Biomonitoring using fish has been a popular method of assessing the toxic effects of cadmium concentrations of cadmium in water bodies and has led to bioaccumulation in fish contributing to various morphological alter...Biomonitoring using fish has been a popular method of assessing the toxic effects of cadmium concentrations of cadmium in water bodies and has led to bioaccumulation in fish contributing to various morphological alterations. Among the known effects of these alterations is developmental instability via fluctuating asymmetry (FA). The utilization of FA data is a simple yet effective method to evaluate the toxic effects of cadmium on the stability of development. This study used climbing perch (Anabas testudieneus) to assess the FA in the diameter of the eye because of low-level cadmium exposure. The left and right sides of the traits were measured once every four weeks for 16 weeks. The average measurements from both sides of the traits were used to calculate the FA value. Results found that the highest mean FA for the diameter of the eye was obtained in the highest treatment group, 0.015 mg/L. The results also indicate that increasing concentrations of cadmium exposure had a statistically significant effect on the FA of eye diameter. There was also a statistically significant interaction between the duration of exposure and treatment groups in FA of the diameter of the eye. The results from the study indicate that prolonged exposure to sub-lethal concentrations of cadmium can cause significant effects on the normal development of eyes in Anabas testudineus. This study can add to the body of research regarding fluctuating asymmetry as a tool to study developmental toxicants and assess other bilateral organs.展开更多
Predation is one of the main selective forces in nature, frequently selecting potential prey for developing escape strategies. Escape ability is typically influenced by several morphological parameters, such as morpho...Predation is one of the main selective forces in nature, frequently selecting potential prey for developing escape strategies. Escape ability is typically influenced by several morphological parameters, such as morphology of the locomotor appendices, muscular capacity, body mass, or fluctuating asymmetry, and may differ between sexes and age classes. In this study, we tested the relationship among these variables and jumping performance in 712 Iberian green frogs Pelophylax perezi from an urban population. The results suggest that the main determinant of jumping capacity was body size (explaining 48% of variance). Larger frogs jumped farther, but jumping performance reached an asymptote for the largest frogs. Once controlled by structural body size, the heaviest frogs jumped shorter distances, suggesting a trade-off between fat storage and jumping performance. Relative hind limb length also determined a small but significant percentage of variance (2.4%) in jumping performance-that is, the longer the hind limbs, the greater the jumping capacity. Juveniles had relatively shorter and less muscular hind limbs than adults (for a given body size), and their jumping performance was poorer. In our study population, the hind limbs of the frogs were very symmetrical, and we found no effect of fluctuating asymmetry on jumping performance. Therefore, our study provides evidence that jumping performance in frogs is not only affected by body size, but also by body mass and hind limb length, and differ between age classes.展开更多
A key scientific challenge relating to the threat of invasive plants on agriculture at the region level is to understand their adaptation and evolution in functional traits.Leaf functional traits,related to growth and...A key scientific challenge relating to the threat of invasive plants on agriculture at the region level is to understand their adaptation and evolution in functional traits.Leaf functional traits,related to growth and resource utilization,might lead to adaptation of invasive plants to the geographical barriers(region or elevation).In the field experiment,we discussed the effects of region and elevation on leaf functional traits on invasive plant Erigeron annuus in farmland habitats in China.We compared leaf size,coefficient of variation(CV)of leaf traits,and fluctuating asymmetry(FA)of E.annuus from three regions(east vs.center vs.west)and two leaf types(vegetative vs.reproductive leaf),and from nine elevations(980-2100 m)in the west region of China.Our results indicated region and leaf type influenced leaf functional traits,and leaf size was significantly higher and CV of leaf traits and FA in reproductive leaves were significantly lower in the east region than in the west and center regions.Elevation and leaf type affected leaf functional traits,and leaf size was significantly higher and CV of leaf traits in reproductive leaves were significantly lower in moderate elevation.E.annuus has higher leaf size and developmental stability(lower CV and FA)in the eastern region due to the longer adaptation period.Therefore,leaf functional traits play an important role in the adaptation of different longitudes and elevations.It can also facilitate the understanding of the invasiveness and adaptation of leaf traits of invasive plants in the agricultural ecosystem during their spread process in China.展开更多
