Flowering is one of the most important phenological periods,as it determines the timing of fruit maturation and seed dispersal.To date,both nitric oxide(NO)and DNA demethylation have been reported to regulate flowerin...Flowering is one of the most important phenological periods,as it determines the timing of fruit maturation and seed dispersal.To date,both nitric oxide(NO)and DNA demethylation have been reported to regulate flowering in plants.However,there is no compelling experimental evidence for a relationship between NO and DNA demethylation during plant flowering.In this study,an NO donor and a DNA methylation inhibitor were used to investigate the involvement of DNA demethylation in NO-mediated tomato(Solanum lycopersicum cv.Micro-Tom)flowering.The results showed that the promoting effect of NO on tomato flowering was dose-dependent,with the greatest positive effect observed at 10μmol L^(-1) of the NO donor S-nitrosoglutathione(GSNO).Treatment with 50μmol L^(-1) of the DNA methylation inhibitor 5-azacitidine(5-AzaC)also significantly promoted tomato flowering.Moreover,GSNO and 5-AzaC increased the peroxidase(POD)and catalase(CAT)activities and cytokinin(CTK)and proline contents,while they reduced the gibberellic acid(GA3)and indole-3-acetic acid(IAA)contents.Co-treatment with GSNO and 5-AzaC accelerated the positive effects of GSNO and 5-AzaC in promoting tomato flowering.Meanwhile,compared with a GSNO or 5-AzaC treatment alone,co-treatment with GSNO+5-AzaC significantly increased the global DNA demethylation levels in different tissues of tomato.The results also indicate that DNA demethylation may be involved in NO-induced flowering.The expression of flowering genes was significantly altered by the GSNO+5-AzaC treatment.Five of these flowering induction genes,ARGONAUTE 4(AGO4A),SlSP3D/SINGLE FLOWER TRUSS(SFT),MutS HOMOLOG 1(MSH1),ZINC FINGER PROTEIN 2(ZFP2),and FLOWERING LOCUS D(FLD),were selected as candidate genes for further study.An McrBC-PCR analysis showed that DNA demethylation of the SFT gene in the apex and the FLD gene in the stem might be involved in NO-induced flowering.Therefore,this study shows that NO might promote tomato flowering by mediating the DNA demethylation of flowering induction genes,and it provides direct evidence for a synergistic effect of NO and DNA demethylation in promoting tomato flowering.展开更多
The proper flowering time of rose(Rosa hybrida)is vital for the market value of this horticultural crop,but the mechanism regulating this trait is largely unclear.Here,we found that the transcription factor SQUAMOSA P...The proper flowering time of rose(Rosa hybrida)is vital for the market value of this horticultural crop,but the mechanism regulating this trait is largely unclear.Here,we found that the transcription factor SQUAMOSA PROMOTER BINDING PROTEIN-LIKE4(RhSPL4)positively regulates flowering time in rose.Transient silencing or overexpression transgenic rose plants of RhSPL4 exhibited delayed or early flowering,respectively.Analysis of transcriptome data from transgenic lines overexpressing RhSPL4 compared to the wild type indicated that differentially expressed genes were significantly enriched in the circadian rhythm pathway.Among the proteins encoded by these genes,RhSPL4 binds to the promoter of PSEUDO-RESPONSE REGULATOR 5-LIKE(RhPRR5L),as revealed in yeast one-hybrid,dual-Luciferase/Renilla luciferase reporter,chromatin immunoprecipitation-quantitative PCR and electrophoretic mobility shift assay.Furthermore,RhSPL4 specifically binds to the478 to441 bp region of the RhPRR5L promoter and activates its transcription.The silencing of RhPRR5L delayed flowering time in rose,resembling the phenotype of RhSPL4-silenced plants.Together,these results indicate that the RhSPL4-RhPRR5L module positively regulates flowering time in rose,laying the foundation for the genetic improvement of flowering time in this important horticultural crop.展开更多
Nitrogen(N)is a key component in plants and their biological macromolecules,having a profound effect on developmental stages,such as germination,vegetative growth,and flowering.However,the mechanism of nitrogen-regula...Nitrogen(N)is a key component in plants and their biological macromolecules,having a profound effect on developmental stages,such as germination,vegetative growth,and flowering.However,the mechanism of nitrogen-regulated flowering time remains unclear.In this study,CmNLP7 was isolated from the chrysanthemum cultivar‘Jinba'and was characterized.CmNLP7 is a transcription factor localized in the nucleus but has no transcriptional activity.Tissue expression pattern analysis showed that CmNLP7 was mainly transcribed in leaves and roots.Knocking down CmNLP7 through the artificial-miRNA method in chrysanthemum resulted in early flowering under optimal nitrogen(ON)and low nitrogen(LN)conditions;whereas overexpression lines showed delayed flowering under LN conditions.Transcriptome sequencing analysis showed that the nitrate transporters NRT2.5,NPF3.1,and NPF4.6;SBP-like genes SPL7 and SPL12,and flowering integration factor FT were significantly up-regulated in the knockdown lines.Based on the KEGG pathway enrichment analysis,the differentially transcribed genes were enriched in phenylpropanoid biosynthesis and starch and sucrose metabolism pathways,which indicated their alleged function in nitrogen-regulated flowering and development in chrysanthemum.Furthermore CmPP6 as a homolog of the Arabidopsis phosphatase PP6,was verified as an interacting protein of CmNLP7 by yeast two-hybrid,BiFC,pull-down and Biacore in vitro and in vivo,and the knockdown line of CmPP6(amiR-CmPP6)flowered earlier compared to that of the wild-type chrysanthemum‘Jinba'.Collectively,these results demonstrated that CmPP6 interacts with CmNLP7 to regulate chrysanthemum flowering,and CmNLP7 could regulate flowering time in response to nitrogen,which lays a foundation for the regulation of flowering and molecular breeding of chrysanthemum through changes in nutrient signaling.展开更多
The peony has become a cultural and economic powerhouse in Heze.The peony,revered as the“king of flowers”in China,has long transcended its botanical identity to become a cultural icon deeply rooted in the Yellow Riv...The peony has become a cultural and economic powerhouse in Heze.The peony,revered as the“king of flowers”in China,has long transcended its botanical identity to become a cultural icon deeply rooted in the Yellow River basin.In the fertile plains of the Yellow River,Heze City in Shandong Province has long held a special connection with the peony.展开更多
Moso bamboo holds significant economic importance in China,serving various purposes,such as food,material,ornamentation,and greenery.Despite its versatility,the occurrence of flowering in Moso bamboo poses a threat to...Moso bamboo holds significant economic importance in China,serving various purposes,such as food,material,ornamentation,and greenery.Despite its versatility,the occurrence of flowering in Moso bamboo poses a threat to bamboo forests,resulting in substantial losses.The underlying cause of bamboo flowering remains elusive.Dynamic fluctuations in DNA methylation govern the transcriptional levels of crucial genes pivotal for plant growth and development.In this study,we conducted comprehensive DNA methylation(by whole-genome bisulfite sequencing)and transcriptome(by RNA-seq)analyses on non-flowering leaves,flowering leaves,and spikelets of Moso bamboo.Our findings revealed a notable reduction in the overall DNA methylation level,particularly CHH methylation,from leaves to spikelets,influencing the expression of differentially regulated genes.Notably,we identified DNA methylation as a regulatory mechanism for numerous flowering-related genes,including SPLs,FT,and SOC1.Specifically,the SPL3f gene,a key regulator of the aging pathway,exhibited hypomethylation and a high expression level in spikelets.Conversely,SOC1c displayed transcriptional silencing attributed to hypermethylation in the CHH context in the leaves of non-flowering plants.DNA methylation may affect the flowering mechanism of Moso bamboo by regulating the expression of key genes.In summary,our results shed light on the dynamic changes in DNA methylation between leaves and spikelets,unraveling an important epigenetic modification mechanism for flowering in Moso bamboo.展开更多
In plants,numerous non-Mendelian inherited dominant effects,including over-,incomplete-,and codominance,are frequently observed,yet they remain insufficiently understood.A novel phenotype has been identified in specif...In plants,numerous non-Mendelian inherited dominant effects,including over-,incomplete-,and codominance,are frequently observed,yet they remain insufficiently understood.A novel phenotype has been identified in specific soybean transformants overexpressing a single 35S::GmFT2a copy:superearly flowering dominance is exclusively observed in hemizygotes,not in homozygotes.Homozygous individual exhibits si RNA-mediated DNA methylation,causing epigenetic transcriptional silencing,whereas no such effect occurs in hemizygotes.Intriguingly,two distinct rounds of DNA methylation establishment occur,each mediated by a different mechanism.The homozygotes that derived from the hemizygous mother plants carrying 35S::GmFT2a locus was associated with the initiation of CHHcontext DNA methylation at 35S promoters mediated by 21 and 22 nucleotide(nt)si RNAs.Subsequently,24 nt si RNAs contribute to additional CHG-and CG-context DNA methylation at 35S promoters during the homozygosity of genes in plants already homozygous in maternal lineage.Reducing DNA methylation levels can be achieved by generating a hemizygous genotype through a crossing experiment with a recessive genotype.This research has unveiled a phenomenon:hemizygote-dependent dominance resulting from transcriptional silencing in homozygote offsprings.It provides new insights into the molecular mechanism underlying dominant effects.展开更多
