期刊文献+
共找到15,382篇文章
< 1 2 250 >
每页显示 20 50 100
Research on the Impact of International Capital Flows on the Financial Stability of Emerging Economies
1
作者 Shenghua Feng 《Proceedings of Business and Economic Studies》 2025年第5期177-183,共7页
International capital flows play a crucial role in the process of globalization,presenting both opportunities and challenges to the financial stability of emerging economies.This article sorts out the positive effects... International capital flows play a crucial role in the process of globalization,presenting both opportunities and challenges to the financial stability of emerging economies.This article sorts out the positive effects and potential risks of international capital flows on the financial stability of emerging economies.By combining case studies in recent years,it analyzes the complex relationship between cross-border capital flows and financial stability,and proposes policy paths for emerging economies to cope with the shock of capital flows,providing references for enhancing financial resilience and achieving sustainable development. 展开更多
关键词 International capital flows Emerging economies Financial stability Systemic risk Macroprudential management
在线阅读 下载PDF
Unraveling the quantity and sustainability of cross-scale ecosystem service flows:A meta-coupling framework perspective
2
作者 LIU Ronghui PAN Jinghu 《Journal of Mountain Science》 2025年第10期3579-3595,共17页
Ecosystem service flows(ESFs)can reveal the interrelationships and impacts between natural systems and human activities.We can improve the stability and sustainability of ecosystems,more effectively utilize natural re... Ecosystem service flows(ESFs)can reveal the interrelationships and impacts between natural systems and human activities.We can improve the stability and sustainability of ecosystems,more effectively utilize natural resources,protect the environment,and enhance the harmonious coexistence of humans and nature by comprehending ESFs.However,few studies have examined ESFs across scales and evaluated their sustainability;most have concentrated on regional scales.In order to quantify and analyze ESFs within the Jing River Basin(JRB)and between the JRB and the adjacent and distant regions from a water-food-energy perspective,this paper employs a meta-coupling framework.Additionally,it evaluates the sustainability of these flows using a techno-ecological synergy framework.The results show that the ESFs within the JRB was significant in 2020.Water production services were concentrated in the southern part of the JRB,while the distribution of food supply and carbon supply services was relatively even.Huan County emerged as the largest exporting county,providing 1.46×10^(8)kg of food to other counties and exporting 2.97×10^(6)kg of energy.The ESFs in the JRB primarily moved towards the neighboring and distant systems.Water production services flowed into the Guanzhong Plain Urban Agglomeration(GPUA),amounting to 5.8×10^(6)kg.Carbon supply services flowed out at 2.4×10^(5)kg,and food exports were the highest,reaching 5.0×10^(7)kg.The ecosystem service flows from the JRB to both the neighboring and distant systems enhanced food security and ecological resilience.The basin itself demonstrated good sustainability in food supply services,with an index value reaching 48.19.In crossscale calculations of food production sustainability with the adjacent GPUA,the index value increased from 48.19 to 52.99,indicating a significant improvement.These findings demonstrate that applying the meta-coupling framework provides an effective approach to quantify ESFs and assess their sustainability across scales. 展开更多
关键词 Ecosystem service flows Meta coupling Sustainability assessment Ecosystem services Loess Plateau
原文传递
Novel adaptive IMEX two-step Runge-Kutta temporal discretization methods for unsteady flows
3
作者 Xueyu QIN Jian YU +2 位作者 Xin ZHANG Zhenhua JIANG Chao YAN 《Chinese Journal of Aeronautics》 2025年第8期142-153,共12页
Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of un... Efficient and accurate simulation of unsteady flow presents a significant challenge that needs to be overcome in computational fluid dynamics.Temporal discretization method plays a crucial role in the simulation of unsteady flows.To enhance computational efficiency,we propose the Implicit-Explicit Two-Step Runge-Kutta(IMEX-TSRK)time-stepping discretization methods for unsteady flows,and develop a novel adaptive algorithm that correctly partitions spatial regions to apply implicit or explicit methods.The novel adaptive IMEX-TSRK schemes effectively handle the numerical stiffness of the small grid size and improve computational efficiency.Compared to implicit and explicit Runge-Kutta(RK)schemes,the IMEX-TSRK methods achieve the same order of accuracy with fewer first derivative calculations.Numerical case tests demonstrate that the IMEX-TSRK methods maintain numerical stability while enhancing computational efficiency.Specifically,in high Reynolds number flows,the computational efficiency of the IMEX-TSRK methods surpasses that of explicit RK schemes by more than one order of magnitude,and that of implicit RK schemes several times over. 展开更多
