMBP) algorithm. It has been observed as an outcome of this study that the modeled problem achieves peak performance at epochs 637, 112, 4848, and 344 using ANN-LMBP. The linear velocity of the fluid weakens with progression in variable porous and magnetic factors.With an augmentation in magnetic factor, the micro-rotational velocity profiles are augmented on the domain 0 ≤ η < 1.5 due to the support of micro-rotations by Lorentz forces close to the sheet's surface, while they are suppressed on the domain 1.5 ≤ η < 6.0 due to opposing micro-rotations away from the sheet's surface. Thermal distributions are augmented with an upsurge in thermophoresis, Brownian motion, magnetic, and radiation factors, while they are suppressed with an upsurge in thermal relaxation parameter. Concentration profiles increase with an expansion in thermophoresis factor and are suppressed with an intensification of Brownian motion factor and solute relaxation factor. The absolute errors(AEs) are evaluated for all the four scenarios that fall within the range 10^(-3)–10^(-8) and are associated with the corresponding ANN configuration that demonstrates a fine degree of accuracy. 展开更多
关键词 MHD fluid hybrid nanofluid Cattaneo–Christov flux model variable porous surface micropolar fluid brownian motion and thermophoresis ANN approach
原文传递
Bubble breakup in viscous liquids at a microfluidic T-junction
13
作者 Hongwei Zhu Junjie Feng +5 位作者 Ziyi Xu Chunying Zhu Youguang Ma Wei Xu Bing Sun Taotao Fu 《Chinese Journal of Chemical Engineering》 2025年第2期44-57,共14页
Bubble breakup at T-junction microchannels is the basis for the numbering-up of gas−liquid two-phase flow in parallelized microchannels. This article presents the bubble breakup in viscous liquids at a microfluidic T-... Bubble breakup at T-junction microchannels is the basis for the numbering-up of gas−liquid two-phase flow in parallelized microchannels. This article presents the bubble breakup in viscous liquids at a microfluidic T-junction. Nitrogen is used as the gas phase, and glycerol-water mixtures with different mass concentration of glycerol as the liquid phase. The evolution of the gas−liquid interface during bubble breakup at the microfluidic T-junction is explored. The thinning of the bubble neck includes the squeezing stage and the rapid pinch-off stage. In the squeezing stage, the power law relation is found between the minimum width of the bubble neck and the time, and the values of exponents α1 and α2 are influenced by the viscous force. The values of pre-factors m_(1) and m_(2) are negatively correlated with the capillary number. In the rapid pinch-off stage, the thinning of the bubble neck is predominated by the surface tension, and the minimum width of the bubble neck can be scaled with the remaining time as power-law. The propagation of the bubble tip can be characterized by the power law between the movement distance and the time, with decreasing exponent as increased liquid viscosity. 展开更多
关键词 BUBBLE MICROfluidICS MICROCHANNEL BREAKUP Viscous fluid
在线阅读 下载PDF
Micromixing efficiency and enhancement methods for non-Newtonian fluids in millimeter channel reactors
14
作者 Zhaoyi Song Yuanxi Zhang +2 位作者 Guangwen Chu Lei Shao Yang Xiang 《Chinese Journal of Chemical Engineering》 2025年第2期108-119,共12页
Millimeter channel reactors(MCRs)have received increasing attention because of their ability to enhance treatment capacity in addition to the advantages of microchannels.In previous studies,less work has been conducte... Millimeter channel reactors(MCRs)have received increasing attention because of their ability to enhance treatment capacity in addition to the advantages of microchannels.In previous studies,less work has been conducted on the micromixing process and enhancement strategies for non-Newtonian fluids in MCRs.In this study,the micromixing efficiency in MCRs was experimentally investigated using CMC(carboxymethyl cellulose sodium)aqueous solution to simulate a non-Newtonian fluid,and the enhanced mechanism of micromixing efficiency by the addition of internals and rotation was analyzed by computational fluid dynamics(CFD)simulations.The results show that in the conventional channel,increasing the flow rate improves the micromixing efficiency when the CMC concentration is low.However,when the CMC concentration is higher,the higher the flow rate,the lower the micromixing efficiency.The highest micromixing efficiency is obtained for the rotationally coupled inner components,followed by the single rotation and the lowest is for the internals only.CFD simulations reveal that the most effective way to improve the micromixing efficiency of non-Newtonian fluids with shear-thinning behavior is to increase the shear force in the reactor,which effectively reduces the apparent viscosity.These results provide the theoretical foundation for enhancing the micromixing process of non-Newtonian fluids in small-size reactors. 展开更多