Appropriate flowering time in rapeseed(Brassica napus L.)is vital for preventing losses from weather,diseases,and pests.However,the molecular basis of its regulation remains largely unknown.Here,a genome-wide associat...Appropriate flowering time in rapeseed(Brassica napus L.)is vital for preventing losses from weather,diseases,and pests.However,the molecular basis of its regulation remains largely unknown.Here,a genome-wide association study identifies BnaC09.FUL,a MADS-box transcription factor,as a promising candidate gene regulating flowering time in B.napus.BnaC09.FUL expression increases sharply in B.napus shoot apices near bolting.BnaC09.FUL overexpression results in early flowering,while BnaFUL mutation causes delayed flowering in B.napus.A zinc finger transcription factor,BnaC06.WIP2,is identified as an interaction partner of BnaC09.FUL,and BnaC06.WIP2 overexpression delays flowering in B.napus,with RNA sequencing revealing its influence on the expression of many flowering-associated genes.We further demonstrate that BnaC06.WIP2 directly represses the expression of BnaA05.SOC1,BnaC03.SOC1,BnaC04.SOC1,BnaC06.FT,BnaA06.LFY,BnaC07.FUL,BnaA08.CAL,and BnaC03.CAL and indirectly inhibits the expression of other flowering time-related genes.Genetic and molecular investigations highlight the antagonistic relationship between BnaC09.FUL and BnaC06.WIP2 in regulating the flowering time in B.napus through direct regulation of the expression of BnaC03.SOC1,BnaA08.CAL,and BnaC03.CAL.Overall,our findings provide a mechanism by which the BnaC09.FUL–BnaC06.WIP2 transcriptional regulatory module controls the flowering time in B.napus.展开更多
Photoperiod and temperature are crucial factors that trigger flowering in Brassica juncea(B.juncea).However,the underlying regulatory mechanisms remain poorly understood.The MADS-box transcription factor AGL18 acts as...Photoperiod and temperature are crucial factors that trigger flowering in Brassica juncea(B.juncea).However,the underlying regulatory mechanisms remain poorly understood.The MADS-box transcription factor AGL18 acts as a pivotal repressor of floral transition and functions redundantly with AGL15.In this study,we isolated BjuAGL18-1 from B.juncea and identified two unique transcripts,resulting in two distinct proteins:a full-length protein,BjuAGL18-1L,and a truncated protein,BjuAGL18-1S.Further investigation showed that the two isoforms had similar subcellular localizations but different expression patterns in various plant tissues.Notably,BjuAGL18-1L and BjuAGL18-1S were abundantly induced under short-and long-day photoperiods,respectively.BjuAGL18-1L overexpression in B.juncea and Arabidopsis thaliana(A.thaliana)led to late flowering,whereas BjuAGL18-1S overexpression resulted in early flowering.Yeast two-hybrid,bimolecular fluorescent complementation,and luciferase complementation assays showed that BjuAGL18-1L,but not BjuAGL18-1S(which lacked the EAR motif),interacted with the co-repressor BjuAFR2 and the histone deacetylase BjuHDA9 to form a multiprotein complex.Further analysis indicated that BjuAGL18-1L could also form a complex with BjuAGL15 and bind to the BjuFUL promoter,thus inhibiting its expression.However,BjuAGL18-1S interacted with BjuAGL18-1L to form heterodimers,which attenuated their activities,likely by disrupting their binding to target genes,resulting in accelerated flowering progression.These results suggest that BjuAGL18-1 is involved in photoperiod-induced flowering via different regulatory mechanisms in B.juncea.展开更多
Flowering time(or heading date)is a crucial agronomic trait for the adaptation of rice to specific growing regions and seasons.Although many flowering time-related rice genes have been identified and functionally char...Flowering time(or heading date)is a crucial agronomic trait for the adaptation of rice to specific growing regions and seasons.Although many flowering time-related rice genes have been identified and functionally characterized,continuing in-depth research is revealing how transcription of these genes is regulated.In this study,we determined that a basic leucine zipper transcription factor(OsbZIP40)and its homologous protein(OsbZIP12)participate in the control of flowering time.Overexpression of OsbZIP40 delayed flowering.Double mutants in which both OsbZIP40 and OsbZIP12 were knocked out exhibited an early-flowering phenotype under both long-day and short-day conditions.However,there was no difference in the heading date between the wild-type and each single mutant.These results suggest that OsbZIP40 functions as a flowering suppressor.Both OsbZIP40 and OsbZIP12 bound directly to the Ehd1 promoter and repressed its expression.Furthermore,MOTHER OF FT AND TFL1(Os MFT1)interacted with OsbZIP40/OsbZIP12 and enhanced their repressive effects on Ehd1 expression.Based on the data,we present a transcriptional regulatory mechanism in which OsbZIP40 and OsbZIP12 interact with Os MFT1 and modulate Ehd1 expression to delay flowering.Our findings provide relevant insights into the molecular mechanisms regulating flowering time in rice.展开更多
Foxtail millet(Setaria italica)is an important crop and an emerging model plant.Photoperiodic flowering is a key determinant of its production and geographic expansion.In this study,we found that SiPRR37 is responsibl...Foxtail millet(Setaria italica)is an important crop and an emerging model plant.Photoperiodic flowering is a key determinant of its production and geographic expansion.In this study,we found that SiPRR37 is responsible for the major quantitative trait locus(QTL)Heading date 2(Hd2)identified in 680 foxtail millets using a genome-wide association study.Overexpression of SiPRR37 in foxtail millet significantly delayed the heading date under both natural long-day and short-day conditions.CRISPR/Cas9-induced Siprr37 mutants exhibited earlier flowering in long-day conditions but later flowering in short-day conditions.The critical day length(CDL)for the reversal of Siprr37’s function was around 14.3 h.Haplotype analysis revealed that accessions with the Tc1-Mariner transposon insertion in SiPRR37(Hap 1)flowered significantly earlier at higher latitudes,and later at lower latitudes,indicating that natural variants of SiPRR37 exert dual functions in flowering regulation according to geographic latitude.The gradual,successive decrease in the frequency of Hap 2 from low to high latitudes,with the concurrent increase of Hap 1,demonstrates that these haplotypes have undergone artificial selection.Further FST analysis demonstrated that SiPRR37 has contributed to the ecological adaption of foxtail millet.Additionally,we reveal that OsPRR37 promotes flowering in rice,while GmPRR37 may only inhibit flowering in soybean.Further diurnal expression and transgenic analyses suggest that the dual function of SiPRR37 might depend on SiHd1.Our study uncovered the distinct functional reversal of SiPRR37 and functional diversification of PRR37 homologs in SD crops.These findings not only enrich knowledge about the regulation of photoperiodic flowering,but also contribute to genetic improvement of crops’regional adaptability.展开更多
The complex of calcineurin B-like protein(CBL)and CBL-interacting protein kinase(CIPK)serves as key components in calcium-sensing,orchestrating various signals crucial for plant growth,development,and responses to bio...The complex of calcineurin B-like protein(CBL)and CBL-interacting protein kinase(CIPK)serves as key components in calcium-sensing,orchestrating various signals crucial for plant growth,development,and responses to biotic and abiotic stresses.However,the mechanism underlying the response of this module to cold stress and its role in flower development in wintersweet(Chimonanthus praecox)remains unclear.Through expression pattern analysis,calcium ion(Ca^(2+))concentration assays,correlation analysis,and linear regression analysis,we found that the[Ca^(2+)],along with CpCBL8 and CpCIPK9 expression levels in wintersweet flower buds(FBs),significantly decreased during the initial flowering stage when the chilling requirement reached 570 chill units(CU).Notably,there was a significant positive correlation between[Ca^(2+)]and CpCBL8 expression.Ca^(2+)increased the expression of Cp CBL8 and CpCIPK9 in FBs,causing a significant delay in the flowering of wintersweet.Furthermore,the function of CpCBL8 was studied using heterologous transformation.Overexpression of CpCBL8 significantly delayed flowering time and significantly reduced cold tolerance and altered the expression pattern of endogenous genes related to low-temperature stress and flower development in transgenic Arabidopsis thaliana.Additionally,transcriptome analysis of chilling-induced dormancy breaking and flower bud enlargement revealed that CpCBL8 and CpCIPK9 were negatively regulated by cold,and the expression pattern of endogenous genes related to flower development and cold stress in wintersweet were similar to that of in A.thaliana.Moreover,protein-protein interaction(PPI)analysis revealed that CpCBL8 and CpCIPK9 interacted in the plasma membrane and nucleus.On the basis of these findings,we speculated that the CpCBL8-CpCIPK9 module plays a crucial role in regulating responses to cold stress and flower development in wintersweet.This study elucidated molecular mechanisms through which the downregulation of the Ca^(2+)-induced CpCBL8-CpCIPK9 module results in dormancy breaking and enhances cold tolerance.This study provides valuable insights for the cultivation of new varieties of wintersweet with increased ornamental value and enhanced cold stress tolerance.展开更多