Three common categories of bilateral asymmetry have been described: directional asymmetry, antisymmetry, and FA (fluctuating asymmetry). FA is the most subtle of the three types of asymmetry, and differs from the p...Three common categories of bilateral asymmetry have been described: directional asymmetry, antisymmetry, and FA (fluctuating asymmetry). FA is the most subtle of the three types of asymmetry, and differs from the patterns of the others in that paired structures tend to be symmetric in size. The analysis of FA allows to estimate the influence of stress factors on animal development and enables evaluation of resistance to stress. The aim of this work was to estimate the symmetry of skulls of a contemporary pure goat breed, as there is currently no study of FA as an estimate of individual quality for domestic goats. For this purpose, 11 landmarks were digitized in two dimensions from the crania of 24 adult goats (12 males and 12 females) belonging to the "White Rasquera" breed. The skulls showed nearly perfect bilateral symmetry. The low detected values of FA in skulls revealed a weak influence of developmental stress on this goat contemporary population and its strong ability to compensate stress.展开更多
A particular phenotype is generated through numerous networks of interactions from within the cell to the whole ecosystem. The level of the environmental noise and the ability of a given genotype to render different p...A particular phenotype is generated through numerous networks of interactions from within the cell to the whole ecosystem. The level of the environmental noise and the ability of a given genotype to render different phenotypes under different environmental conditions, called phenotypic plasticity, determine survival or death at individual and/or population level. It is important to highlight that non-lethal environmental changes are important for generating genetic variability and promoting biological adaptations. However, when the level of environmental noise starts to be stressed, the developmental stability (DS) of the organism can be perturbed. The DS has been analysed through the symmetry deviations in organs or organisms with bilateral structure. The symmetry deviations occur due to inability to contain disorders from environmental or endogenous conditions during its development. This deviation is called fluctuating asymmetry (FA) when is a non-directional deviation in the symmetry of a bilateral structure normally distributed in a population. Low FA has been associated with greater DS. The analysis of FA has often been used to measure the effects of environmental perturbations. In this review, I discuss the concept of plant stress and phenotypic plasticity connecting both to the generation of an asymmetry phenotype, highlighting the usefulness of FA as an indicator of the level of stress which the organism is subjected to. Further, although this review explores mainly the connection between FA and stress in plants, the ecological context of symmetry in animals and plant-insect interaction is also discussed. Finally, I provided some methodologies used to detect symmetry variations in organs or organisms with bilateral structure.展开更多
Developmental instability in morphological characters can occur during individual development due to various environmental stresses. Fluctuating asymmetry (FA) is often used as a measurement of developmental instabi...Developmental instability in morphological characters can occur during individual development due to various environmental stresses. Fluctuating asymmetry (FA) is often used as a measurement of developmental instability, but within-environment variation (CVo) is also considered an indicator of developmental instability. Cabbage aphid (Brevicoryne brassicae) populations were reared on zinc- (Zn) or cadmium- (Cd) contaminated cabbage and radish plants. Developmental instability indicators were measured and their relations with fitness were explored. Results revealed that cabbage aphids exposed to Cd and Zn displayed considerable developmental instability, particularly fluctuating asymmetry. Differences in developmental instability between the two metals were also detected, as well as differences between the two developmental instability measurements. For almost all measured traits, FA was greater on Cd- and Zn-contaminated compared to non-contaminated host plants. In contrast, CVo of some traits was greater on non-contaminated host plants, yet for other traits CVo was greater on contaminated host plants. There were also non-significant inverse relationships between FA and fitness of cabbage aphid populations. Due to weak correlations between FA and different patterns of two developmental instability measurements, this study does not support the hypothesis that developmental instability is a useful bioindicator of environmental quality.展开更多
Env ironmental pollution is currently identified as one of the major drivers of rapid decline of insect populations,and this finding has revitalized interest in insect responses to pollution.We tested the hypothesis t...Env ironmental pollution is currently identified as one of the major drivers of rapid decline of insect populations,and this finding has revitalized interest in insect responses to pollution.We tested the hypothesis that the pollution-induced decline of insect populations can be predicted from phenotypic stress responses expressed as morphological differences between populations inhabiting polluted and unpolluted sites.We explored populations of the brassy tortrix Eulia ministrana in subarctic forests along an environmental disturbance gradient created by long-lasting severe impacts of aerial emissions of the copper-nickel smelter in Monchegorsk,northwestern Russia.We used pheromone traps to measure the population densities of this leafrolling moth and to collect specimens for assessment of three morphological stress indices:size,forewing melanization,and fluctuating asymmetry in wing venation.Wing length of E.ministrana increased by 10%,and neither forewing melanization nor fluctuating asymmetry changed from the unpolluted forest to the heavily polluted industrial barren.However,the population density of E.ministrana decreased 5 to 10 fold in the same pollution gradient.Thus,none of the studied potential morphological stress indicators signaled vulnerability of E.ministrana to environmental pollution and/or to pollution-induced environmental disturbance.We conclude that insect populations can decline without any visible signs of stress.The use of morphological proxies of insect fitness to predict the consequences of human impact on insect populations is therefore risky until causal relationships between these proxies and insect abundance are deciphered.展开更多