关键词 Implicit-explicit temporal methods Two-step Runge-Kutta methods Adaptive algorithm Unsteady flows Navier-Stokes equations
原文传递
A conservative wavelet upwind scheme for compressible flows
4
作者 Bing Yang Xiaojing Liu +1 位作者 Youhe Zhou Jizeng Wang 《Acta Mechanica Sinica》 2025年第7期149-167,共19页
In this paper,we develop a fourth-order conservative wavelet-based shock-capturing scheme.The scheme is constructed by combining a wavelet collocation upwind method with the monotonic tangent of hyperbola for interfac... In this paper,we develop a fourth-order conservative wavelet-based shock-capturing scheme.The scheme is constructed by combining a wavelet collocation upwind method with the monotonic tangent of hyperbola for interface capturing(THINC)technique.We employ boundary variation diminishing(BVD)reconstruction to enhance the scheme’s effectiveness in handling shocks.First,we prove that wavelet collocation upwind schemes based on interpolating wavelets can be reformulated into a conservative form within the framework of wavelet theory,forming the foundation of the proposed scheme.The new fourthorder accurate scheme possesses significantly better spectral resolution than the fifth-and even seventh-order WENO-Z(weighted essentially non-oscillatory)schemes over the entire wave-number range.Moreover,the inherent low-pass filtering property of the wavelet bases allows them to filter high-frequency numerical oscillations,endowing the wavelet upwind scheme with robustness and accuracy in solving problems under extreme conditions.Notably,due to the wavelet multiresolution approximation,the proposed scheme possesses a distinctive shape-preserving property absent in the WENO-Z schemes and the fifth-order schemes with BVD reconstruction based on polynomials.Furthermore,compared to the fifth-order scheme with BVD reconstruction based on polynomials—which is significantly superior to the WENO schemes—the proposed scheme further enhances the ability to capture discontinuities. 展开更多
关键词 Conservative wavelet upwind scheme Boundary variation diminishing THINC scheme HIGH-RESOLUTION Compressible flows
原文传递
Unknown DDoS Attack Detection with Sliced Iterative Normalizing Flows Technique
5
作者 Chin-Shiuh Shieh Thanh-Lam Nguyen +1 位作者 Thanh-Tuan Nguyen Mong-Fong Horng 《Computers, Materials & Continua》 2025年第3期4881-4912,共32页
DDoS attacks represent one of the most pervasive and evolving threats in cybersecurity,capable of crippling critical infrastructures and disrupting services globally.As networks continue to expand and threats become m... DDoS attacks represent one of the most pervasive and evolving threats in cybersecurity,capable of crippling critical infrastructures and disrupting services globally.As networks continue to expand and threats become more sophisticated,there is an urgent need for Intrusion Detection Systems(IDS)capable of handling these challenges effectively.Traditional IDS models frequently have difficulties in detecting new or changing attack patterns since they heavily depend on existing characteristics.This paper presents a novel approach for detecting unknown Distributed Denial of Service(DDoS)attacks by integrating Sliced Iterative Normalizing Flows(SINF)into IDS.SINF utilizes the Sliced Wasserstein distance to repeatedly modify probability distributions,enabling better management of high-dimensional data when there are only a few samples available.The unique architecture of SINF ensures efficient density estimation and robust sample generation,enabling IDS to adapt dynamically to emerging threats without relying heavily on predefined signatures or extensive retraining.By incorporating Open-Set Recognition(OSR)techniques,this method improves the system’s ability to detect both known and unknown attacks while maintaining high detection performance.The experimental evaluation on CICIDS2017 and CICDDoS2019 datasets demonstrates that the proposed system achieves an accuracy of 99.85%for known attacks and an F1 score of 99.99%after incremental learning for unknown attacks.The results clearly demonstrate the system’s strong generalization capability across unseen attacks while maintaining the computational efficiency required for real-world deployment. 展开更多