The nuclear factor Y(NF-Y)is a class of heterotrimeric transcription factors comprising three subunits:NF-YA,NF-YB,and NF-YC.These transcription factors participate in many plant bioprocesses,including the regulation ...The nuclear factor Y(NF-Y)is a class of heterotrimeric transcription factors comprising three subunits:NF-YA,NF-YB,and NF-YC.These transcription factors participate in many plant bioprocesses,including the regulation of flowering time.Although the NF-Y gene family has been systematically studied in many species,little is known about its role in the non-heading Chinese cabbage(NHCC)[Brassica campestris(syn.Brassica rapa)ssp.chinensis].In this study,we identified 57 NF-Y members in the genome of NHCC using BLASTP,including 20 BcNF-YAs,24BcNF-YBs,and 13 BcNF-YCs.These genes are randomly distributed on the 10 chromosomes of NHCC.The results of yeast two-hybrid experiments indicated that among some members of the three subunits of BcNF-Ys,the members of the NF-YA and NF-YC subunits interact with each other,a third of the members of the NF-YB and NF-YC subunits interact with each other,while no interaction was observed between the members of the NF-YA and NF-YB subunits.Subcellular localization experiments in tobacco showed that Bc NF-YA2 and BcNF-YA8 were expressed in the nucleus;BcNF-YB18 and BcNF-YB23 were located in the cell membrane and cytoplasm;and BcNF-YC6 and BcNF-YC7 were expressed in the nucleus,cytoplasm,and cell membrane.We analyzed the cis-acting elements in the promoter of BcNF-Y genes and found that the ABA response element is the most distributed hormone response element,which is regulated by ABA signals triggered by environmental stimuli.Accordingly,we treated three-week-old NHCC leaves with 100μmol L^(-1) ABA and analyzed the expression profile of BcNF-Ys through RNA-seq.The results showed that except for six undetected BcNF-Ys,the remaining 51 BcNF-Ys showed varying degrees of response to ABA signals.Among these,BcNF-YA8 was positively regulated by ABA signals,with the highest upregulation amplitude.Subsequently,the function of BcNF-YA8 was extensively studied,which demonstrated that its expression promotes plant flowering.This result enriches our understanding of the potential molecular mechanism by which ABA positively regulates NHCC flowering.展开更多
Accurate and timely estimation of above-ground biomass is crucial for understanding crop growth dynamics,optimizing agricultural input management,and assessing productivity in sustainable farming practices.However,con...Accurate and timely estimation of above-ground biomass is crucial for understanding crop growth dynamics,optimizing agricultural input management,and assessing productivity in sustainable farming practices.However,conventional biomass assessments are destructive and resource-intensive.In contrast,remote sensing techniques,particularly those utilizing low-altitude unmanned aerial vehicles,provide a non-destructive approach to collect imagery data on plant canopy features,including spectral reflectance and structural details at any stage of the crop life cycle.This study explores the potential visible-light-derived vegetative indices to improve biomass prediction during the flowering period of buckwheat(Fagopyrum tataricum).Red,green,and blue(RGB)images of buckwheat were acquired during peak flowering,using a DJI P4 multispectral Drone.From the analysis of those images,four vegetative indices were calculated.Aboveground fresh biomass was harvested and measured on 14 September 2024.The results showed negative correlations between the green-band based excess green(ExG),excess green minus excess red(ExGR),and green leaf index(GLI)indices and the fresh above-ground biomass of buckwheat,while the red band-based excess red(ExR)index showed an insignificant positive correlation at p<0.10.An investigation into greenband-based vegetation indices(VIs)for estimating fresh biomass revealed significant negative correlations during the experimental period.This unexpected inverse relationship is attributed to spectral interference from abundant white flowers during the flowering stage,where the high reflectance of white petals masked the green vegetation signal.Consequently,these green-band VIs demonstrated limited predictive power for biomass under such conditions,indicating that their utility is compromised when floral reflectance is dominant.Therefore,we suggest that further experiments are required to validate this relationship and improve the estimation of fresh above-ground biomass in white-flowered buckwheat plants.展开更多
The juvenile-to-adult phase change with first flowering as the indicator plays a crucial role in the lifecycle of fruit trees. However, the molecular mechanisms underlying phase change in fruit trees remain largely un...The juvenile-to-adult phase change with first flowering as the indicator plays a crucial role in the lifecycle of fruit trees. However, the molecular mechanisms underlying phase change in fruit trees remain largely unknown. Shikimic acid (ShA) pathway is a main metabolic pathway closely related to the synthesis of hormones and many important secondary metabolites participating in plant phase change. So,whether ShA regulates phase change in plants is worth clarifying. Here, the distinct morphological characteristics and the underlying mechanisms of phase change in jujube (Ziziphus jujuba Mill.), an important fruit tree native to China with nutritious fruit and outstanding tolerance abiotic stresses, were clarified. A combined transcriptome and metabolome analysis found that ShA is positively involved in jujube(Yuhong’×Xing 16’) phase change. The genes in the upstream of ShA synthesis pathway (ZjDAHPS, ZjDHQS and ZjSDH), the contents of ShA and the downstream secondary metabolites like phenols were significantly upregulated in the phase change period. Further, the treatment of spraying exogenous ShA verified that ShA at a very low concentration (60 mg·L^(-1)) can substantially speed up the phase change and flowering of jujube and other tested plants including Arabidopsis, tomato and wheat. The exogenous ShA (60 mg·L^(-1)) treatment in jujube seedlings could increase the accumulation of endogenous ShA, enhance leaf photosynthesis and the synthesis of phenols especially flavonoids and phenolic acids, and promote the expression of genes (ZjCOs, ZjNFYs and ZjPHYs) involved in flowering pathway. Basing on above results, we put forward a propose for the underlying mechanism of ShA regulating phase change, and a hypothesis that ShA could be considered a phytohormone-like substance because it is endogenous, ubiquitous, movable and highly efficient at very low concentrations. This study highlights the critical role of ShA in plant phase change and its phytohormone-like properties.展开更多
Flowering phenology of plants,which is important for reproductive growth,has been shown to be influenced by climate change.Understanding how flowering phenology responds to climate change and exploring the variation o...Flowering phenology of plants,which is important for reproductive growth,has been shown to be influenced by climate change.Understanding how flowering phenology responds to climate change and exploring the variation of this response across plant groups can help predict structural and functional changes in plant communities in response to ongoing climate change.Here,we used long-term collections of 33 flowering plant species from the Gongga Mountains(Mt.Gongga hereafter),a biodiversity hotspot,to investigate how plant flowering phenology changed over the past 70 years in response to climate change.We found that mean flowering times in Mt.Gongga were delayed in all vegetation types and elevations over the last 70 years.Furthermore,flowering time was delayed more in lowlands than at high elevations.Interestingly,we observed that spring-flowering plants show earlier flowering times whereas summer/autumn plants show delayed flowering times.Non-synchronous flowering phenology across species was mainly driven by changes in temperature and precipitation.We also found that the flowering phenology of 78.8%plant species was delayed in response to warming temperatures.Our findings also indicate that the magnitude and direction of variation in plant flowering times vary significantly among species along elevation gradients.Shifts in flowering time might cause trophic mismatches with co-occurring and related species,affecting both forest ecosystem structure and function.展开更多