文摘Biomonitoring using fish has been a popular method of assessing the toxic effects of cadmium concentrations of cadmium in water bodies and has led to bioaccumulation in fish contributing to various morphological alterations. Among the known effects of these alterations is developmental instability via fluctuating asymmetry (FA). The utilization of FA data is a simple yet effective method to evaluate the toxic effects of cadmium on the stability of development. This study used climbing perch (Anabas testudieneus) to assess the FA in the diameter of the eye because of low-level cadmium exposure. The left and right sides of the traits were measured once every four weeks for 16 weeks. The average measurements from both sides of the traits were used to calculate the FA value. Results found that the highest mean FA for the diameter of the eye was obtained in the highest treatment group, 0.015 mg/L. The results also indicate that increasing concentrations of cadmium exposure had a statistically significant effect on the FA of eye diameter. There was also a statistically significant interaction between the duration of exposure and treatment groups in FA of the diameter of the eye. The results from the study indicate that prolonged exposure to sub-lethal concentrations of cadmium can cause significant effects on the normal development of eyes in Anabas testudineus. This study can add to the body of research regarding fluctuating asymmetry as a tool to study developmental toxicants and assess other bilateral organs.
文摘Predation is one of the main selective forces in nature, frequently selecting potential prey for developing escape strategies. Escape ability is typically influenced by several morphological parameters, such as morphology of the locomotor appendices, muscular capacity, body mass, or fluctuating asymmetry, and may differ between sexes and age classes. In this study, we tested the relationship among these variables and jumping performance in 712 Iberian green frogs Pelophylax perezi from an urban population. The results suggest that the main determinant of jumping capacity was body size (explaining 48% of variance). Larger frogs jumped farther, but jumping performance reached an asymptote for the largest frogs. Once controlled by structural body size, the heaviest frogs jumped shorter distances, suggesting a trade-off between fat storage and jumping performance. Relative hind limb length also determined a small but significant percentage of variance (2.4%) in jumping performance-that is, the longer the hind limbs, the greater the jumping capacity. Juveniles had relatively shorter and less muscular hind limbs than adults (for a given body size), and their jumping performance was poorer. In our study population, the hind limbs of the frogs were very symmetrical, and we found no effect of fluctuating asymmetry on jumping performance. Therefore, our study provides evidence that jumping performance in frogs is not only affected by body size, but also by body mass and hind limb length, and differ between age classes.
基金This study was supported by the National Natural Science Foundation of China(Nos.31770449,31270465)Fundamental Research Funds for the Central Universities(2662020YLPY016,2662016PY064).
文摘A key scientific challenge relating to the threat of invasive plants on agriculture at the region level is to understand their adaptation and evolution in functional traits.Leaf functional traits,related to growth and resource utilization,might lead to adaptation of invasive plants to the geographical barriers(region or elevation).In the field experiment,we discussed the effects of region and elevation on leaf functional traits on invasive plant Erigeron annuus in farmland habitats in China.We compared leaf size,coefficient of variation(CV)of leaf traits,and fluctuating asymmetry(FA)of E.annuus from three regions(east vs.center vs.west)and two leaf types(vegetative vs.reproductive leaf),and from nine elevations(980-2100 m)in the west region of China.Our results indicated region and leaf type influenced leaf functional traits,and leaf size was significantly higher and CV of leaf traits and FA in reproductive leaves were significantly lower in the east region than in the west and center regions.Elevation and leaf type affected leaf functional traits,and leaf size was significantly higher and CV of leaf traits in reproductive leaves were significantly lower in moderate elevation.E.annuus has higher leaf size and developmental stability(lower CV and FA)in the eastern region due to the longer adaptation period.Therefore,leaf functional traits play an important role in the adaptation of different longitudes and elevations.It can also facilitate the understanding of the invasiveness and adaptation of leaf traits of invasive plants in the agricultural ecosystem during their spread process in China.