关键词 Millimeter channel MICROMIXING CFD VISCOUS Non-Newtonian fluid
在线阅读 下载PDF
Research on the pollution and damage mechanism of drilling fluid on casing during ultra-deep well drilling process
15
作者 Han-Xuan Song Shi-Ling Zhang +4 位作者 Xiang-Wei Chen Kiyingi Wyclif Ji-Xiang Guo Rui-Ying Xiong Li Wang 《Petroleum Science》 2025年第3期1234-1251,共18页
In drilling ultra-deep wells,the drilling fluid circulation usually causes erosion damage to downhole casing and drilling tools.However,the extent and process of this damage to the downhole tools is intricate and less... In drilling ultra-deep wells,the drilling fluid circulation usually causes erosion damage to downhole casing and drilling tools.However,the extent and process of this damage to the downhole tools is intricate and less understood.In order to systematically evaluate and clarify this damage process for different types of drilling fluid contamination,this research uses a high-temperature drilling fluid damage device to simulate the damage caused to the casing/drilling tools by various drilling fluid under a field thermal gradient.The results show that the drilling fluid residues are mainly solid-phase particles and organic components.The degree of casing/tool damage decreases with an increase in bottom hole temperature,and the casing/tool is least damaged within a temperature range of 150–180°C.Moreover,the surface of the casing/tool damaged by different types of drilling fluid shows different roughness,and the wettability of drilling fluid on the casing/tool surface increases with an increase in the degree of roughness.Oil-based drilling fluid have the strongest adhesion contamination on casing/drilling tools.In contrast,polysulfonated potassium drilling fluid and super-micro drilling fluid have the most potent erosion damage on casing/drilling tools.By analyzing the damage mechanism,it was established that the damage was mainly dominated by the abrasive wearing from solid-phase particles in concert with corrosion ions in drilling fluid,with solids producing many abrasion marks and corrosive ions causing a large number of pits.Clarifying drilling fluid's contamination and damage mechanism is significant in guiding the wellbore cleaning process and cutting associated costs. 展开更多
关键词 Ultra-deep well Casing contamination CORROSION TRIBOLOGY Drilling fluid
原文传递
Effect of Libration on Fluid Flow and Granular Medium Dynamics in a Rotating Cylindrical Annulus
16
作者 Denis Polezhaev Alexey Vjatkin Victor Kozlov 《Fluid Dynamics & Materials Processing》 2025年第5期1051-1061,共11页
The dynamics of fluid and non-buoyant particles in a librating horizontal annulus is studied experimentally.In the absence of librations,the granular material forms a cylindrical layer near the outer boundary of the a... The dynamics of fluid and non-buoyant particles in a librating horizontal annulus is studied experimentally.In the absence of librations,the granular material forms a cylindrical layer near the outer boundary of the annulus and undergoes rigid-body rotation with the fluid and the annulus.It is demonstrated that the librational liquefaction of the granular material results in pattern formation.This self-organization process stems from the excitation of inertial modes induced by the oscillatory motion of liquefied granular material under the influence of the gravitational force.The inertial wave induces vortical fluid flow which entrains particles from rest and forms eroded areas that are equidistant from each other along the axis of rotation.Theoretical analysis and experiments demonstrate that a liquefied layer of granular material oscillates with a radian frequency equal to the angular velocity of the annulus and interacts with the inertial wave it excites.The new phenomenon of libration-induced pattern formation is of practical interest as it can be used to control multiphase flows and mass transfer in rotating containers in a variety of industrial processes. 展开更多
关键词 fluid granular medium ROTATION librations inertial waves pattern formation