关键词 Distributed denial of service sliced iterative normalizing flows open-set recognition CYBERSECURITY deep learning
在线阅读 下载PDF
Advances in gas-particle dynamics:insights from high-speed flows
6
作者 Baoguo XIAO Wanzhou ZHANG 《Chinese Journal of Aeronautics》 2025年第6期177-178,共2页
1. Introduction High-speed gas-particle flows are crucial in engineering applications and natural phenomena, such as volcanic eruptions,combustion, and hypersonic flight. These flows involve complex gas-particle inter... 1. Introduction High-speed gas-particle flows are crucial in engineering applications and natural phenomena, such as volcanic eruptions,combustion, and hypersonic flight. These flows involve complex gas-particle interactions, posing significant challenges for simulations and experiments. This research highlight summarizes recent advancements in gas-particle dynamics under compressible conditions, covering key findings, numerical and experimental progress, and future directions. Details can be found in the work of Capecelatro and Wagner (Gas-particle dynamics in high-speed flows. Annual Review of Fluid Mechanics 2024;56:379–403). 展开更多
关键词 high speed gas particle flows engineering applications natural phenomenasuch experiments gas particle interactions compressible conditions volcanic eruptionscombustionand hypersonic flightthese
原文传递
An Axisymmetric Adaptive Multiresolution SPH for Modeling Strongly Compressible Multiphase Flows
7
作者 Lehua Xiao Ting Long 《哈尔滨工程大学学报(英文版)》 2025年第4期682-707,共26页
Multiphase flows widely exist in various scientific and engineering fields,and strongly compressible multiphase flows commonly occur in practical applications,which makes them an important part of computational fluid ... Multiphase flows widely exist in various scientific and engineering fields,and strongly compressible multiphase flows commonly occur in practical applications,which makes them an important part of computational fluid dynamics.In this study,an axisymmetric adaptive multiresolution smooth particle hydrodynamics(SPH)model is proposed to solve various strongly compressible multiphase flow problems.In the present model,the governing equations are discretized in cylindrical polar coordinates,and an improved volume adaptive scheme is developed to better solve the problem of excessive volume change in strongly compressible multiphase flows.On this basis,combined with the adaptive particle refinement technique,an adaptive multiresolution scheme is proposed in this study.In addition,the high-order differential operator and diffusion correction term are utilized to improve the accuracy and stability.The effectiveness of the model is verified by testing four typical strongly compressible multiphase flow problems.By comparing the results of adaptive multiresolution SPH with other numerical results or experimental data,we can conclude that the present SPH method effectively models strongly compressible multiphase flows. 展开更多
关键词 Axisymmetric smooth particle hydrodynamics Adaptive multiresolution scheme Strongly compressible multiphase flows Shock wave Underwater explosion
在线阅读 下载PDF
CFD-DEM approaches for simulating dense gas±solid reacting flows:Progress and perspectives
8
作者 Gang WANG Wenqiang GUO Yanguang YANG 《Chinese Journal of Aeronautics》 2025年第9期1-2,共2页
1.Introduction Computational Fluid Dynamics-Discrete Element Method(CFD-DEM)is a powerful tool for simulating dense gas-solid reacting flows,which is essential in combustion,metallurgy,and waste management.Traditional... 1.Introduction Computational Fluid Dynamics-Discrete Element Method(CFD-DEM)is a powerful tool for simulating dense gas-solid reacting flows,which is essential in combustion,metallurgy,and waste management.Traditional methods face challenges in CFD-DEM modeling of dense gas-solid flows due to multi-scale characteristics,limiting resolution and creating simulation bottlenecks.By integrating fluid dynamics and particle behavior,it optimizes industrial processes.This review highlights advancements,applications,and challenges,emphasizing its role in sustainable engineering. 展开更多
关键词 integrating fluid dynamics particle behaviorit dense gas solid flows COMBUSTION simulation bottlenecksby computational fluid dynamics discrete element method waste managementtraditional METALLURGY
原文传递
Some fundamental issues in buoyancy-driven flows with implications for geophysical and astrophysical systems
9
