The behavior of three-dimensional bond fluctuation model chains tethered on an adsorbing fiat surface was simulated by the Monte Carlo method.The dependence of the number of surface contacts M on the interaction stren...The behavior of three-dimensional bond fluctuation model chains tethered on an adsorbing fiat surface was simulated by the Monte Carlo method.The dependence of the number of surface contacts M on the interaction strengthεand the chain length N was investigated by a finite-size scaling law M = N;[a;+a;N;κ+ O((N;κ);)]forεnear the critical adsorption pointε;,i.e.,κ=(ε-ε;)/ε;closes to 0.The critical adsorption point was estimated to beε;=0.93,and the exponentsφ= 0.49 and l/v= 0.57.展开更多
The kagome lattice,characterized by its network of cornersharing triangles,provides an excellent platform for studying various novel quantum phenomena.The recently discovered kagome metal AV3Sb5(A=K,Rb,Cs)[1]garners s...The kagome lattice,characterized by its network of cornersharing triangles,provides an excellent platform for studying various novel quantum phenomena.The recently discovered kagome metal AV3Sb5(A=K,Rb,Cs)[1]garners significant attention for its unique properties,including an unconventional charge density wave(CDW)and superconductivity(SC)[2],as well as the interplay between CDW and SC[3].展开更多
The impact of extreme temperatures on the health of individuals in different organizations remains uncertain.We employed stratified analyses to examine the impacts of summer(April-September)daily maximum temperatures ...The impact of extreme temperatures on the health of individuals in different organizations remains uncertain.We employed stratified analyses to examine the impacts of summer(April-September)daily maximum temperatures and winter(October-March)daily minimum temperatures on blood pressure and lipid profiles across government staff,com-pany employees,and researchers.We examined 209,477 physical examination records from a physical examination center in the First Affiliated Hospital of USTC from 2017 to 2021.Employing a segmented regression model within the frame-work of generalized linear regression(GLM),we examined the causal impact of extreme temperatures on health outcomes.Additionally,sensitivity analyses were conducted via distributed lag nonlinear models(DLNMs),with a focus on ob-serving the long-term effects over a period of 21 days.Our findings indicate that government staff face increased health risks during extremely low temperatures,regardless of the season.Compared with participants experiencing median tem-peratures,government staff exposed to extremely low temperatures(below the 10th percentile,below 24℃)in the sum-mer presented maximum increases of 2.32 mmHg(95%CI:1.542-3.098)in diastolic blood pressure and 6.481 mmHg(95%CI:5.368-7.594)in systolic blood pressure.In winter,government staff exposed to temperatures below the 10th per-centile(below 1℃)demonstrated maximum increases of 0.278 mmol/L(95%CI:0.210-0.346)in total cholesterol,0.153 mmol/L(95%CI:0.032-0.274)in triglycerides,and 0.077 mmol/L(95%CI:0.192-0.134)in low-density lipoprotein.Conversely,warm winters benefit company employees,whereas researchers exhibit lower sensitivity to temperature changes in winter.The maximum temperatures in summer and minimum temperatures in winter had greater impacts on in-dividuals.Small temperature fluctuations impact health more than large changes do.Notably,both the maximum and min-imum temperatures were better predictors of health outcomes than the daily average temperature was.Blood pressure con-sistently displayed significant associations with temperature across all three groups,with extremely low temperatures in-creasing the risk and extremely high temperatures reducing it.However,the relationship between temperature and blood lipids is complex.展开更多
BACKGROUND Very late-onset schizophrenia-like psychosis(VLOSLP)is a subtype of schizophrenia spectrum disorders in which individuals experience psychotic symptoms for the first time after the age of 60.The incidence o...BACKGROUND Very late-onset schizophrenia-like psychosis(VLOSLP)is a subtype of schizophrenia spectrum disorders in which individuals experience psychotic symptoms for the first time after the age of 60.The incidence of VLOSLP shows a linear relationship with increasing age.However,no studies have reported alterations in spontaneous brain activity among VLOSLP patients and their correlation with cognitive function and clinical symptoms.AIM To explore VLOSLP brain activity and correlations with cognitive function and clinical symptoms using resting-state functional magnetic resonance imaging.METHODS This study included 33 VLOSLP patients and 34 healthy controls.The cognitive assessment utilized the Mini Mental State Examination,Montreal Cognitive Assessment,and the Repeatable Battery for the Assessment of Neuropsychological Status(RBANS).Clinical characteristic acquisition was performed via the Positive and Negative Syndrome Scale(PANSS).All participants were scanned via resting-state functional magnetic resonance imaging,and the data were processed using amplitude of low-frequency fluctuations(ALFF),fractional ALFF(fALFF),regional homogeneity,and voxelmirrored homotopic connectivity(VMHC).RESULTS The VLOSLP group presented decreased ALFF values in the left cuneus,right precuneus,right precentral gyrus,and left paracentral lobule;increased fALFF values in the left caudate nucleus;decreased fALFF values in the right calcarine fissure and surrounding cortex(CAL)and right precuneus;increased regional homogeneity values in the right putamen;and decreased VMHC values in the bilateral CAL,bilateral superior temporal gyrus,and bilateral cuneus.In the VLOSLP group,ALFF values in the right precuneus were negatively correlated with Mini Mental State Examination score and PANSS positive subscale score,and VMHC values in the bilateral CAL were negatively correlated with the RBANS total score,RBANS delayed memory score,and PANSS positive subscale score.CONCLUSION The changes of brain activity in VLOSLP are concentrated in the right precuneus and bilateral CAL regions,which may be associated with cognitive impairment and clinically positive symptoms.展开更多
Intracellular redox homeostasis is of indispensable importance in pathophysiology.In order to maintain the balance of the redox state within the cell,reactive oxygen species(ROS)and reactive sulfur species(RSS)react a...Intracellular redox homeostasis is of indispensable importance in pathophysiology.In order to maintain the balance of the redox state within the cell,reactive oxygen species(ROS)and reactive sulfur species(RSS)react and transform with each other,and their levels also directly reflect the degree of oxidative stress and disease.Hypochlorous acid(HClO)and cysteine(Cys)usually co-exist in organisms,interacting with each other in many important physiological processes and synergistically maintaining the dynamic redox balance in the body.To understand the relevance and pathophysiological effects of these two signaling molecules in oxidative stress,unique fluorescence imaging tools are required.Herein,we designed and developed a dual-channel fluorescent probe HP,for the individual and continuous detection of HClO and Cys.This probe could simultaneously monitor the changes in the concentrations of HClO and Cys in cells,and was characterized by a fast response,high sensitivity and high selectivity,especially compared with glutathione(GSH)and homocysteine(Hcy),the probe had a good specificity for Cys.Importantly,probe HP successfully observed dynamic changes in HCl O-and Cys-mediated redox status in the oxygenglucose deprivation/reperfusion(OGD/R)model of HeLa cells and dynamically monitored fluctuations in endogenous HClO levels in lipopolysaccharides(LPS)-induced peritonitis mice.展开更多