Basic helix-loop-helix(bHLH)transcription factor gene family in plants controls various growth and development aspects;however,the actual roles of these genes in flowering plants are not well known.In this study,a nov...Basic helix-loop-helix(bHLH)transcription factor gene family in plants controls various growth and development aspects;however,the actual roles of these genes in flowering plants are not well known.In this study,a novel bHLH protein CmbHLH110 was found to interact with CmERF110 by in vitro and in vivo experiments,a chrysanthemum ERF110 homolog that acts as a positive flowering regulator.In addition,CmbHLH110 was also found to regulate the flowering of chrysanthemums,overexpression of CmbHLH110 causes chrysanthemums to flower earlier,and suppressed CmbHLH110 leads to delayed flowering.Furthermore,the loss-of-function Arabidopsis mutant of its homologue PERICYCLE FACTOR TYPE-A 5(PFA5)had a noticeable late flowering phenotype,and CmbHLH110 completely complemented the late flowering phenotype of the pfa5 mutant,whereas heterologous overexpression of CmbHLH110 in Arabidopsis Col-0 caused early flowering.Transcriptome sequencing revealed significant differential expression of flowering-related and circadian clock-related genes in transgenic chrysanthemum.Therefore,we concluded that CmbHLH110,as a novel flowering regulator,could interact with CmERF110 to regulate flowering in chrysanthemum.展开更多
Properly regulated flowering time is pivotal for successful plant reproduction.The floral transition from vegetative growth to reproductive growth is regulated by a complex gene regulatory network that integrates envi...Properly regulated flowering time is pivotal for successful plant reproduction.The floral transition from vegetative growth to reproductive growth is regulated by a complex gene regulatory network that integrates environmental signals and internal conditions to ensure that flowering takes place under favorable conditions.Brassica rapa is a diploid Cruciferae species that includes several varieties that are cultivated as vegetable or oil crops.Flowering time is one of the most important agricultural traits of B.rapa crops because of its influence on yield and quality.The transition to flowering in B.rapa is regulated by several environmental and developmental cues,which are perceived by several signaling pathways,including the vernalization pathway,the autonomous pathway,the circadian clock,the thermosensory pathway,and gibberellin(GA)signaling.These signals are integrated to control the expression of floral integrators BrFTs and BrSOC1s to regulate flowering.In this review,we summarized current research advances on the molecular mechanisms that govern flowering time regulation in B.rapa and compare this to what is known in Arabidopsis.展开更多
The application effect of 30 introduced flowering shrubs in landscape in Hefei City was comprehensively evaluated by the analytic hierarchy process(APH).A comprehensive evaluation model was established by using factor...The application effect of 30 introduced flowering shrubs in landscape in Hefei City was comprehensively evaluated by the analytic hierarchy process(APH).A comprehensive evaluation model was established by using factors such as plant type,resistance and drought tolerance of introduced flowering shrubs.The results show that the application effect of grade-I introduced flowering shrubs(including 12 kinds,e.g.Lantanacamara)was the best(j≥2.6),and that of grade-II introduced flowering shrubs(including 14 kinds,e.g.Abelia×grandiflora‘Francis Mason’)was better(2.2≤j<2.6),while that of grade-III introduced flowering shrubs(including 4 kinds,e.g.Ligustrum×vicaryi)was moderate(j<2.2).The evaluation results can provide reference for the application effect of introduced flowering shrubs in landscape in Hefei City.展开更多
The timing of flowering is an important driver of species distribution and community assembly patterns.However,we still have much to learn about the factors that shape flowering diversity(i.e.,number of species flower...The timing of flowering is an important driver of species distribution and community assembly patterns.However,we still have much to learn about the factors that shape flowering diversity(i.e.,number of species flowering per period) in plant communities.One potential explanation of flowering diversity is the mid-domain effect,which states that geometric constraints on species ranges within a bounded domain(space or time) will yield a mid-domain peak in diversity regardless of ecological factors.Here,we determine whether the mid-domain effect explains peak flowering time(i.e.,when most species of communities are flowering) across China.We used phenological data of 16,267 herbaceous and woody species from the provincial Flora in China and species distribution data from the Chinese Vascular Plant Distribution Database to determine relationships between the observed number of species flowering and the number of species flowering as predicted by the mid-domain effect model,as well as between three climatic variables(mean minimum monthly temperature,mean monthly precipitation,and mean monthly sunshine duration).We found that the mid-domain effect explained a significant proportion of the temporal variation in flowering diversity across all species in China.Further,the mid-domain effect explained a greater proportion of variance in flowering diversity at higher latitudes than at lower latitudes.The patterns of flowering diversity for both herbaceous and woody species were related to both the mid-domain effect and environmental variables.Our findings indicate that including geometric constraints in conjunction with abiotic and biotic predictors will improve predictions of flowering diversity patterns.展开更多
Flowering time is important for adaptation of soybean(Glycine max)to different environments.Here,we conducted a genome-wide association study of flowering time using a panel of 1490 cultivated soybean accessions.We id...Flowering time is important for adaptation of soybean(Glycine max)to different environments.Here,we conducted a genome-wide association study of flowering time using a panel of 1490 cultivated soybean accessions.We identified three strong signals at the qFT02-2 locus(Chr02:12037319–12238569),which were associated with flowering time in three environments:Gongzhuling,Mengcheng,and Nanchang.By analyzing linkage disequilibrium,gene expression patterns,gene annotation,and the diversity of variants,we identified an AP1 homolog as the candidate gene for the qFT02-2 locus,which we named GmAP1d.Only one nonsynonymous polymorphism existed among 1490 soybean accessions at position Chr02:12087053.Accessions carrying the Chr02:12087053-T allele flowered significantly earlier than those carrying the Chr02:12087053-A allele.Thus,we developed a cleaved amplified polymorphic sequence(CAPS)marker for the SNP at Chr02:12087053,which is suitable for marker-assisted breeding of flowering time.Knockout of GmAP1d in the‘Williams 82’background by gene editing promoted flowering under long-day conditions,confirming that GmAP1d is the causal gene for qFT02-2.An analysis of the region surrounding GmAP1d revealed that GmAP1d was artificially selected during the genetic improvement of soybean.Through stepwise selection,the proportion of modern cultivars carrying the Chr02:12087053-T allele has increased,and this allele has become nearly fixed(95%)in northern China.These findings provide a theoretical basis for better understanding the molecular regulatory mechanism of flowering time in soybean and a target gene that can be used for breeding modern soybean cultivars adapted to different latitudes.展开更多
基金supported by the National Natural Science Foundation of China(32360743,32072559,and31860568)the National Key Research and Development Program,China(2018YFD1000800)the Fostering Foundation for the Excellent Ph D Dissertation of Gansu Agricultural University,China(YB2022004)。
文摘Flowering is one of the most important phenological periods,as it determines the timing of fruit maturation and seed dispersal.To date,both nitric oxide(NO)and DNA demethylation have been reported to regulate flowering in plants.However,there is no compelling experimental evidence for a relationship between NO and DNA demethylation during plant flowering.In this study,an NO donor and a DNA methylation inhibitor were used to investigate the involvement of DNA demethylation in NO-mediated tomato(Solanum lycopersicum cv.Micro-Tom)flowering.The results showed that the promoting effect of NO on tomato flowering was dose-dependent,with the greatest positive effect observed at 10μmol L^(-1) of the NO donor S-nitrosoglutathione(GSNO).Treatment with 50μmol L^(-1) of the DNA methylation inhibitor 5-azacitidine(5-AzaC)also significantly promoted tomato flowering.Moreover,GSNO and 5-AzaC increased the peroxidase(POD)and catalase(CAT)activities and cytokinin(CTK)and proline contents,while they reduced the gibberellic acid(GA3)and indole-3-acetic acid(IAA)contents.Co-treatment with GSNO and 5-AzaC accelerated the positive effects of GSNO and 5-AzaC in promoting tomato flowering.Meanwhile,compared with a GSNO or 5-AzaC treatment alone,co-treatment with GSNO+5-AzaC significantly increased the global DNA demethylation levels in different tissues of tomato.The results also indicate that DNA demethylation may be involved in NO-induced flowering.The expression of flowering genes was significantly altered by the GSNO+5-AzaC treatment.Five of these flowering induction genes,ARGONAUTE 4(AGO4A),SlSP3D/SINGLE FLOWER TRUSS(SFT),MutS HOMOLOG 1(MSH1),ZINC FINGER PROTEIN 2(ZFP2),and FLOWERING LOCUS D(FLD),were selected as candidate genes for further study.An McrBC-PCR analysis showed that DNA demethylation of the SFT gene in the apex and the FLD gene in the stem might be involved in NO-induced flowering.Therefore,this study shows that NO might promote tomato flowering by mediating the DNA demethylation of flowering induction genes,and it provides direct evidence for a synergistic effect of NO and DNA demethylation in promoting tomato flowering.