作者 Ke-Qing Xia Kai Leong Chong +1 位作者 Guang-Yu Ding Lu Zhang 《Acta Mechanica Sinica》 2025年第1期1-21,共21页
Buoyancy-driven flows are prevalent in a wide range of geophysical and astrophysical systems. In this review, we focus on threepivotal effects that significantly influence the dynamics and transport properties of buoy... Buoyancy-driven flows are prevalent in a wide range of geophysical and astrophysical systems. In this review, we focus on threepivotal effects that significantly influence the dynamics and transport properties of buoyancy-driven flows and may have impli-cations for natural systems. These effects pertain to the role of boundary conditions, the impact of rotation, and the effect offinite size. Boundary conditions represent how the fluid flow interacts with different kinds of surfaces. Rotation, as the Earth’srotation in geophysical systems or the whirling of astrophysical systems, introduces Coriolis and centrifugal forces, leading tothe profound vortical structure and distinct transport property. Finite size, representing geometrical constraints, influences thebehavior of buoyancy-driven flows across varying geometrical settings. This review aims to provide a holistic understanding ofthe intricate interplay of these factors, offering insights into the complex natural phenomena from the perspectives of the threeeffects. 展开更多
关键词 Buoyancy-driven flows Geophysical turbulence Rayleigh-B´enard convection
原文传递
Numerical Study of Cavitating Flows around a Hydrofoil with Deep Analysis of Vorticity Effects 被引量:1
10
作者 Shande Li Wen’an Zhong +1 位作者 Shaoxing Yu Hao Wang 《Fluid Dynamics & Materials Processing》 2025年第1期179-204,共26页
This paper aims to numerically explore the characteristics of unsteady cavitating flow around a NACA0015 hydrofoil,with a focus on vorticity attributes.The simulation utilizes a homogeneous mixture model coupled with ... This paper aims to numerically explore the characteristics of unsteady cavitating flow around a NACA0015 hydrofoil,with a focus on vorticity attributes.The simulation utilizes a homogeneous mixture model coupled with a filter-based density correction turbulence model and a modified Zwart cavitation model.The study investigates the dynamic cavitation features of the thermal fluid around the hydrofoil at various incoming flow velocities.It systematically elucidates the evolution of cavitation and vortex dynamics corresponding to each velocity condition.The results indicate that with increasing incoming flow velocity,distinct cavitation processes take place in the flow field. 展开更多
关键词 Cavitating flow HYDROFOIL flow velocity VORTICITY Computational Fluid Dynamics(CFD)
在线阅读 下载PDF
Boundary fluid constraints during electrochemical jet machining of large size emerging titanium alloy aerospace parts in gas–liquid flows:Experimental and numerical simulation 被引量:1
11
作者 Yang LIU Ningsong QU +1 位作者 Hansong LI Zhaoyang ZHANG 《Chinese Journal of Aeronautics》 2025年第1期115-130,共16页
Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising techn... Large size titanium alloy parts are widely used in aerospace.However,they are difficult to manufacture using mechanical cutting technology because of severe tool wear.Electrochemical jet machining is a promising technology to achieve high efficiency,because it has high machining flexibility and no machining tool wear.However,reports on the macro electrochemical jet machining of large size titanium alloy parts are very scarce,because it is difficult to achieve effective constraint of the flow field in macro electrochemical jet machining.In addition,titanium alloy is very sensitive to fluctuation of the flow field,and a turbulent flow field would lead to serious stray corrosion.This paper reports a series of investigations of the electrochemical jet machining of titanium alloy parts.Based on the flow analysis and experiments,the machining flow field was effectively constrained.TB6 titanium alloy part with a perimeter of one meter was machined.The machined surface was smooth with no obvious machining defects.The machining process was particularly stable with no obvious spark discharge.The research provides a reference for the application of electrochemical jet machining technology to achieve large allowance material removal in the machining of large titanium alloy parts. 展开更多
关键词 Electrochemical jet machining Titanium alloys Large size parts Flow simulation Turbulent flow
原文传递
Sharp Interface Establishment through Slippery Fluid in Steady Exchange Flows under Stratification
12
作者 Mustafa Turkyilmazoglu Abdulaziz Alotaibi 《Computer Modeling in Engineering & Sciences》 2025年第6期2847-2865,共19页