Open cavities with different door-opening angles are investigated using high-speed schlieren visualization and dynamic pressure measurements in hypersonic flow with a freestream Mach number of 6.With the help of numer...Open cavities with different door-opening angles are investigated using high-speed schlieren visualization and dynamic pressure measurements in hypersonic flow with a freestream Mach number of 6.With the help of numerical simulations,the shear layer deformation and pressure increase in the cavities due to the impingement of the door-leading-edge shocks are identified via comparison with those in the cavity without doors.As the door-opening angle decreases from 90°,the shear layer above the forepart of the cavity is gradually raised by the high pressure in the cavity.When the door-opening angle decreases to 30°and 15°,the boundary layer on the upstream flat plate of the cavity separates,and separation shock is observed.The doors enhance the instability of the cavity flow and increase the pressure fluctuations in the cavities.A new oscillation pattern,referred to as coupled oscillation,is observed in the cases with separation on the upstream flat plate,in which the separation shock oscillates at the same dominant frequency as the flow inside the cavity.Compared with the cavity without doors,this coupled oscillation causes a lower oscillation frequency and a larger overall sound pressure level.Cross-correlation analyses between pressure signals indicate that the disturbances generated at the trailing edge of the cavity can propagate to the separation on the upstream flat plate and cause coupled oscillation of the separation shock.The fundamental frequencies of the coupled oscillations can be normalized to approximately the same Strouhal number as that of the cavity without doors.These findings support that the oscillation mechanisms of hypersonic cavities without and with doors are primarily dominated by acoustic feedback.展开更多
Understanding the complex interactions between urbanization and ecosystem services(ESs)is crucial for optimiz ing planning policies and achieving sustainable urban management.While previous research has largely focuse...Understanding the complex interactions between urbanization and ecosystem services(ESs)is crucial for optimiz ing planning policies and achieving sustainable urban management.While previous research has largely focused on highly urbanized areas,little attention has been given to the phased effect of progressive urbanization on ES networks.This study proposes a conceptual framework that utilizes the network method and space-time replace ment to examine the effect of urbanization on the complex relationships among ESs at different stages,with a particular emphasis on the progressive evolution of the process.We apply this framework to the Horqin area,a typical eco-fragile area in China.Results demonstrate that the connectivity of the ES synergy network exhibits a non-stationary characteristic,initially increasing,then decreasing,and subsequently strengthening.Meanwhile,its modularity shows a rising trend during periods of accelerated urbanization.The performance of the trade off network displays the opposite pattern.Additionally,we observe a gradual replacement of provisioning and regulation services by cultural services in terms of dominance in the synergy network as urbanization advances.By providing guidance for identifying key planning initiatives and implementing ecological protection policies at different stages of development,this study contributes a pathway that can inform development strategies in other regions undergoing progressive urbanization.展开更多
The process of riming significantly impacts the microphysical characteristics of clouds.This study uses aircraft and radar observation data in stratiform clouds with convection embedded that occurred in the central an...The process of riming significantly impacts the microphysical characteristics of clouds.This study uses aircraft and radar observation data in stratiform clouds with convection embedded that occurred in the central and southern regions of North China on 22 May 2017.The microphysical structural characteristics and processes near the embedded convection core and in the stratiform cloud are analyzed comparatively.Particular attention is given to the effect of riming on the microphysical properties near the upper boundary of the melting layer and to the factors influencing riming efficiency.The collaborative observations reveal that the particle size distributions observed near the convection core and in the stratiform region are close,while the particle properties like habit and riming degree are quite different.Above the melting layer,larger plate-like ice particles and supercooled water droplets(D>50μm)are more abundant near the convective core,leading to higher collision efficiencies between ice particles and supercooled water droplets.Larger fluctuation amplitudes of vertical airflow near the convective core also contribute to the increased riming activity and the formation of more heavily rimed particles,such as graupel.Furthermore,in situ measurements from airborne probes also revealed that above the melting layer,the riming process involves two stages:the mass of snow crystals grows as supercooled droplets merge internally without changing size,followed by external freezing that significantly enlarges the crystals.展开更多
This research examines the hard-rock aquifer system within the Nagavathi River Basin(NRB)South India,by evaluating seasonal fluctuations in groundwater composition during the pre-monsoon(PRM)and post-monsoon(POM)perio...This research examines the hard-rock aquifer system within the Nagavathi River Basin(NRB)South India,by evaluating seasonal fluctuations in groundwater composition during the pre-monsoon(PRM)and post-monsoon(POM)periods.Seasonal variations significantly influence the groundwater quality,particularly fluoride(F−)concentrations,which can fluctuate due to changes in recharge,evaporation,and anthropogenic activities.This study assesses the dynamics of F−levels in PRM and POM seasons,and identifies elevated health risks using USEPA guidelines and Monte Carlo Simulations(MCS).Groundwater in the study area exhibits alkaline pH,with NaCl and Ca-Na-HCO_(3) facies increasing in the POM season due to intensified ion exchange and rock-water interactions,as indicated in Piper and Gibb’s diagrams.Correlation and dendrogram analyses indicate that F−contamination is from geogenic and anthropogenic sources.F−levels exceed the WHO limit(1.5 mg/L)in 51 PRM and 28 POM samples,affecting 371.74 km^(2) and 203.05 km^(2),respectively.Geochemical processes,including mineral weathering,cation exchange,evaporation,and dilution,are identified through CAI I&II.Health risk assessments reveal that HQ values>1 in 78%of children,73%of teens,and 68%of adults during PRM,decreasing to 45%,40%,and 38%,respectively,in POM.MCS show maximum HQ values of 5.67(PRM)and 4.73(POM)in children,with all age groups facing significant risks from fluoride ingestion.Managed Aquifer Recharge(MAR)is recommended in this study to minimize F−contamination,ensuring safe drinking water for the community.展开更多
The subject is the thermodynamics of dark matter, the Helmholtz free energy. The method of fluctuations leads to an estimate of the mass of a dark matter particle. The picture that emerges is that of a small-mass, deg...The subject is the thermodynamics of dark matter, the Helmholtz free energy. The method of fluctuations leads to an estimate of the mass of a dark matter particle. The picture that emerges is that of a small-mass, degenerate, spinless boson. Contour integration produces dark matter equations of state.展开更多