基金supported by Yunnan Province Agricultural Joint Key Project(Grant No.202401BD070001-016)the National Natural Science Foundation of China(Grant No.32202530)+3 种基金Talent Introduction and Training Project of Yunnan Academy of Agricultural Sciences(Grant No.2024RCYP-09)Fundamental Research Project(Grant No.202401CF070046)Xingdian Talent support program(XDYC-QNRC-2023-0457)Yunnan Technology Innovation Center of Flower Technique.
文摘The proper flowering time of rose(Rosa hybrida)is vital for the market value of this horticultural crop,but the mechanism regulating this trait is largely unclear.Here,we found that the transcription factor SQUAMOSA PROMOTER BINDING PROTEIN-LIKE4(RhSPL4)positively regulates flowering time in rose.Transient silencing or overexpression transgenic rose plants of RhSPL4 exhibited delayed or early flowering,respectively.Analysis of transcriptome data from transgenic lines overexpressing RhSPL4 compared to the wild type indicated that differentially expressed genes were significantly enriched in the circadian rhythm pathway.Among the proteins encoded by these genes,RhSPL4 binds to the promoter of PSEUDO-RESPONSE REGULATOR 5-LIKE(RhPRR5L),as revealed in yeast one-hybrid,dual-Luciferase/Renilla luciferase reporter,chromatin immunoprecipitation-quantitative PCR and electrophoretic mobility shift assay.Furthermore,RhSPL4 specifically binds to the478 to441 bp region of the RhPRR5L promoter and activates its transcription.The silencing of RhPRR5L delayed flowering time in rose,resembling the phenotype of RhSPL4-silenced plants.Together,these results indicate that the RhSPL4-RhPRR5L module positively regulates flowering time in rose,laying the foundation for the genetic improvement of flowering time in this important horticultural crop.
基金supported by grants from the National Natural Science Foundation of China(Grant No.31930100)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Nitrogen(N)is a key component in plants and their biological macromolecules,having a profound effect on developmental stages,such as germination,vegetative growth,and flowering.However,the mechanism of nitrogen-regulated flowering time remains unclear.In this study,CmNLP7 was isolated from the chrysanthemum cultivar‘Jinba'and was characterized.CmNLP7 is a transcription factor localized in the nucleus but has no transcriptional activity.Tissue expression pattern analysis showed that CmNLP7 was mainly transcribed in leaves and roots.Knocking down CmNLP7 through the artificial-miRNA method in chrysanthemum resulted in early flowering under optimal nitrogen(ON)and low nitrogen(LN)conditions;whereas overexpression lines showed delayed flowering under LN conditions.Transcriptome sequencing analysis showed that the nitrate transporters NRT2.5,NPF3.1,and NPF4.6;SBP-like genes SPL7 and SPL12,and flowering integration factor FT were significantly up-regulated in the knockdown lines.Based on the KEGG pathway enrichment analysis,the differentially transcribed genes were enriched in phenylpropanoid biosynthesis and starch and sucrose metabolism pathways,which indicated their alleged function in nitrogen-regulated flowering and development in chrysanthemum.Furthermore CmPP6 as a homolog of the Arabidopsis phosphatase PP6,was verified as an interacting protein of CmNLP7 by yeast two-hybrid,BiFC,pull-down and Biacore in vitro and in vivo,and the knockdown line of CmPP6(amiR-CmPP6)flowered earlier compared to that of the wild-type chrysanthemum‘Jinba'.Collectively,these results demonstrated that CmPP6 interacts with CmNLP7 to regulate chrysanthemum flowering,and CmNLP7 could regulate flowering time in response to nitrogen,which lays a foundation for the regulation of flowering and molecular breeding of chrysanthemum through changes in nutrient signaling.
文摘The peony has become a cultural and economic powerhouse in Heze.The peony,revered as the“king of flowers”in China,has long transcended its botanical identity to become a cultural icon deeply rooted in the Yellow River basin.In the fertile plains of the Yellow River,Heze City in Shandong Province has long held a special connection with the peony.
基金supported by the National Natural Science Foundation of China(Grant No.32160142)the Guangxi Natural Science Foundation(Grant No.2023GXNSFDA026034)+3 种基金the Sugarcane Research Foundation of Guangxi University(Grant No.2022GZA002)the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources(Grant No.SKLCUSAb202302)the National Natural Science Foundation of China(Grant No.31960051)the Natural Science Foundation for Young Scientists of Jiangxi Province(Grant No.20192ACB21005).
文摘Moso bamboo holds significant economic importance in China,serving various purposes,such as food,material,ornamentation,and greenery.Despite its versatility,the occurrence of flowering in Moso bamboo poses a threat to bamboo forests,resulting in substantial losses.The underlying cause of bamboo flowering remains elusive.Dynamic fluctuations in DNA methylation govern the transcriptional levels of crucial genes pivotal for plant growth and development.In this study,we conducted comprehensive DNA methylation(by whole-genome bisulfite sequencing)and transcriptome(by RNA-seq)analyses on non-flowering leaves,flowering leaves,and spikelets of Moso bamboo.Our findings revealed a notable reduction in the overall DNA methylation level,particularly CHH methylation,from leaves to spikelets,influencing the expression of differentially regulated genes.Notably,we identified DNA methylation as a regulatory mechanism for numerous flowering-related genes,including SPLs,FT,and SOC1.Specifically,the SPL3f gene,a key regulator of the aging pathway,exhibited hypomethylation and a high expression level in spikelets.Conversely,SOC1c displayed transcriptional silencing attributed to hypermethylation in the CHH context in the leaves of non-flowering plants.DNA methylation may affect the flowering mechanism of Moso bamboo by regulating the expression of key genes.In summary,our results shed light on the dynamic changes in DNA methylation between leaves and spikelets,unraveling an important epigenetic modification mechanism for flowering in Moso bamboo.