文摘Three common categories of bilateral asymmetry have been described: directional asymmetry, antisymmetry, and FA (fluctuating asymmetry). FA is the most subtle of the three types of asymmetry, and differs from the patterns of the others in that paired structures tend to be symmetric in size. The analysis of FA allows to estimate the influence of stress factors on animal development and enables evaluation of resistance to stress. The aim of this work was to estimate the symmetry of skulls of a contemporary pure goat breed, as there is currently no study of FA as an estimate of individual quality for domestic goats. For this purpose, 11 landmarks were digitized in two dimensions from the crania of 24 adult goats (12 males and 12 females) belonging to the "White Rasquera" breed. The skulls showed nearly perfect bilateral symmetry. The low detected values of FA in skulls revealed a weak influence of developmental stress on this goat contemporary population and its strong ability to compensate stress.
文摘A particular phenotype is generated through numerous networks of interactions from within the cell to the whole ecosystem. The level of the environmental noise and the ability of a given genotype to render different phenotypes under different environmental conditions, called phenotypic plasticity, determine survival or death at individual and/or population level. It is important to highlight that non-lethal environmental changes are important for generating genetic variability and promoting biological adaptations. However, when the level of environmental noise starts to be stressed, the developmental stability (DS) of the organism can be perturbed. The DS has been analysed through the symmetry deviations in organs or organisms with bilateral structure. The symmetry deviations occur due to inability to contain disorders from environmental or endogenous conditions during its development. This deviation is called fluctuating asymmetry (FA) when is a non-directional deviation in the symmetry of a bilateral structure normally distributed in a population. Low FA has been associated with greater DS. The analysis of FA has often been used to measure the effects of environmental perturbations. In this review, I discuss the concept of plant stress and phenotypic plasticity connecting both to the generation of an asymmetry phenotype, highlighting the usefulness of FA as an indicator of the level of stress which the organism is subjected to. Further, although this review explores mainly the connection between FA and stress in plants, the ecological context of symmetry in animals and plant-insect interaction is also discussed. Finally, I provided some methodologies used to detect symmetry variations in organs or organisms with bilateral structure.
文摘Developmental instability in morphological characters can occur during individual development due to various environmental stresses. Fluctuating asymmetry (FA) is often used as a measurement of developmental instability, but within-environment variation (CVo) is also considered an indicator of developmental instability. Cabbage aphid (Brevicoryne brassicae) populations were reared on zinc- (Zn) or cadmium- (Cd) contaminated cabbage and radish plants. Developmental instability indicators were measured and their relations with fitness were explored. Results revealed that cabbage aphids exposed to Cd and Zn displayed considerable developmental instability, particularly fluctuating asymmetry. Differences in developmental instability between the two metals were also detected, as well as differences between the two developmental instability measurements. For almost all measured traits, FA was greater on Cd- and Zn-contaminated compared to non-contaminated host plants. In contrast, CVo of some traits was greater on non-contaminated host plants, yet for other traits CVo was greater on contaminated host plants. There were also non-significant inverse relationships between FA and fitness of cabbage aphid populations. Due to weak correlations between FA and different patterns of two developmental instability measurements, this study does not support the hypothesis that developmental instability is a useful bioindicator of environmental quality.
基金the Academy of Finland(projects 276671 and 311929).
文摘Env ironmental pollution is currently identified as one of the major drivers of rapid decline of insect populations,and this finding has revitalized interest in insect responses to pollution.We tested the hypothesis that the pollution-induced decline of insect populations can be predicted from phenotypic stress responses expressed as morphological differences between populations inhabiting polluted and unpolluted sites.We explored populations of the brassy tortrix Eulia ministrana in subarctic forests along an environmental disturbance gradient created by long-lasting severe impacts of aerial emissions of the copper-nickel smelter in Monchegorsk,northwestern Russia.We used pheromone traps to measure the population densities of this leafrolling moth and to collect specimens for assessment of three morphological stress indices:size,forewing melanization,and fluctuating asymmetry in wing venation.Wing length of E.ministrana increased by 10%,and neither forewing melanization nor fluctuating asymmetry changed from the unpolluted forest to the heavily polluted industrial barren.However,the population density of E.ministrana decreased 5 to 10 fold in the same pollution gradient.Thus,none of the studied potential morphological stress indicators signaled vulnerability of E.ministrana to environmental pollution and/or to pollution-induced environmental disturbance.We conclude that insect populations can decline without any visible signs of stress.The use of morphological proxies of insect fitness to predict the consequences of human impact on insect populations is therefore risky until causal relationships between these proxies and insect abundance are deciphered.