Previous studies have indicated that sediment gravity flow deposits developed in lacustrine active extensional rift basins are primarily influenced by tectonics and to a lesser extent by climate.Our present work revea...Previous studies have indicated that sediment gravity flow deposits developed in lacustrine active extensional rift basins are primarily influenced by tectonics and to a lesser extent by climate.Our present work reveals that climate can obscure the effect of tectonic subsidence by regulating sediment supply;conversely,tectonics can impede the sedimentary manifestation of climatic impacts.Here a case study has been presented to assess the impact of climate-modulated rapid lake-level rise and tectonic subsidence on the development of coarse-grained gravity flow deposits in the Dongying rift margin of the Bohai Bay Basin,eastern China.The lithofacies analysis reveals frequent bed amalgamation,abundant thick massive coarse-grained deposits,widespread cross bedding and plant fragments,and incomplete composite bed formed by high-energy erosion,indicating that the hyperpycnal flow is an important mechanism driving the deposition of these coarse-grained sediments.Detailed sequence stratigraphic analysis and sediment dispersal pattern suggest that the long-striped nearshore subaqueous fan systems induced by outburst-flood hyperpycnal flow distributed along the border fault,are primarily controlled by long-term tectonics,while the rapid rise of lake level driven by short-term climate change possibly intensifies seasonal flood-generated hyperpycnal flow occurrences and consequently promotes the basinal fan progradation.The maximum scale of these coarse-grained gravity flow deposits of the basinal fan systems are typically attained during the transgressive systems tract,which deviates from the classical sequence stratigraphic model.Furthermore,it presented a continuous transition from the proximal to the distal part,encompassing traction flows and turbidity currents during the periods of relatively stable tectonics.Nevertheless,gravel-rich debris flows appear to predominate the dispersion of coarse-grained sediments during periods characterized by intense tectonic activity.The coarse-grained gravity flow deposits in the lacustrine rift margin reported here,challenge the traditional beliefs:this study suggests that subaqueous deposits abundantly preserved in the transgressive setting.展开更多
The floodplain of the Yellow River is a typical area characterized by redox fluctuations and heavy metal pollution.However,the mobilization behavior of heavy metals in floodplain sediments during redox fluctuations re...The floodplain of the Yellow River is a typical area characterized by redox fluctuations and heavy metal pollution.However,the mobilization behavior of heavy metals in floodplain sediments during redox fluctuations remains poorly understood.In this study,reductive mobilization of Fe and Mn was observed under reducing environments through reduction and dissolution,leading to the subsequent release of adsorbed As.In contrast,the mobilization of U occurred under oxic conditions,as the oxidative state of U(VI)has higher solubility.Furthermore,insignificant effects on the mobilization of Cd,Cu,Pb,and Hg were noticed during redox fluctuations,indicating higher stability of these heavymetals.Additionally,we demonstrated that carbon sources can play a key role in the mobilization of heavy metals in floodplain sediments,amplifying the reductive mobilization of Fe,Mn,As and the oxidative mobilization of U.Our findings contribute to the understanding of the biogeochemical cycling of heavy metal in floodplain sediments of the Yellow River and the factors that control this cycling.展开更多
Centrifugal pumps are extensively employed in ocean engineering,such as ship power systems,water transportation,and mineral exploitation.Pressure fluctuation suppression is essential for the operation stability and se...Centrifugal pumps are extensively employed in ocean engineering,such as ship power systems,water transportation,and mineral exploitation.Pressure fluctuation suppression is essential for the operation stability and service life of the centrifugal pump.In this paper,a new method of bionic structure is proposed for the blade surface of a centrifugal pump,which is inspired by the fish scale and comprises a leading edge,a trailing edge,and two symmetrical side edges.This fish scale structure is applied to the blade pressure and suction surfaces,and an impeller with a fish scale structure is constructed.A test rig for a centrifugal pump is developed to determine the pressure fluctuation in the pump with a prototype impeller and fish scale structure impeller.Results reveal that the dominant frequency of pressure fluctuation in volute is the blade passing frequency(f_(bpf))of 193.33 Hz,which is triggered by the interaction between the tongue and the impeller.The bionic structure of the fish scale effectively suppresses the pressure fluctuation amplitude at f_(bpf).From flow rates of 0.6 Q_(d)to 1.2 Q_(d),the average suppressions in pressure fluctuation amplitudes at f_(bpf)are 20.98%,5.85%,19.20%,and 25.77%.展开更多
The global supply chain turbulence has increased the difficulty of protecting foreign well-known trademarks.Although there are many studies on cross-border trademark rights protection in academia,there is relatively l...The global supply chain turbulence has increased the difficulty of protecting foreign well-known trademarks.Although there are many studies on cross-border trademark rights protection in academia,there is relatively little research on its risk mitigation effectiveness in the context of supply chain fluctuations.Based on case studies of commercial law and data statistics,the study explores the relationship between protection efficiency and market response through legal applicability.Due to the long litigation cycle and uneven law enforcement,there are differences in market regulation,weakening the protection of well-known trademarks and exacerbating supply chain uncertainty.Strengthening international legal framework cooperation and promoting law enforcement linkage can enhance protection effectiveness.In theory,enriching the theory of cross-border trademark protection and expanding research on brand rights protection in the context of global supply chains.In practice,it helps enterprises adjust their trademark layout,avoid legal risks,and improve market competitiveness.Due to the complexity of the legal environment and limitations in data acquisition,future research will strengthen data analysis,promote international cooperation in intelligent supervision,and build a more efficient cross-border well-known trademark protection mechanism.展开更多
Helium sorption cooler technology is a key means to realize highly reliable low-vibration very lowtemperature environments,which have important applications in fields such as quantum computing and space exploration.Th...Helium sorption cooler technology is a key means to realize highly reliable low-vibration very lowtemperature environments,which have important applications in fields such as quantum computing and space exploration.The laboratory designed a superfluid suppression small hole and a multi-ribbed condenser,developed a reliable-performance helium sorption cooler(HSC),and conducted experimental studies.Experimental results show that the prototype can achieve the lowest cooling temperature of 873 mK without load by filling 6MPa helium at room temperature.The low-temperature hold time is 26 h,and the temperature fluctuation is within 0.8 mK.The cooling power of the helium sorption cooler is 1 mW@0.98 K@3.5 h.Experimental results indicate that when the charging pressure is reduced to 4MPa,theminimum temperature decreases to 836mK,and the hold time shortens to 16 h.When the pre-cooling temperature increases from 3.9 to 4.9 K,the hold time is reduced to 3 h.展开更多