The variable salinity in stored reservoirs connected by a long channel attracts the attention of scientists worldwide,having applications in environmental and geophysical engineering.This study explores the impact of ... The variable salinity in stored reservoirs connected by a long channel attracts the attention of scientists worldwide,having applications in environmental and geophysical engineering.This study explores the impact of Navier slip conditions on exchange flows within a long channel connecting two large reservoirs of differing salinity.These horizontal density gradients drive the flow.We modify the recent one-dimensional theory,developed to avoid runaway stratification,to account for the presence of uniform slip walls.By adjusting the parameters of the horizontal density gradient based on the slip factor,we resolve analytically various flow regimes ranging from high diffusion to transitional high advection.These regimes are governed by physical parameters like channel aspect ratio,slip factor,Schmidt number,and gravitational Reynolds number.Our solutions align perfectly with ones in the no-slip limit.More importantly,under the conditions of no net flow across the channel and high Schmidt number(where stratification is concentrated near the channel’s mid-layer),we derive a closed-form solution for the slip parameter,aspect ratio,and gravitational Reynolds number that describes the interface’s behavior as a sharp interface separating two distinct zones.This interface,arising from hydrostatic wall gradients,ultimately detaches the low-and high-density regimes throughout the channel when the gravitational Reynolds number is inversely proportional to the aspect ratio for a fixed slip parameter.This phenomenon,observed previously in 2D numerical simulations with no-slip walls in the literature,is thus confirmed by our theoretical results.Our findings further demonstrate that wall slip leads to distinct and diverse flow regimes. 展开更多
关键词 STRATIFICATION density gradient exchange flow wall slip sharp interface
在线阅读 下载PDF
Evolution of three-dimensional separation flows in stator passages of an aggressive compressor transition duct
13
作者 Guangfeng AN Zhu FAN +1 位作者 Xianjun YU Baojie LIU 《Chinese Journal of Aeronautics》 2025年第5期65-79,共15页
The increasing performance demands of modern aero engines necessitate the integrated design of compressor transition ducts with upstream components to reduce the axial length of the engine.However,this design approach... The increasing performance demands of modern aero engines necessitate the integrated design of compressor transition ducts with upstream components to reduce the axial length of the engine.However,this design approach narrows the spacing between the stator and the strut,making traditional research on transition ducts only with struts unsuitable.The numerical results and experimental oil flow visualization results were utilized to reconstruct the three-dimensional flow structures in the stator passages under various operating conditions.Additionally,numerical methods were employed to analyze the mechanisms of the strut's effect on the upstream stator in an aggressive transition duct.The results show that the strut potential field increases the load on the upstream stator,leading to severe blade surface separation and corner separation/stall,and redistributes the inflow angle of the upstream stators circumferentially,resulting in significant differences in the flow structures within the stator passages on both sides.The separation flows within the stator passages mainly manifest in five types:pressure surface separation vortex,suction surface concentrated shedding vortex,suction surface separation vortex,suction surface-corner stall separation vortex,and suction surface separation vortex pair.Under different operating conditions,the separation flows within the stator passages are always composed of a part of these five types or a transitional state between two of them. 展开更多
关键词 Axial compressor Transition duct STRUTS Flow separation Oil-flow visualization
原文传递
Impacts and depositional behaviors of debris flows on natural boulder-negative Poisson's ratio anchor cable baffles
14
作者 Feifei Zhao Manchao He +1 位作者 Qiru Sui Zhigang Tao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期946-959,共14页