在线阅读 下载PDF
Viscoelastic Flow Analysis with Buongiorno Nanofluid Model over a Nonlinear Stretching Sheet:A Homotopy Approach
17
作者 Syamala Ramadevu Prathi Vijaya Kumar +2 位作者 Giulio Lorenzini Shaik Mohammed Ibrahim Kanithi Jyothsna 《Frontiers in Heat and Mass Transfer》 2025年第3期857-879,共23页
Viscoelastic nanofluid flow has drawn substantial interest due to its industrial uses,including research and testing of medical devices,lubrication and tribology,drug delivery systems,and environmental remediation.Thi... Viscoelastic nanofluid flow has drawn substantial interest due to its industrial uses,including research and testing of medical devices,lubrication and tribology,drug delivery systems,and environmental remediation.This work studies nanofluid flow over a viscoelastic boundary layer,focusing on mass and heat transmission.An analysis is performed on the flow traversing a porous sheet undergoing nonlinear stretching.It assesses the consequences of viscous dissipation and thermal radiation.The scientific nanofluid framework laid out by Buongiorno has been exploited.The partial differential equations illustrating the phenomena can be transfigured into ordinary differential equations by utilizing appropriate similarity transformations.The simplified equations are unmasked using the Homotopy Analysis Method(HAM),a semi-analytical approach designed to solve nonlinear ordinary and partial differential equations commonly encountered in numerous scientific and engineering disciplines.Calculations are executed to ascertain the numerical solutions related to temperature,concentration,and velocity fields,accompanied by the skin friction coefficient,local Nusselt number,and local Sherwood number.Visualizations of the results are accompanied by pertinent explanations grounded in scientific principles.The temperature distribution and corresponding thermal layer have been enhanced due to radiative and viscous dissipation characteristics.Additionally,it has been noted that a delay in fluid movement results from an improvement in the porous medium parameter and magnetic field values.A falling trend in the Nusselt number is observed as the Eckert and thermophoresis parameters increase.The current numerical results have been effectively validated against previous difficulties. 展开更多
关键词 Viscoelastic fluid porous medium RADIATION viscous dissipation HAM
在线阅读 下载PDF
Mechanisms and Mitigation of Heavy Oil Invasion into Drilling Fluids in Carbonate Reservoirs
18
作者 Yang Yu Sheng Fan +3 位作者 Zhonglin Li Zhong He Jingwei Liu Peng Xu 《Fluid Dynamics & Materials Processing》 2025年第8期1875-1894,共20页
Drilling operations in carbonate rock heavy oil blocks(e.g.,in the Tahe Oilfield)are challenged by the intrusion of high-viscosity,temperature-sensitive formation heavy oil into the drilling fluid.This phenomenon ofte... Drilling operations in carbonate rock heavy oil blocks(e.g.,in the Tahe Oilfield)are challenged by the intrusion of high-viscosity,temperature-sensitive formation heavy oil into the drilling fluid.This phenomenon often results in wellbore blockage,reduced penetration rates,and compromised well control,thereby significantly limiting drilling efficiency and operational safety.To address this issue,this study conducts a comprehensive investigation into the mechanisms governing heavy oil invasion using a combination of laboratory experiments and field data analysis.Findings indicate that the reservoir exhibits strong heterogeneity and that the heavy oil possesses distinctive physical properties.The intrusion process is governed by multiple interrelated factors,including pressure differentials,pore structure,and the rheological behavior of the heavy oil.Experimental results reveal that the invasion of heavy oil occurs in distinct phases,with temperature playing a critical role in altering its viscosity.Specifically,as temperature increases,the apparent viscosity of the drilling fluid decreases;however,elevated pressures induce a nonlinear increase in viscosity.Furthermore,the compatibility between the drilling fluid and the intruding heavy oil declines markedly with increasing oil concentration,substantially raising the risk of wellbore obstruction.Simulation experiments further confirm that at temperatures exceeding 40℃and injection rates of L/min,the likelihood of wellbore blockage significantly≥0.4increases due to heavy oil infiltration.Based on these insights,a suite of targeted mitigation strategies is proposed.These include the formulation of specialized chemical additives,such as viscosity reducers,dispersants,and plugging removal agents,the real-time adjustment of drilling fluid density,and the implementation of advanced monitoring and early-warning systems. 展开更多