Attention-deficit/hyperactivity disorder(ADHD)is increasingly conceptualized as a dynamic neurodevelopmental condition,marked by fluctuating symptom trajectories across development rather than the traditional static p...Attention-deficit/hyperactivity disorder(ADHD)is increasingly conceptualized as a dynamic neurodevelopmental condition,marked by fluctuating symptom trajectories across development rather than the traditional static patterns of persistence or remission.This review synthesizes empirical evidence on the varied trajectories of ADHD symptoms-including late-onset,partial remission,and recurrent fluctuation patterns-and underscores their clinical significance in longterm functioning.We adopt a multifactorial framework to explore how genetic,environmental,and gene–environment interactions contribute to the emergence and evolution of ADHD symptoms over time.In addition,we consider how medication-related variables-particularly tolerance and adherence-may influence symptom fluctuation.Characterizing these developmental dynamics offers critical guidance for designing flexible,personalized interventions that align with individual trajectories and transitional vulnerabilities.展开更多
A coalescence model was employed to form deuterons(d),tritons(t),and helium-3(^(3)He)nuclei from a uniformly-distributed volume of protons(p)and neutrons(n).We studied the ratio N_(t)N_(p)/N_(d)^(2)of light nuclei yie...A coalescence model was employed to form deuterons(d),tritons(t),and helium-3(^(3)He)nuclei from a uniformly-distributed volume of protons(p)and neutrons(n).We studied the ratio N_(t)N_(p)/N_(d)^(2)of light nuclei yields as a function of the neutron density fluctuations.We investigated the effect of finite transverse momentum(p_(T))acceptance on the ratio,in particular,the“extrapolation factor”(f)for the ratio as a function of the p_(T)spectral shape and the magnitude of neutron density fluctuations.The nature of f was found to be monotonic in p_(T)spectra“temperature”parameter and neutron density fluctuation magnitude;variations in the latter are relatively small.We also examined f in realistic simulations using the kinematic distributions of protons measured from the heavy-ion collision data.The nature of f was found to be smooth and monotonic as a function of the beam energy.Therefore,we conclude that extrapolation from limited p_(T)ranges does not create,enhance,or reduce the local peak of the N_(t)N_(p)/N_(d)^(2)ratio in the beam energy.Our study provides a necessary benchmark for light nuclei ratios as a probe for nucleon density fluctuations,an important observation in the search for the critical point of nuclear matter.展开更多
The purpose of this study is to analyze the galloping characteristics of the catenary positive feeder in fluctuating wind areas considering dynamic-wind angle of attack and aerodynamic damping.Firstly,the flow field m...The purpose of this study is to analyze the galloping characteristics of the catenary positive feeder in fluctuating wind areas considering dynamic-wind angle of attack and aerodynamic damping.Firstly,the flow field model of the catenary positive feeder was established,the fluctuating wind field was simulated by Davenport wind power spectrum and linear filtering method,and the wind speed at inlet in calculation domain was controlled by editing the profile file to simulate and calculate the aerodynamic characteristics of the positive feeder in the fluctuating wind area.Then,taking the positive feeder as the research object,the mathematical model of actual structure and the corresponding finite element model were established.By applying the wind load to the finite element model,the influence of aerodynamic damping caused by the self-movement of the positive feeder on the galloping response was analyzed,and the frequency domain characteristics of galloping displacement of the positive feeder considering aerodynamic damping were studied.Finally,the calculation method of aerodynamic damping by the Guidelines for Electrical Transmission Line Structural Loading(ASCE No.74)was used for the galloping response of the positive feeder and compared with the proposed method.The results show that when considering aerodynamic damping,the galloping amplitude of the positive feeder decreases significantly,and the first-order resonance effect on the vertical displacement and horizontal displacement decreases significantly.The galloping trajectories calculated by the two methods are consistent.Therefore,this study is of great significance to further clarify the ice-free galloping mechanism of the catenary positive feeder in violent wind areas.展开更多
The complex dense-phase pneumatic conveying of pulverized coal process was studied using an electrical capacitance tomography(ECT) signal that represented the motion characteristics of gas-solid two-phase flow. The fl...The complex dense-phase pneumatic conveying of pulverized coal process was studied using an electrical capacitance tomography(ECT) signal that represented the motion characteristics of gas-solid two-phase flow. The fluctuation characteristics of conveying process signals are inseparable from the flow pattern. The denoised ECT signal and noise signal were obtained by db2 wavelet analysis. It was found that all noise signals were white Gaussian noise. Based on the assumption of the equal probability distribution of pulverized coal concentration, this paper proved that the time series distribution of pulverized coal concentration in the pipeline should obey the normal distribution. Furthermore, through the analysis of the distribution characteristics of the power spectral density function of denoised ECT signals of four flow patterns, they were α-dimensional fractal Brownian motion(fBm) signals, and the parameter α was estimated by the detrended fluctuation analysis. Based on the fBm characteristics of denoised ECT signals and white Gaussian noise, this paper proposed a method for calculating the pulverized coal concentration in the dense-phase pneumatic conveying. In addition to the method of concentration estimation with the significance of engineering guidance, this research can help people to further understand essential characteristics of ECT signals in the dense-phase pneumatic conveying.展开更多
The sign of higher-order multiplicity fluctuations is a very important parameter for exploring QCD phase transitions.The kurtosis of the net-baryon is typically negative in simulations of the dynamics of the conserved...The sign of higher-order multiplicity fluctuations is a very important parameter for exploring QCD phase transitions.The kurtosis of the net-baryon is typically negative in simulations of the dynamics of the conserved net-baryon density near the QCD critical point.This paper considers the effects of finite size on multiplicity fluctuations with equilibrium critical fluctuations.It is found that the multiplicity fluctuations(or the magnitude of the correlation function D_(ij))are dramatically suppressed with decreasing system size when the size of the system is small compared with the correlation length,which is the so-called acceptance dependence.Consequently,the small correlation function of the small system size results in the magnitude of the negative contribution(~D_(ij)^(4))in the four-point correlation function dominating the positive term(~D_(ij)^(5)),and this finite-size effect induces a dip structure near the QCD critical point.展开更多
基金supported by the National Natural Science Foundation of China (No.20674074).