基金supported by grants from the National Key Research and Development Program of China(2023YFD120300)the National Natural Science Foundation of China(32201869)the Earmarked Fund for China Agriculture Research System(CARS-04)。
文摘In plants,numerous non-Mendelian inherited dominant effects,including over-,incomplete-,and codominance,are frequently observed,yet they remain insufficiently understood.A novel phenotype has been identified in specific soybean transformants overexpressing a single 35S::GmFT2a copy:superearly flowering dominance is exclusively observed in hemizygotes,not in homozygotes.Homozygous individual exhibits si RNA-mediated DNA methylation,causing epigenetic transcriptional silencing,whereas no such effect occurs in hemizygotes.Intriguingly,two distinct rounds of DNA methylation establishment occur,each mediated by a different mechanism.The homozygotes that derived from the hemizygous mother plants carrying 35S::GmFT2a locus was associated with the initiation of CHHcontext DNA methylation at 35S promoters mediated by 21 and 22 nucleotide(nt)si RNAs.Subsequently,24 nt si RNAs contribute to additional CHG-and CG-context DNA methylation at 35S promoters during the homozygosity of genes in plants already homozygous in maternal lineage.Reducing DNA methylation levels can be achieved by generating a hemizygous genotype through a crossing experiment with a recessive genotype.This research has unveiled a phenomenon:hemizygote-dependent dominance resulting from transcriptional silencing in homozygote offsprings.It provides new insights into the molecular mechanism underlying dominant effects.
基金supported by the National Key Research and Development Program of China(2022YFD1200400)the Scientific and Technological Innovation Team of Shaanxi Province(2024RSCXTD-69)+1 种基金the Key Research and Development Program of Shaanxi Province(2021LLRH-07)a grant from the Yang Ling Seed Industry Innovation Center(K3031122024).
文摘Appropriate flowering time in rapeseed(Brassica napus L.)is vital for preventing losses from weather,diseases,and pests.However,the molecular basis of its regulation remains largely unknown.Here,a genome-wide association study identifies BnaC09.FUL,a MADS-box transcription factor,as a promising candidate gene regulating flowering time in B.napus.BnaC09.FUL expression increases sharply in B.napus shoot apices near bolting.BnaC09.FUL overexpression results in early flowering,while BnaFUL mutation causes delayed flowering in B.napus.A zinc finger transcription factor,BnaC06.WIP2,is identified as an interaction partner of BnaC09.FUL,and BnaC06.WIP2 overexpression delays flowering in B.napus,with RNA sequencing revealing its influence on the expression of many flowering-associated genes.We further demonstrate that BnaC06.WIP2 directly represses the expression of BnaA05.SOC1,BnaC03.SOC1,BnaC04.SOC1,BnaC06.FT,BnaA06.LFY,BnaC07.FUL,BnaA08.CAL,and BnaC03.CAL and indirectly inhibits the expression of other flowering time-related genes.Genetic and molecular investigations highlight the antagonistic relationship between BnaC09.FUL and BnaC06.WIP2 in regulating the flowering time in B.napus through direct regulation of the expression of BnaC03.SOC1,BnaA08.CAL,and BnaC03.CAL.Overall,our findings provide a mechanism by which the BnaC09.FUL–BnaC06.WIP2 transcriptional regulatory module controls the flowering time in B.napus.
基金supported by grants from the National Natural Science Foundation of China(32172547).
文摘Photoperiod and temperature are crucial factors that trigger flowering in Brassica juncea(B.juncea).However,the underlying regulatory mechanisms remain poorly understood.The MADS-box transcription factor AGL18 acts as a pivotal repressor of floral transition and functions redundantly with AGL15.In this study,we isolated BjuAGL18-1 from B.juncea and identified two unique transcripts,resulting in two distinct proteins:a full-length protein,BjuAGL18-1L,and a truncated protein,BjuAGL18-1S.Further investigation showed that the two isoforms had similar subcellular localizations but different expression patterns in various plant tissues.Notably,BjuAGL18-1L and BjuAGL18-1S were abundantly induced under short-and long-day photoperiods,respectively.BjuAGL18-1L overexpression in B.juncea and Arabidopsis thaliana(A.thaliana)led to late flowering,whereas BjuAGL18-1S overexpression resulted in early flowering.Yeast two-hybrid,bimolecular fluorescent complementation,and luciferase complementation assays showed that BjuAGL18-1L,but not BjuAGL18-1S(which lacked the EAR motif),interacted with the co-repressor BjuAFR2 and the histone deacetylase BjuHDA9 to form a multiprotein complex.Further analysis indicated that BjuAGL18-1L could also form a complex with BjuAGL15 and bind to the BjuFUL promoter,thus inhibiting its expression.However,BjuAGL18-1S interacted with BjuAGL18-1L to form heterodimers,which attenuated their activities,likely by disrupting their binding to target genes,resulting in accelerated flowering progression.These results suggest that BjuAGL18-1 is involved in photoperiod-induced flowering via different regulatory mechanisms in B.juncea.
基金supported by the National Key Research and Development Program of China(2024YFE0103400)the Natural Science Foundation of Jiangsu Province(BK20230013)+3 种基金the National Natural Science Foundation of China(32100259)the Program of Jiangsu Province Government(JBGS[2021]001-1-2)the Program of Zhongshan Biological Breeding Laboratory(ZSBBLKY2023-01)the PAPD Program from Jiangsu Government。
文摘Flowering time(or heading date)is a crucial agronomic trait for the adaptation of rice to specific growing regions and seasons.Although many flowering time-related rice genes have been identified and functionally characterized,continuing in-depth research is revealing how transcription of these genes is regulated.In this study,we determined that a basic leucine zipper transcription factor(OsbZIP40)and its homologous protein(OsbZIP12)participate in the control of flowering time.Overexpression of OsbZIP40 delayed flowering.Double mutants in which both OsbZIP40 and OsbZIP12 were knocked out exhibited an early-flowering phenotype under both long-day and short-day conditions.However,there was no difference in the heading date between the wild-type and each single mutant.These results suggest that OsbZIP40 functions as a flowering suppressor.Both OsbZIP40 and OsbZIP12 bound directly to the Ehd1 promoter and repressed its expression.Furthermore,MOTHER OF FT AND TFL1(Os MFT1)interacted with OsbZIP40/OsbZIP12 and enhanced their repressive effects on Ehd1 expression.Based on the data,we present a transcriptional regulatory mechanism in which OsbZIP40 and OsbZIP12 interact with Os MFT1 and modulate Ehd1 expression to delay flowering.Our findings provide relevant insights into the molecular mechanisms regulating flowering time in rice.
基金supported by the National Natural Science Foundation of China(32101759,32241042)the National Key Research and Development Program of China(2023YFD1200700 and 2023YFD1200704).
文摘Foxtail millet(Setaria italica)is an important crop and an emerging model plant.Photoperiodic flowering is a key determinant of its production and geographic expansion.In this study,we found that SiPRR37 is responsible for the major quantitative trait locus(QTL)Heading date 2(Hd2)identified in 680 foxtail millets using a genome-wide association study.Overexpression of SiPRR37 in foxtail millet significantly delayed the heading date under both natural long-day and short-day conditions.CRISPR/Cas9-induced Siprr37 mutants exhibited earlier flowering in long-day conditions but later flowering in short-day conditions.The critical day length(CDL)for the reversal of Siprr37’s function was around 14.3 h.Haplotype analysis revealed that accessions with the Tc1-Mariner transposon insertion in SiPRR37(Hap 1)flowered significantly earlier at higher latitudes,and later at lower latitudes,indicating that natural variants of SiPRR37 exert dual functions in flowering regulation according to geographic latitude.The gradual,successive decrease in the frequency of Hap 2 from low to high latitudes,with the concurrent increase of Hap 1,demonstrates that these haplotypes have undergone artificial selection.Further FST analysis demonstrated that SiPRR37 has contributed to the ecological adaption of foxtail millet.Additionally,we reveal that OsPRR37 promotes flowering in rice,while GmPRR37 may only inhibit flowering in soybean.Further diurnal expression and transgenic analyses suggest that the dual function of SiPRR37 might depend on SiHd1.Our study uncovered the distinct functional reversal of SiPRR37 and functional diversification of PRR37 homologs in SD crops.These findings not only enrich knowledge about the regulation of photoperiodic flowering,but also contribute to genetic improvement of crops’regional adaptability.