The impacts of natural boulders carried by debris flows pose serious risks to the safety and reliability of structures and buildings.Natural boulders can be highly random and unpredictable.Consequently,boulder control... The impacts of natural boulders carried by debris flows pose serious risks to the safety and reliability of structures and buildings.Natural boulders can be highly random and unpredictable.Consequently,boulder control during debris flows is crucial but difficult.Herein,an eco-friendly control system featuring anchoring natural boulders(NBs)with(negative Poisson's ratio)NPR anchor cables is proposed to form an NB-NPR baffle.A series of flume experiments are conducted to verify the effect of NB-NPR baffles on controlling debris flow impact.The deployment of NB-NPR baffles substantially influences the kinematic behavior of a debris flow,primarily in the form of changes in the depositional properties and impact intensities.The results show that the NB-NPR baffle matrix successfully controls boulder mobility and exhibits positive feedback on solid particle deposition.The NB-NPR baffle group exhibits a reduction in peak impact force ranging from 29%to 79%compared to that of the control group in the basic experiment.The NPR anchor cables play a significant role in the NB-NPR baffle by demonstrating particular characteristics,including consistent resistance,large deformation,and substantial energy absorption.The NB-NPR baffle innovatively utilizes the natural boulders in a debris flow gully by converting destructive boulders into constructive boulders.Overall,this research serves as a basis for future field experiments and applications. 展开更多
关键词 Debris flow Natural boulders NPR anchor cable BAFFLE Depositional behavior Impact
在线阅读 下载PDF
A production term correction for Menter shear-stress transport turbulence model for adverse pressure gradient flows before separation
15
作者 Hanqi SONG Mingze MA +2 位作者 Jinrong ZHANG Yifan LI Chao YAN 《Chinese Journal of Aeronautics》 2025年第5期28-38,共11页
To address the early separation problem in the Menter Shear-Stress Transport(SST)turbulence model,a correction for the Turbulent Kinetic Energy(TKE)production term,P_(k),is introduced to account for the effect of the ... To address the early separation problem in the Menter Shear-Stress Transport(SST)turbulence model,a correction for the Turbulent Kinetic Energy(TKE)production term,P_(k),is introduced to account for the effect of the Adverse Pressure Gradient(APG).The correction is determined based on the distribution of Pkin the APG region before separation.When the friction coefficient C_(f) is decomposed,its direct dependence on Pkis clearly observed.However,with the introduction of Bradshaw’s assumption,Pkin the SST turbulence model is over-suppressed,resulting in a lower inner peak or no significant inner peak distribution at all.To address this problem,this paper proposes a Gaussian function,HGauss,which corrects the numerical values of P_(k) involved in the calculation of the Menter SST model by focusing on the inner peak region of P_(k).The modified SST model is then applied to four cases with APGs.The modification leads to an increase in the wall friction coefficient C_(f)in the APG region and causes a downstream shift in the separation location,improving the model’s consistency with high-accuracy data and experimental results.It is demonstrated that this correction can improve the early separation problem in the Menter SST turbulence model. 展开更多
关键词 Early separation problem Adverse pressuregradient Turbulencemodels Productionterm Gaussian function Boundary layer flow
原文传递
Protective effect and mechanisms of defense pile on bridge pier impacted by granular flows
16
作者 WU Yihan ZHU Zhiyuan +1 位作者 ZHENG Lu BI Yuzhang 《Journal of Mountain Science》 2025年第8期2960-2980,共21页
Bridge pier failures from granular flow impacts are common.Installing defense piles upstream is an effective mitigation strategy,yet their protective mechanisms and standardized design guidelines are unclear.This stud... Bridge pier failures from granular flow impacts are common.Installing defense piles upstream is an effective mitigation strategy,yet their protective mechanisms and standardized design guidelines are unclear.This study employed 3D discrete element method to analyze the influence of defense pile size and placement on its performance across 219 scenarios,providing a detailed examination of their protective mechanisms.Results show that optimizing these factors can reduce the maximum impact force on bridge piers by up to 94%.In terms of size,a critical height threshold is identified,beyond which increasing pile height does not enhance protection.This threshold depends on the movement height of granular particles at the slope base.Protection effectiveness varies with pile size:when H≤0.05 h(H is the height of defense piles,h