文摘The behavior of three-dimensional bond fluctuation model chains tethered on an adsorbing fiat surface was simulated by the Monte Carlo method.The dependence of the number of surface contacts M on the interaction strengthεand the chain length N was investigated by a finite-size scaling law M = N;[a;+a;N;κ+ O((N;κ);)]forεnear the critical adsorption pointε;,i.e.,κ=(ε-ε;)/ε;closes to 0.The critical adsorption point was estimated to beε;=0.93,and the exponentsφ= 0.49 and l/v= 0.57.
基金support from the National Key R&D Program of China(2021YFA1401800 and 2021YFA1400202)the National Natural Science Foundation of China(12141404)+7 种基金the Natural Science Foundation of Shanghai(22ZR1479700 and 23XD1422200)Shaofeng Duan acknowledged support from the China Postdoctoral Science Foundation(2022M722108)the China National Postdoctoral Program for Innovative Talents(BX20230216)the National Natural Science Foundation of China(12304178)Yanfeng Guo acknowledged the National Key R&D Program of China(2023YFA1406100)the Double First-Class Initiative Fund of ShanghaiTech Universitysupport from the National Key R&D Program of China(2022YFA1402400 and 2021YFA1400100)the National Natural Science Foundation of China(12074248).
文摘The kagome lattice,characterized by its network of cornersharing triangles,provides an excellent platform for studying various novel quantum phenomena.The recently discovered kagome metal AV3Sb5(A=K,Rb,Cs)[1]garners significant attention for its unique properties,including an unconventional charge density wave(CDW)and superconductivity(SC)[2],as well as the interplay between CDW and SC[3].
基金supported by the National Natural Science Foundation of China(72072169)the Fundamental Re-search Funds for the Central Universities(YD2040002015).
文摘The impact of extreme temperatures on the health of individuals in different organizations remains uncertain.We employed stratified analyses to examine the impacts of summer(April-September)daily maximum temperatures and winter(October-March)daily minimum temperatures on blood pressure and lipid profiles across government staff,com-pany employees,and researchers.We examined 209,477 physical examination records from a physical examination center in the First Affiliated Hospital of USTC from 2017 to 2021.Employing a segmented regression model within the frame-work of generalized linear regression(GLM),we examined the causal impact of extreme temperatures on health outcomes.Additionally,sensitivity analyses were conducted via distributed lag nonlinear models(DLNMs),with a focus on ob-serving the long-term effects over a period of 21 days.Our findings indicate that government staff face increased health risks during extremely low temperatures,regardless of the season.Compared with participants experiencing median tem-peratures,government staff exposed to extremely low temperatures(below the 10th percentile,below 24℃)in the sum-mer presented maximum increases of 2.32 mmHg(95%CI:1.542-3.098)in diastolic blood pressure and 6.481 mmHg(95%CI:5.368-7.594)in systolic blood pressure.In winter,government staff exposed to temperatures below the 10th per-centile(below 1℃)demonstrated maximum increases of 0.278 mmol/L(95%CI:0.210-0.346)in total cholesterol,0.153 mmol/L(95%CI:0.032-0.274)in triglycerides,and 0.077 mmol/L(95%CI:0.192-0.134)in low-density lipoprotein.Conversely,warm winters benefit company employees,whereas researchers exhibit lower sensitivity to temperature changes in winter.The maximum temperatures in summer and minimum temperatures in winter had greater impacts on in-dividuals.Small temperature fluctuations impact health more than large changes do.Notably,both the maximum and min-imum temperatures were better predictors of health outcomes than the daily average temperature was.Blood pressure con-sistently displayed significant associations with temperature across all three groups,with extremely low temperatures in-creasing the risk and extremely high temperatures reducing it.However,the relationship between temperature and blood lipids is complex.
基金Supported by Wuxi Municipal Health Commission Major Project,No.202107and Wuxi Taihu Talent Project,No.WXTTP 2021.
文摘BACKGROUND Very late-onset schizophrenia-like psychosis(VLOSLP)is a subtype of schizophrenia spectrum disorders in which individuals experience psychotic symptoms for the first time after the age of 60.The incidence of VLOSLP shows a linear relationship with increasing age.However,no studies have reported alterations in spontaneous brain activity among VLOSLP patients and their correlation with cognitive function and clinical symptoms.AIM To explore VLOSLP brain activity and correlations with cognitive function and clinical symptoms using resting-state functional magnetic resonance imaging.METHODS This study included 33 VLOSLP patients and 34 healthy controls.The cognitive assessment utilized the Mini Mental State Examination,Montreal Cognitive Assessment,and the Repeatable Battery for the Assessment of Neuropsychological Status(RBANS).Clinical characteristic acquisition was performed via the Positive and Negative Syndrome Scale(PANSS).All participants were scanned via resting-state functional magnetic resonance imaging,and the data were processed using amplitude of low-frequency fluctuations(ALFF),fractional ALFF(fALFF),regional homogeneity,and voxelmirrored homotopic connectivity(VMHC).RESULTS The VLOSLP group presented decreased ALFF values in the left cuneus,right precuneus,right precentral gyrus,and left paracentral lobule;increased fALFF values in the left caudate nucleus;decreased fALFF values in the right calcarine fissure and surrounding cortex(CAL)and right precuneus;increased regional homogeneity values in the right putamen;and decreased VMHC values in the bilateral CAL,bilateral superior temporal gyrus,and bilateral cuneus.In the VLOSLP group,ALFF values in the right precuneus were negatively correlated with Mini Mental State Examination score and PANSS positive subscale score,and VMHC values in the bilateral CAL were negatively correlated with the RBANS total score,RBANS delayed memory score,and PANSS positive subscale score.CONCLUSION The changes of brain activity in VLOSLP are concentrated in the right precuneus and bilateral CAL regions,which may be associated with cognitive impairment and clinically positive symptoms.