关键词 Heavy oil drilling fluid carbonate rock INTRUSIVE BLOCKAGE
在线阅读 下载PDF
Geochemical Peculiarities and Genesis of Mud Volcanic Fluids Originated from Marine and Freshwater Strata:Insights from the North Tian Shan and the North Caucasus Mud Volcanoes
19
作者 George Chelnokov Li Zhang +7 位作者 Vasilii Lavrushin Xiangxian Ma Yuanyuan Shao Yuxin Guo Zhongping Li Chunhui Cao Huayun Tang Guodong Zheng 《Journal of Earth Science》 2025年第5期2208-2223,共16页
The phenomenon of mud volcanism has a connection with the processes of hydrocarbon generation.However,the genesis of sediments is not often taken into consideration.The study of mud volcanoes in the West Kuban margina... The phenomenon of mud volcanism has a connection with the processes of hydrocarbon generation.However,the genesis of sediments is not often taken into consideration.The study of mud volcanoes in the West Kuban marginal marine basin and the Junggar freshwater basin revealed significant isotope-geochemical differences due to various types of sedimentation.The waters from both basins exhibit three principal geochemical facies:Na-HCO_(3),Na-Cl-HCO_(3),and Na-Cl,of which the latter type of water is the dominant.The analysis of genetic coefficients(Cl/Br,Na/Br,and B/Cl)allowed us to distinguish different pathways of mud volcanic water evolution:evaporite dissolution,formation(sedimentation)waters,and waters formed by active water-rock interaction.Through statistical research,we were able to determine that noticeable variations in the behavior of chemical elements in waters from different areas can reflect discrepancies in the geological environment and the evolutionary stage of the diagenetic water transformation.Using thermodynamic modeling,the main directions of mass transfer were shown.It was established that the waters of the Junggar Basin were at a relatively early stage of evolution and had reached equilibrium only with carbonates,while in the formation waters of the West Kuban Basin,element concentrations were also controlled by silicate minerals.The correlations betweenδ^(18)O andδ~2H values and saturation indices of halides,aluminosilicates,sulfates,and borates confirm the enrichment of water with heavy isotopes during interactions with rocks without evaporation or thermal water partition.These reactions are characterized by clay dehydration and water enrichment with^(18)O and B.The data obtained made it possible to clarify the depths of formation of mud-volcanic fluids and their possible stratigraphic sources. 展开更多
关键词 mud volcanoes fluid isotopes Junggar Basin North Caucasus environmental geology
原文传递
Study of a new structural emulsion and its application in drilling fluids
20
作者 Han-Xuan Song Yun-Jin Wang Yan Ye 《Petroleum Science》 2025年第1期481-491,共11页
Aiming at the leakage problem in the compact sandstone drilling of the Keziluoyi Formation in South-west Tarim,Nano-core-emulsion was prepared by coating modified nano-SiO_(2) with nano-emulsion,its particle size D50 ... Aiming at the leakage problem in the compact sandstone drilling of the Keziluoyi Formation in South-west Tarim,Nano-core-emulsion was prepared by coating modified nano-SiO_(2) with nano-emulsion,its particle size D50 is about 100 nm,with good dispersion stability.When 0.8%Nano-core-emulsion is added to 5%bentonite slurry,the fluid loss can be reduced by 40%,and the filter cake thickness can be reduced by 84%.Using a Nano-core-emulsion to optimize the plugging performance of potassium pol-ysulfonate drilling fluid can reduce the fluid loss of the drilling fluid by 52%,the resulting filter cake is dense and tough,and the thickness is reduced by 40%.Using the pressure conduction method to evaluate the plugging rate,the plugging rate of the drilling fluid of the Nano-core-emulsion on the core of the Keziluoyi Formation is 63.4%,which is 20.9%higher than that of the field drilling fluid.According to microscopic examination and CT scanning analysis,the material has the plugging characteristics of"inner rigid support+outer soft deformation"and has demonstrated good field application results. 展开更多
关键词 Nano-core-emulsion Water-based drilling fluid TARIM Plugging
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部