is the height of bridge),protection marginally improves with increasing height and diameter;for 0.05 h<H<0.15 h,protection strongly correlates with both parameters;for H≥0.15 h,diameter becomes the dominant factor.In terms of placement,an optimal longitudinal distance exists between the defense pile and the bridge pier.The larger the diameter,the greater the optimal longitudinal distance.However,the transverse distance is inversely related to protection effectiveness.Mechanistic analysis shows that defense piles are more effective at redirecting particles to prevent direct collisions with the pier(contributing 100%impact energy reduction before the non-dimensional travel time t*=7.01 and 63%–100%afterward)than at reducing particle velocity.This study provides insights into the protective mechanisms of defense piles and informs strategies for optimizing bridge pier protection in granular flow-prone regions. 展开更多
关键词 Granular flow Defense pile Bridge pier Discrete element method
原文传递
A Semi-implicit Finite Volume Scheme for Incompressible Two-Phase Flows
17
作者 Davide Ferrari Michael Dumbser 《Communications on Applied Mathematics and Computation》 2024年第4期2295-2330,共36页
This paper presents a mass and momentum conservative semi-implicit finite volume(FV)scheme for complex non-hydrostatic free surface flows,interacting with moving solid obstacles.A simplified incompressible Baer-Nunzia... This paper presents a mass and momentum conservative semi-implicit finite volume(FV)scheme for complex non-hydrostatic free surface flows,interacting with moving solid obstacles.A simplified incompressible Baer-Nunziato type model is considered for two-phase flows containing a liquid phase,a solid phase,and the surrounding void.According to the so-called diffuse interface approach,the different phases and consequently the void are described by means of a scalar volume fraction function for each phase.In our numerical scheme,the dynamics of the liquid phase and the motion of the solid are decoupled.The solid is assumed to be a moving rigid body,whose motion is prescribed.Only after the advection of the solid volume fraction,the dynamics of the liquid phase is considered.As usual in semi-implicit schemes,we employ staggered Cartesian control volumes and treat the nonlinear convective terms explicitly,while the pressure terms are treated implicitly.The non-conservative products arising in the transport equation for the solid volume fraction are treated by a path-conservative approach.The resulting semi-implicit FV discretization of the mass and momentum equations leads to a mildly nonlinear system for the pressure which can be efficiently solved with a nested Newton-type technique.The time step size is only limited by the velocities of the two phases contained in the domain,and not by the gravity wave speed nor by the stiff algebraic relaxation source term,which requires an implicit discretization.The resulting semi-implicit algorithm is first validated on a set of classical incompressible Navier-Stokes test problems and later also adds a fixed and moving solid phase. 展开更多
关键词 Staggered semi-implicit finite volume(FV)method Incompressible two-phase flows Diffuse interface approach Incompressible free-surface Navier-Stokes equations Violent non-hydrostatic flows Fixed and moving solid obstacles
在线阅读 下载PDF
A reduced-order model for fast predicting ionized flows of hypersonic vehicles along flight trajectory
18
作者 Jingchao ZHANG Chunsheng NIE +1 位作者 Jinsheng CAI Shucheng PAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第1期89-105,共17页
An improved Reduced-Order Model(ROM)is proposed based on a flow-solution preprocessing operation and a fast sampling strategy to efficiently and accurately predict ionized hypersonic flows.This ROM is generated in low... An improved Reduced-Order Model(ROM)is proposed based on a flow-solution preprocessing operation and a fast sampling strategy to efficiently and accurately predict ionized hypersonic flows.This ROM is generated in low-dimensional space by performing the Proper Orthogonal Decomposition(POD)on snapshots and is coupled with the Radial Basis Function(RBF)to achieve fast prediction speed.However,due to the disparate scales in the ionized flow field,the conventional ROM usually generates spurious negative errors.Here,this issue is addressed by performing flow-solution preprocessing in logarithmic space to improve the conventional ROM.Then,extra orthogonal polynomials are introduced in the RBF interpolation to achieve additional improvement of the prediction accuracy.In addition,to construct high-efficiency snapshots,a