基金the National Natural Science Foundation of China(Nos.22207069,22325703,22377071,22074084)Research Project Supported by Shanxi Scholarship Council of China(No.2022-002)+2 种基金the Shanxi Province Science Foundation(Nos.20210302124012,202203021221009)Key R&D and transformation plan of Qinghai Province(No.2020-GX-101)2023 Graduate Innovation Project of Shanxi University。
文摘Intracellular redox homeostasis is of indispensable importance in pathophysiology.In order to maintain the balance of the redox state within the cell,reactive oxygen species(ROS)and reactive sulfur species(RSS)react and transform with each other,and their levels also directly reflect the degree of oxidative stress and disease.Hypochlorous acid(HClO)and cysteine(Cys)usually co-exist in organisms,interacting with each other in many important physiological processes and synergistically maintaining the dynamic redox balance in the body.To understand the relevance and pathophysiological effects of these two signaling molecules in oxidative stress,unique fluorescence imaging tools are required.Herein,we designed and developed a dual-channel fluorescent probe HP,for the individual and continuous detection of HClO and Cys.This probe could simultaneously monitor the changes in the concentrations of HClO and Cys in cells,and was characterized by a fast response,high sensitivity and high selectivity,especially compared with glutathione(GSH)and homocysteine(Hcy),the probe had a good specificity for Cys.Importantly,probe HP successfully observed dynamic changes in HCl O-and Cys-mediated redox status in the oxygenglucose deprivation/reperfusion(OGD/R)model of HeLa cells and dynamically monitored fluctuations in endogenous HClO levels in lipopolysaccharides(LPS)-induced peritonitis mice.
基金supported by the National Natural Science Foundation of China(Nos.12172354,12388101,U21B6003)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB0620201).
文摘Open cavities with different door-opening angles are investigated using high-speed schlieren visualization and dynamic pressure measurements in hypersonic flow with a freestream Mach number of 6.With the help of numerical simulations,the shear layer deformation and pressure increase in the cavities due to the impingement of the door-leading-edge shocks are identified via comparison with those in the cavity without doors.As the door-opening angle decreases from 90°,the shear layer above the forepart of the cavity is gradually raised by the high pressure in the cavity.When the door-opening angle decreases to 30°and 15°,the boundary layer on the upstream flat plate of the cavity separates,and separation shock is observed.The doors enhance the instability of the cavity flow and increase the pressure fluctuations in the cavities.A new oscillation pattern,referred to as coupled oscillation,is observed in the cases with separation on the upstream flat plate,in which the separation shock oscillates at the same dominant frequency as the flow inside the cavity.Compared with the cavity without doors,this coupled oscillation causes a lower oscillation frequency and a larger overall sound pressure level.Cross-correlation analyses between pressure signals indicate that the disturbances generated at the trailing edge of the cavity can propagate to the separation on the upstream flat plate and cause coupled oscillation of the separation shock.The fundamental frequencies of the coupled oscillations can be normalized to approximately the same Strouhal number as that of the cavity without doors.These findings support that the oscillation mechanisms of hypersonic cavities without and with doors are primarily dominated by acoustic feedback.
基金supported by the National Natural Science Foundation Projects of China(Grant No.42071284).
文摘Understanding the complex interactions between urbanization and ecosystem services(ESs)is crucial for optimiz ing planning policies and achieving sustainable urban management.While previous research has largely focused on highly urbanized areas,little attention has been given to the phased effect of progressive urbanization on ES networks.This study proposes a conceptual framework that utilizes the network method and space-time replace ment to examine the effect of urbanization on the complex relationships among ESs at different stages,with a particular emphasis on the progressive evolution of the process.We apply this framework to the Horqin area,a typical eco-fragile area in China.Results demonstrate that the connectivity of the ES synergy network exhibits a non-stationary characteristic,initially increasing,then decreasing,and subsequently strengthening.Meanwhile,its modularity shows a rising trend during periods of accelerated urbanization.The performance of the trade off network displays the opposite pattern.Additionally,we observe a gradual replacement of provisioning and regulation services by cultural services in terms of dominance in the synergy network as urbanization advances.By providing guidance for identifying key planning initiatives and implementing ecological protection policies at different stages of development,this study contributes a pathway that can inform development strategies in other regions undergoing progressive urbanization.
基金supported by the National Natural Science Foundation of China(Grant No.42025501)the Natural Science Foundation of Hebei Province(Grant No.D2024304015)+4 种基金the Fundamental Research Funds for the Central Universities,including Grant No.020714380217the Cemac“GeoX”Interdisciplinary Program(Grant No.020714380210)the Open Grants of the Key Laboratory of Radar Meteorology,China Meteorological Administration(Grant No.2023LRM-B05)the Hebei Meteorological Service Scientific Research and Development Project(Grant No.23ky08)the Open Research Program of the State Key Laboratory of Severe Weather(Grant No.2023LASW-A01)。
文摘The process of riming significantly impacts the microphysical characteristics of clouds.This study uses aircraft and radar observation data in stratiform clouds with convection embedded that occurred in the central and southern regions of North China on 22 May 2017.The microphysical structural characteristics and processes near the embedded convection core and in the stratiform cloud are analyzed comparatively.Particular attention is given to the effect of riming on the microphysical properties near the upper boundary of the melting layer and to the factors influencing riming efficiency.The collaborative observations reveal that the particle size distributions observed near the convection core and in the stratiform region are close,while the particle properties like habit and riming degree are quite different.Above the melting layer,larger plate-like ice particles and supercooled water droplets(D>50μm)are more abundant near the convective core,leading to higher collision efficiencies between ice particles and supercooled water droplets.Larger fluctuation amplitudes of vertical airflow near the convective core also contribute to the increased riming activity and the formation of more heavily rimed particles,such as graupel.Furthermore,in situ measurements from airborne probes also revealed that above the melting layer,the riming process involves two stages:the mass of snow crystals grows as supercooled droplets merge internally without changing size,followed by external freezing that significantly enlarges the crystals.
文摘This research examines the hard-rock aquifer system within the Nagavathi River Basin(NRB)South India,by evaluating seasonal fluctuations in groundwater composition during the pre-monsoon(PRM)and post-monsoon(POM)periods.Seasonal variations significantly influence the groundwater quality,particularly fluoride(F−)concentrations,which can fluctuate due to changes in recharge,evaporation,and anthropogenic activities.This study assesses the dynamics of F−levels in PRM and POM seasons,and identifies elevated health risks using USEPA guidelines and Monte Carlo Simulations(MCS).Groundwater in the study area exhibits alkaline pH,with NaCl and Ca-Na-HCO_(3) facies increasing in the POM season due to intensified ion exchange and rock-water interactions,as indicated in Piper and Gibb’s diagrams.Correlation and dendrogram analyses indicate that F−contamination is from geogenic and anthropogenic sources.F−levels exceed the WHO limit(1.5 mg/L)in 51 PRM and 28 POM samples,affecting 371.74 km^(2) and 203.05 km^(2),respectively.Geochemical processes,including mineral weathering,cation exchange,evaporation,and dilution,are identified through CAI I&II.Health risk assessments reveal that HQ values>1 in 78%of children,73%of teens,and 68%of adults during PRM,decreasing to 45%,40%,and 38%,respectively,in POM.MCS show maximum HQ values of 5.67(PRM)and 4.73(POM)in children,with all age groups facing significant risks from fluoride ingestion.Managed Aquifer Recharge(MAR)is recommended in this study to minimize F−contamination,ensuring safe drinking water for the community.