基金funded by the Natural Science Foundation of Chongqing(CSTB2023NSCQ-MSX0236)Fundamental Research Funds for the Central Universities(SWU-XDJH202308)Earmarked Funds for the China Agriculture Research System(CARS-26)。
文摘The complex of calcineurin B-like protein(CBL)and CBL-interacting protein kinase(CIPK)serves as key components in calcium-sensing,orchestrating various signals crucial for plant growth,development,and responses to biotic and abiotic stresses.However,the mechanism underlying the response of this module to cold stress and its role in flower development in wintersweet(Chimonanthus praecox)remains unclear.Through expression pattern analysis,calcium ion(Ca^(2+))concentration assays,correlation analysis,and linear regression analysis,we found that the[Ca^(2+)],along with CpCBL8 and CpCIPK9 expression levels in wintersweet flower buds(FBs),significantly decreased during the initial flowering stage when the chilling requirement reached 570 chill units(CU).Notably,there was a significant positive correlation between[Ca^(2+)]and CpCBL8 expression.Ca^(2+)increased the expression of Cp CBL8 and CpCIPK9 in FBs,causing a significant delay in the flowering of wintersweet.Furthermore,the function of CpCBL8 was studied using heterologous transformation.Overexpression of CpCBL8 significantly delayed flowering time and significantly reduced cold tolerance and altered the expression pattern of endogenous genes related to low-temperature stress and flower development in transgenic Arabidopsis thaliana.Additionally,transcriptome analysis of chilling-induced dormancy breaking and flower bud enlargement revealed that CpCBL8 and CpCIPK9 were negatively regulated by cold,and the expression pattern of endogenous genes related to flower development and cold stress in wintersweet were similar to that of in A.thaliana.Moreover,protein-protein interaction(PPI)analysis revealed that CpCBL8 and CpCIPK9 interacted in the plasma membrane and nucleus.On the basis of these findings,we speculated that the CpCBL8-CpCIPK9 module plays a crucial role in regulating responses to cold stress and flower development in wintersweet.This study elucidated molecular mechanisms through which the downregulation of the Ca^(2+)-induced CpCBL8-CpCIPK9 module results in dormancy breaking and enhances cold tolerance.This study provides valuable insights for the cultivation of new varieties of wintersweet with increased ornamental value and enhanced cold stress tolerance.
基金supported by the National Natural Science Foundation of China(Grant No.31872106)the National Vegetable Industry Technology System(Grant No.CARS-23-A-16)+1 种基金the Jiangsu Seed Industry Revitalization Project(Grant No.JBGS(2021)015)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘The nuclear factor Y(NF-Y)is a class of heterotrimeric transcription factors comprising three subunits:NF-YA,NF-YB,and NF-YC.These transcription factors participate in many plant bioprocesses,including the regulation of flowering time.Although the NF-Y gene family has been systematically studied in many species,little is known about its role in the non-heading Chinese cabbage(NHCC)[Brassica campestris(syn.Brassica rapa)ssp.chinensis].In this study,we identified 57 NF-Y members in the genome of NHCC using BLASTP,including 20 BcNF-YAs,24BcNF-YBs,and 13 BcNF-YCs.These genes are randomly distributed on the 10 chromosomes of NHCC.The results of yeast two-hybrid experiments indicated that among some members of the three subunits of BcNF-Ys,the members of the NF-YA and NF-YC subunits interact with each other,a third of the members of the NF-YB and NF-YC subunits interact with each other,while no interaction was observed between the members of the NF-YA and NF-YB subunits.Subcellular localization experiments in tobacco showed that Bc NF-YA2 and BcNF-YA8 were expressed in the nucleus;BcNF-YB18 and BcNF-YB23 were located in the cell membrane and cytoplasm;and BcNF-YC6 and BcNF-YC7 were expressed in the nucleus,cytoplasm,and cell membrane.We analyzed the cis-acting elements in the promoter of BcNF-Y genes and found that the ABA response element is the most distributed hormone response element,which is regulated by ABA signals triggered by environmental stimuli.Accordingly,we treated three-week-old NHCC leaves with 100μmol L^(-1) ABA and analyzed the expression profile of BcNF-Ys through RNA-seq.The results showed that except for six undetected BcNF-Ys,the remaining 51 BcNF-Ys showed varying degrees of response to ABA signals.Among these,BcNF-YA8 was positively regulated by ABA signals,with the highest upregulation amplitude.Subsequently,the function of BcNF-YA8 was extensively studied,which demonstrated that its expression promotes plant flowering.This result enriches our understanding of the potential molecular mechanism by which ABA positively regulates NHCC flowering.
基金supported by the 2025 scientific promotion program funded by Jeju National University.
文摘Accurate and timely estimation of above-ground biomass is crucial for understanding crop growth dynamics,optimizing agricultural input management,and assessing productivity in sustainable farming practices.However,conventional biomass assessments are destructive and resource-intensive.In contrast,remote sensing techniques,particularly those utilizing low-altitude unmanned aerial vehicles,provide a non-destructive approach to collect imagery data on plant canopy features,including spectral reflectance and structural details at any stage of the crop life cycle.This study explores the potential visible-light-derived vegetative indices to improve biomass prediction during the flowering period of buckwheat(Fagopyrum tataricum).Red,green,and blue(RGB)images of buckwheat were acquired during peak flowering,using a DJI P4 multispectral Drone.From the analysis of those images,four vegetative indices were calculated.Aboveground fresh biomass was harvested and measured on 14 September 2024.The results showed negative correlations between the green-band based excess green(ExG),excess green minus excess red(ExGR),and green leaf index(GLI)indices and the fresh above-ground biomass of buckwheat,while the red band-based excess red(ExR)index showed an insignificant positive correlation at p<0.10.An investigation into greenband-based vegetation indices(VIs)for estimating fresh biomass revealed significant negative correlations during the experimental period.This unexpected inverse relationship is attributed to spectral interference from abundant white flowers during the flowering stage,where the high reflectance of white petals masked the green vegetation signal.Consequently,these green-band VIs demonstrated limited predictive power for biomass under such conditions,indicating that their utility is compromised when floral reflectance is dominant.Therefore,we suggest that further experiments are required to validate this relationship and improve the estimation of fresh above-ground biomass in white-flowered buckwheat plants.
基金partially supported by the National Natural Science Foundation of China (Grant No.31772285)the National Key R&D Program Project Funding (Grant No.2018YFD1000607)Foundation for 100 Innovative Talents of Hebei Province(Grant No.SLRC2019031)。
文摘The juvenile-to-adult phase change with first flowering as the indicator plays a crucial role in the lifecycle of fruit trees. However, the molecular mechanisms underlying phase change in fruit trees remain largely unknown. Shikimic acid (ShA) pathway is a main metabolic pathway closely related to the synthesis of hormones and many important secondary metabolites participating in plant phase change. So,whether ShA regulates phase change in plants is worth clarifying. Here, the distinct morphological characteristics and the underlying mechanisms of phase change in jujube (Ziziphus jujuba Mill.), an important fruit tree native to China with nutritious fruit and outstanding tolerance abiotic stresses, were clarified. A combined transcriptome and metabolome analysis found that ShA is positively involved in jujube(Yuhong’×Xing 16’) phase change. The genes in the upstream of ShA synthesis pathway (ZjDAHPS, ZjDHQS and ZjSDH), the contents of ShA and the downstream secondary metabolites like phenols were significantly upregulated in the phase change period. Further, the treatment of spraying exogenous ShA verified that ShA at a very low concentration (60 mg·L^(-1)) can substantially speed up the phase change and flowering of jujube and other tested plants including Arabidopsis, tomato and wheat. The exogenous ShA (60 mg·L^(-1)) treatment in jujube seedlings could increase the accumulation of endogenous ShA, enhance leaf photosynthesis and the synthesis of phenols especially flavonoids and phenolic acids, and promote the expression of genes (ZjCOs, ZjNFYs and ZjPHYs) involved in flowering pathway. Basing on above results, we put forward a propose for the underlying mechanism of ShA regulating phase change, and a hypothesis that ShA could be considered a phytohormone-like substance because it is endogenous, ubiquitous, movable and highly efficient at very low concentrations. This study highlights the critical role of ShA in plant phase change and its phytohormone-like properties.
基金supported by Jiangxi Provincial Department of Education Science and Technology Research Project(GJJ2200433)the Natural Science Foundation of Jiangxi,China(#20224BAB213033)+2 种基金the National Key Research and Development Program of China(#2018YFA0606104)National Natural Science Foundation of China(#32125026,#31988102)the Strategic Priority Research Program of Chinese Academy of Sciences(#XDB31000000).