trajectory-constrained adaptive sampling strategy based on convex hull optimization is developed.To evaluate the performance of the proposed fast prediction method,two hypersonic vehicles with classic configurations,i.e.a wave-rider and a reentry capsule,are used to validate the proposed method.Both two cases show that the proposed fast prediction method has high accuracy near the vehicle surface and the free-stream region where the flow field is smooth.Compared with the conventional ROM prediction,the prediction results are significantly improved by the proposed method around the discontinuities,e.g.the shock wave and the ionized layer.As a result,the proposed fast prediction method reduces the error of the conventional ROM by at least 45%,with a speedup of approximately 2.0×105compared to the Computational Fluid Dynamic(CFD)simulations.These test cases demonstrate that the method developed here is efficient and accurate for predicting ionized hypersonic flows. 展开更多
关键词 Reduced-order model Radial basis function Constrained sampling Transfer function Fast flow prediction Ionized hypersonic flows
原文传递
Tree failure modes influenced by the characteristics of tree and its root distribution caused by debris flows
19
作者 CHEN Xiaoqing JIN Ke +3 位作者 WANG Chenyuan LIU Haitao ZHAO Wanyu CHEN Jiangang 《Journal of Mountain Science》 SCIE CSCD 2024年第12期3986-4000,共15页
Forests play an important role in controlling the formation and movement processes of debris flows.They contribute to soil stabilization,regulation of soil water content,and act as robust structures impeding the downs... Forests play an important role in controlling the formation and movement processes of debris flows.They contribute to soil stabilization,regulation of soil water content,and act as robust structures impeding the downstream progression of debris flows.On the positive side,trees,to some extent,can intercept debris flows and effectively mitigate their velocity by increasing flow resistance.On the negative side,trees may suffer damage from debris-flow hazards,characterized by the generation of substantial quantities of wood fragments and consequential ramifications such as river channel blockage,resulting in backwater rise.In extreme cases,this blockage collapse can lead to instantaneous discharge amplification,thereby adversely impacting urban safety and impeding sustainable development.Therefore,in order to grasp the effects of tree characteristics on tree failure modes,the tree failure modes and corresponding parameters,diameters at breast height(DBH)and root-soil plate size,were identified and recorded through the post-event field investigation in Keze Gully,a region prone to debrisflow events in Sichuan,China,respectively.To investigate the impact of spatial variability in tree root distribution on tree failure modes,the root crosssectional area ratio(RAR),root density(RD),root length density(RLD)and soil detachment rate(SDR)were obtained.The findings indicated that:(1)Tree characteristics reflect the interactions of debris flows and trees,and influence the tree failure modes ultimately.The root distribution characteristics influence the size and shape of the root-soil plate to affect the resistance of trees.(2)Compared to burial and abrasion,stem breakage and overturning are the predominant modes of tree failure in debris-flow hazards.Trees with a smaller DBH primarily experience stem breakage and bending,and trees with a larger DBH mostly experience overturning.(3)The root-soil plate shapes of overturned trees,affected by the root architecture and root growth range,are generally semielliptical or semicircular,and the horizontal and vertical radii increase with DBH,but the correlation between the root-soil plate’s breadth-depth ratio and DBH is low.(4)The biomass and RAR decrease with distance.The RAR distribution exhibit the order of upslope direction>downslope direction>lateral direction.The coarse root biomass significantly increases with DBH,but no clear trend in fine root biomass.(5)The roots can significantly enhance the soil erosion resistance,but the erosion resistance of coarse roots is not as significant as that of fine roots.The erosion resistance increases with DBH,and follows the order of upslope direction>downslope direction>lateral direction.The results could provide new insights into the influences of tree and root distribution characteristics on tree failure modes during debris flows. 展开更多
关键词 Debris flows Tree characteristics Root distribution characteristics Tree failure modes Forestation
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部