文摘The subject is the thermodynamics of dark matter, the Helmholtz free energy. The method of fluctuations leads to an estimate of the mass of a dark matter particle. The picture that emerges is that of a small-mass, degenerate, spinless boson. Contour integration produces dark matter equations of state.
基金supported by the National Natural Science Foundation of China(Nos.42172109,41872113,42172108)China National Petroleum Corporation-China University of Petroleum(Beijing)strategic cooperation science and technology project(ZLZX2020-02)+2 种基金Science Foundation of China University of Petroleum(Beijing)(Nos.2462020BJRC002,2462020YXZZ020)Natural Science Foundation of Chongqing(CSTB2022NSCQ-MSX1166)Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202201511).
文摘Previous studies have indicated that sediment gravity flow deposits developed in lacustrine active extensional rift basins are primarily influenced by tectonics and to a lesser extent by climate.Our present work reveals that climate can obscure the effect of tectonic subsidence by regulating sediment supply;conversely,tectonics can impede the sedimentary manifestation of climatic impacts.Here a case study has been presented to assess the impact of climate-modulated rapid lake-level rise and tectonic subsidence on the development of coarse-grained gravity flow deposits in the Dongying rift margin of the Bohai Bay Basin,eastern China.The lithofacies analysis reveals frequent bed amalgamation,abundant thick massive coarse-grained deposits,widespread cross bedding and plant fragments,and incomplete composite bed formed by high-energy erosion,indicating that the hyperpycnal flow is an important mechanism driving the deposition of these coarse-grained sediments.Detailed sequence stratigraphic analysis and sediment dispersal pattern suggest that the long-striped nearshore subaqueous fan systems induced by outburst-flood hyperpycnal flow distributed along the border fault,are primarily controlled by long-term tectonics,while the rapid rise of lake level driven by short-term climate change possibly intensifies seasonal flood-generated hyperpycnal flow occurrences and consequently promotes the basinal fan progradation.The maximum scale of these coarse-grained gravity flow deposits of the basinal fan systems are typically attained during the transgressive systems tract,which deviates from the classical sequence stratigraphic model.Furthermore,it presented a continuous transition from the proximal to the distal part,encompassing traction flows and turbidity currents during the periods of relatively stable tectonics.Nevertheless,gravel-rich debris flows appear to predominate the dispersion of coarse-grained sediments during periods characterized by intense tectonic activity.The coarse-grained gravity flow deposits in the lacustrine rift margin reported here,challenge the traditional beliefs:this study suggests that subaqueous deposits abundantly preserved in the transgressive setting.
基金supported by the National Key Research and Development Program of China(No.2022YFC3203604)the National Natural Science Foundation of China(Nos.51808541,and U1904205).
文摘The floodplain of the Yellow River is a typical area characterized by redox fluctuations and heavy metal pollution.However,the mobilization behavior of heavy metals in floodplain sediments during redox fluctuations remains poorly understood.In this study,reductive mobilization of Fe and Mn was observed under reducing environments through reduction and dissolution,leading to the subsequent release of adsorbed As.In contrast,the mobilization of U occurred under oxic conditions,as the oxidative state of U(VI)has higher solubility.Furthermore,insignificant effects on the mobilization of Cd,Cu,Pb,and Hg were noticed during redox fluctuations,indicating higher stability of these heavymetals.Additionally,we demonstrated that carbon sources can play a key role in the mobilization of heavy metals in floodplain sediments,amplifying the reductive mobilization of Fe,Mn,As and the oxidative mobilization of U.Our findings contribute to the understanding of the biogeochemical cycling of heavy metal in floodplain sediments of the Yellow River and the factors that control this cycling.
基金supported by the Open Fund of Science and Technology on Thermal Energy and Power Laboratory[TPL2021A02]the State Key Laboratory of Hydroscience and Engineering[sklhse-2023-E-01].
文摘Centrifugal pumps are extensively employed in ocean engineering,such as ship power systems,water transportation,and mineral exploitation.Pressure fluctuation suppression is essential for the operation stability and service life of the centrifugal pump.In this paper,a new method of bionic structure is proposed for the blade surface of a centrifugal pump,which is inspired by the fish scale and comprises a leading edge,a trailing edge,and two symmetrical side edges.This fish scale structure is applied to the blade pressure and suction surfaces,and an impeller with a fish scale structure is constructed.A test rig for a centrifugal pump is developed to determine the pressure fluctuation in the pump with a prototype impeller and fish scale structure impeller.Results reveal that the dominant frequency of pressure fluctuation in volute is the blade passing frequency(f_(bpf))of 193.33 Hz,which is triggered by the interaction between the tongue and the impeller.The bionic structure of the fish scale effectively suppresses the pressure fluctuation amplitude at f_(bpf).From flow rates of 0.6 Q_(d)to 1.2 Q_(d),the average suppressions in pressure fluctuation amplitudes at f_(bpf)are 20.98%,5.85%,19.20%,and 25.77%.
文摘The global supply chain turbulence has increased the difficulty of protecting foreign well-known trademarks.Although there are many studies on cross-border trademark rights protection in academia,there is relatively little research on its risk mitigation effectiveness in the context of supply chain fluctuations.Based on case studies of commercial law and data statistics,the study explores the relationship between protection efficiency and market response through legal applicability.Due to the long litigation cycle and uneven law enforcement,there are differences in market regulation,weakening the protection of well-known trademarks and exacerbating supply chain uncertainty.Strengthening international legal framework cooperation and promoting law enforcement linkage can enhance protection effectiveness.In theory,enriching the theory of cross-border trademark protection and expanding research on brand rights protection in the context of global supply chains.In practice,it helps enterprises adjust their trademark layout,avoid legal risks,and improve market competitiveness.Due to the complexity of the legal environment and limitations in data acquisition,future research will strengthen data analysis,promote international cooperation in intelligent supervision,and build a more efficient cross-border well-known trademark protection mechanism.
基金supported by the Hundred Talents Programof the Chinese Academy of Sciences,the Pre-Research Project JZX7Y20220414101801the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB35000000)the National Natural Science Foundation Projects(No.51806231).