文摘Flowering phenology of plants,which is important for reproductive growth,has been shown to be influenced by climate change.Understanding how flowering phenology responds to climate change and exploring the variation of this response across plant groups can help predict structural and functional changes in plant communities in response to ongoing climate change.Here,we used long-term collections of 33 flowering plant species from the Gongga Mountains(Mt.Gongga hereafter),a biodiversity hotspot,to investigate how plant flowering phenology changed over the past 70 years in response to climate change.We found that mean flowering times in Mt.Gongga were delayed in all vegetation types and elevations over the last 70 years.Furthermore,flowering time was delayed more in lowlands than at high elevations.Interestingly,we observed that spring-flowering plants show earlier flowering times whereas summer/autumn plants show delayed flowering times.Non-synchronous flowering phenology across species was mainly driven by changes in temperature and precipitation.We also found that the flowering phenology of 78.8%plant species was delayed in response to warming temperatures.Our findings also indicate that the magnitude and direction of variation in plant flowering times vary significantly among species along elevation gradients.Shifts in flowering time might cause trophic mismatches with co-occurring and related species,affecting both forest ecosystem structure and function.
基金supported by the National Natural Science Foundation of China(Grant No.32072609)National Key Research and Development Program of China(Grant No.2018YFD1000400)+3 种基金National Natural Science Foundation of China(Grant No.32002075)the China Postdoctoral Science Foundation(Grant No.2019M661871)the Fundamental Research Funds for the Central Universities(Grant No.KJQN202126)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Basic helix-loop-helix(bHLH)transcription factor gene family in plants controls various growth and development aspects;however,the actual roles of these genes in flowering plants are not well known.In this study,a novel bHLH protein CmbHLH110 was found to interact with CmERF110 by in vitro and in vivo experiments,a chrysanthemum ERF110 homolog that acts as a positive flowering regulator.In addition,CmbHLH110 was also found to regulate the flowering of chrysanthemums,overexpression of CmbHLH110 causes chrysanthemums to flower earlier,and suppressed CmbHLH110 leads to delayed flowering.Furthermore,the loss-of-function Arabidopsis mutant of its homologue PERICYCLE FACTOR TYPE-A 5(PFA5)had a noticeable late flowering phenotype,and CmbHLH110 completely complemented the late flowering phenotype of the pfa5 mutant,whereas heterologous overexpression of CmbHLH110 in Arabidopsis Col-0 caused early flowering.Transcriptome sequencing revealed significant differential expression of flowering-related and circadian clock-related genes in transgenic chrysanthemum.Therefore,we concluded that CmbHLH110,as a novel flowering regulator,could interact with CmERF110 to regulate flowering in chrysanthemum.
基金supported by National Natural Science Foundation of China(Grant Nos.32372733,32172594)Natural Science Foundation of Hebei(Grant No.C2020204111)+2 种基金S&T Program of Hebei(Grant No.21326344D)State Key Laboratory of North China Crop Improvement and Regulation(Grant No.NCCIR2023ZZ-1)the Starting Grant from Hebei Agricultural University(Grant No.YJ201920).
文摘Properly regulated flowering time is pivotal for successful plant reproduction.The floral transition from vegetative growth to reproductive growth is regulated by a complex gene regulatory network that integrates environmental signals and internal conditions to ensure that flowering takes place under favorable conditions.Brassica rapa is a diploid Cruciferae species that includes several varieties that are cultivated as vegetable or oil crops.Flowering time is one of the most important agricultural traits of B.rapa crops because of its influence on yield and quality.The transition to flowering in B.rapa is regulated by several environmental and developmental cues,which are perceived by several signaling pathways,including the vernalization pathway,the autonomous pathway,the circadian clock,the thermosensory pathway,and gibberellin(GA)signaling.These signals are integrated to control the expression of floral integrators BrFTs and BrSOC1s to regulate flowering.In this review,we summarized current research advances on the molecular mechanisms that govern flowering time regulation in B.rapa and compare this to what is known in Arabidopsis.
基金Sponsored by the Innovation and Entrepreneurship Training Planning Project for University Students in Anhui Province(S202212216129)Key Research Project of Natural Science in Universities of Anhui Province(2023AH051816)General Teaching Research Project of Anhui Province(2022jyxm665).
文摘The application effect of 30 introduced flowering shrubs in landscape in Hefei City was comprehensively evaluated by the analytic hierarchy process(APH).A comprehensive evaluation model was established by using factors such as plant type,resistance and drought tolerance of introduced flowering shrubs.The results show that the application effect of grade-I introduced flowering shrubs(including 12 kinds,e.g.Lantanacamara)was the best(j≥2.6),and that of grade-II introduced flowering shrubs(including 14 kinds,e.g.Abelia×grandiflora‘Francis Mason’)was better(2.2≤j<2.6),while that of grade-III introduced flowering shrubs(including 4 kinds,e.g.Ligustrum×vicaryi)was moderate(j<2.2).The evaluation results can provide reference for the application effect of introduced flowering shrubs in landscape in Hefei City.
基金supported by the National Natural Science Foundation of China (Grant number 42261004)supported by the Jiangsu Social Development Project (BE2022792)。
文摘The timing of flowering is an important driver of species distribution and community assembly patterns.However,we still have much to learn about the factors that shape flowering diversity(i.e.,number of species flowering per period) in plant communities.One potential explanation of flowering diversity is the mid-domain effect,which states that geometric constraints on species ranges within a bounded domain(space or time) will yield a mid-domain peak in diversity regardless of ecological factors.Here,we determine whether the mid-domain effect explains peak flowering time(i.e.,when most species of communities are flowering) across China.We used phenological data of 16,267 herbaceous and woody species from the provincial Flora in China and species distribution data from the Chinese Vascular Plant Distribution Database to determine relationships between the observed number of species flowering and the number of species flowering as predicted by the mid-domain effect model,as well as between three climatic variables(mean minimum monthly temperature,mean monthly precipitation,and mean monthly sunshine duration).We found that the mid-domain effect explained a significant proportion of the temporal variation in flowering diversity across all species in China.Further,the mid-domain effect explained a greater proportion of variance in flowering diversity at higher latitudes than at lower latitudes.The patterns of flowering diversity for both herbaceous and woody species were related to both the mid-domain effect and environmental variables.Our findings indicate that including geometric constraints in conjunction with abiotic and biotic predictors will improve predictions of flowering diversity patterns.
基金supported by the National Natural Science Foundation of China(U22A20473)the National Key Research and Development Program of China(2021YFD1201600)+2 种基金the China Agriculture Research System(CARS-04-PS01)the Agricultural Science and Technology Innovation Program(ASTIP)of Chinese Academy of Agricultural Sciences,Scientific Innovation 2030 Project(2022ZD0401703)the Platform of National Crop Germplasm Resources of China。
文摘Flowering time is important for adaptation of soybean(Glycine max)to different environments.Here,we conducted a genome-wide association study of flowering time using a panel of 1490 cultivated soybean accessions.We identified three strong signals at the qFT02-2 locus(Chr02:12037319–12238569),which were associated with flowering time in three environments:Gongzhuling,Mengcheng,and Nanchang.By analyzing linkage disequilibrium,gene expression patterns,gene annotation,and the diversity of variants,we identified an AP1 homolog as the candidate gene for the qFT02-2 locus,which we named GmAP1d.Only one nonsynonymous polymorphism existed among 1490 soybean accessions at position Chr02:12087053.Accessions carrying the Chr02:12087053-T allele flowered significantly earlier than those carrying the Chr02:12087053-A allele.Thus,we developed a cleaved amplified polymorphic sequence(CAPS)marker for the SNP at Chr02:12087053,which is suitable for marker-assisted breeding of flowering time.Knockout of GmAP1d in the‘Williams 82’background by gene editing promoted flowering under long-day conditions,confirming that GmAP1d is the causal gene for qFT02-2.An analysis of the region surrounding GmAP1d revealed that GmAP1d was artificially selected during the genetic improvement of soybean.Through stepwise selection,the proportion of modern cultivars carrying the Chr02:12087053-T allele has increased,and this allele has become nearly fixed(95%)in northern China.These findings provide a theoretical basis for better understanding the molecular regulatory mechanism of flowering time in soybean and a target gene that can be used for breeding modern soybean cultivars adapted to different latitudes.