文摘Helium sorption cooler technology is a key means to realize highly reliable low-vibration very lowtemperature environments,which have important applications in fields such as quantum computing and space exploration.The laboratory designed a superfluid suppression small hole and a multi-ribbed condenser,developed a reliable-performance helium sorption cooler(HSC),and conducted experimental studies.Experimental results show that the prototype can achieve the lowest cooling temperature of 873 mK without load by filling 6MPa helium at room temperature.The low-temperature hold time is 26 h,and the temperature fluctuation is within 0.8 mK.The cooling power of the helium sorption cooler is 1 mW@0.98 K@3.5 h.Experimental results indicate that when the charging pressure is reduced to 4MPa,theminimum temperature decreases to 836mK,and the hold time shortens to 16 h.When the pre-cooling temperature increases from 3.9 to 4.9 K,the hold time is reduced to 3 h.
基金Supported by the Shenzhen Science and Technology Program,No.RCYX20221008092849069The Guangdong High-Level Hospital Construction Fund.
文摘Attention-deficit/hyperactivity disorder(ADHD)is increasingly conceptualized as a dynamic neurodevelopmental condition,marked by fluctuating symptom trajectories across development rather than the traditional static patterns of persistence or remission.This review synthesizes empirical evidence on the varied trajectories of ADHD symptoms-including late-onset,partial remission,and recurrent fluctuation patterns-and underscores their clinical significance in longterm functioning.We adopt a multifactorial framework to explore how genetic,environmental,and gene–environment interactions contribute to the emergence and evolution of ADHD symptoms over time.In addition,we consider how medication-related variables-particularly tolerance and adherence-may influence symptom fluctuation.Characterizing these developmental dynamics offers critical guidance for designing flexible,personalized interventions that align with individual trajectories and transitional vulnerabilities.
基金supported in part by the U.S.Department of Energy(No.DE-SC0012910)National Nature Science Foundation of China(Nos.12035006 and 12075085)the Ministry of Science and Technology of China(No.2020YFE020200)。
文摘A coalescence model was employed to form deuterons(d),tritons(t),and helium-3(^(3)He)nuclei from a uniformly-distributed volume of protons(p)and neutrons(n).We studied the ratio N_(t)N_(p)/N_(d)^(2)of light nuclei yields as a function of the neutron density fluctuations.We investigated the effect of finite transverse momentum(p_(T))acceptance on the ratio,in particular,the“extrapolation factor”(f)for the ratio as a function of the p_(T)spectral shape and the magnitude of neutron density fluctuations.The nature of f was found to be monotonic in p_(T)spectra“temperature”parameter and neutron density fluctuation magnitude;variations in the latter are relatively small.We also examined f in realistic simulations using the kinematic distributions of protons measured from the heavy-ion collision data.The nature of f was found to be smooth and monotonic as a function of the beam energy.Therefore,we conclude that extrapolation from limited p_(T)ranges does not create,enhance,or reduce the local peak of the N_(t)N_(p)/N_(d)^(2)ratio in the beam energy.Our study provides a necessary benchmark for light nuclei ratios as a probe for nucleon density fluctuations,an important observation in the search for the critical point of nuclear matter.
基金supported by National Natural Science Foundation of China (No.51867013)Natural Science Foundation of Gansu Province (No.20JR5RA414)。
文摘The purpose of this study is to analyze the galloping characteristics of the catenary positive feeder in fluctuating wind areas considering dynamic-wind angle of attack and aerodynamic damping.Firstly,the flow field model of the catenary positive feeder was established,the fluctuating wind field was simulated by Davenport wind power spectrum and linear filtering method,and the wind speed at inlet in calculation domain was controlled by editing the profile file to simulate and calculate the aerodynamic characteristics of the positive feeder in the fluctuating wind area.Then,taking the positive feeder as the research object,the mathematical model of actual structure and the corresponding finite element model were established.By applying the wind load to the finite element model,the influence of aerodynamic damping caused by the self-movement of the positive feeder on the galloping response was analyzed,and the frequency domain characteristics of galloping displacement of the positive feeder considering aerodynamic damping were studied.Finally,the calculation method of aerodynamic damping by the Guidelines for Electrical Transmission Line Structural Loading(ASCE No.74)was used for the galloping response of the positive feeder and compared with the proposed method.The results show that when considering aerodynamic damping,the galloping amplitude of the positive feeder decreases significantly,and the first-order resonance effect on the vertical displacement and horizontal displacement decreases significantly.The galloping trajectories calculated by the two methods are consistent.Therefore,this study is of great significance to further clarify the ice-free galloping mechanism of the catenary positive feeder in violent wind areas.
基金funding from Shanghai Sailing Program (22YF1417600)Guangxi Science and Technology Major Program (AA23062019)
文摘The complex dense-phase pneumatic conveying of pulverized coal process was studied using an electrical capacitance tomography(ECT) signal that represented the motion characteristics of gas-solid two-phase flow. The fluctuation characteristics of conveying process signals are inseparable from the flow pattern. The denoised ECT signal and noise signal were obtained by db2 wavelet analysis. It was found that all noise signals were white Gaussian noise. Based on the assumption of the equal probability distribution of pulverized coal concentration, this paper proved that the time series distribution of pulverized coal concentration in the pipeline should obey the normal distribution. Furthermore, through the analysis of the distribution characteristics of the power spectral density function of denoised ECT signals of four flow patterns, they were α-dimensional fractal Brownian motion(fBm) signals, and the parameter α was estimated by the detrended fluctuation analysis. Based on the fBm characteristics of denoised ECT signals and white Gaussian noise, this paper proposed a method for calculating the pulverized coal concentration in the dense-phase pneumatic conveying. In addition to the method of concentration estimation with the significance of engineering guidance, this research can help people to further understand essential characteristics of ECT signals in the dense-phase pneumatic conveying.
基金supported by the National Natural Science Foundation of China(No.12305143)the China Postdoctoral Science Foundation(No.2023M731467).
文摘The sign of higher-order multiplicity fluctuations is a very important parameter for exploring QCD phase transitions.The kurtosis of the net-baryon is typically negative in simulations of the dynamics of the conserved net-baryon density near the QCD critical point.This paper considers the effects of finite size on multiplicity fluctuations with equilibrium critical fluctuations.It is found that the multiplicity fluctuations(or the magnitude of the correlation function D_(ij))are dramatically suppressed with decreasing system size when the size of the system is small compared with the correlation length,which is the so-called acceptance dependence.Consequently,the small correlation function of the small system size results in the magnitude of the negative contribution(~D_(ij)^(4))in the four-point correlation function dominating the positive term(~D_(ij)^(5)),and this finite-size effect induces a dip structure near the QCD critical point.