Due to their superior properties, the interest in nanostructures is increasing today in engineering. This study presents a new two-noded curved finite element for analyzing the in-plane static behaviors of curved nano...Due to their superior properties, the interest in nanostructures is increasing today in engineering. This study presents a new two-noded curved finite element for analyzing the in-plane static behaviors of curved nanobeams. Opposite to traditional curved finite elements developed by using approximate interpolation functions, the proposed curved finite element is developed by using exact analytical solutions. Although this approach was first introduced for analyzing the mechanical behaviors of macro-scale curved beams by adopting the local theory of elasticity, the exact analytical expressions used in this study were obtained from the solutions of governing equations that were expressed via the differential form of the nonlocal theory of elasticity. Therefore, the effects of shear strain and axial extension included in the analytical formulation are also inherited by the curved finite element developed here. The rigidity matrix and the consistent force vector are developed for a circular finite element. To demonstrate the applicability of the method, static analyses of various curved nanobeams subjected to different boundary conditions and loading scenarios are performed, and the obtained results are compared with the exact analytical ones. The presented study provides an accurate and low computational cost method for researchers to investigate the in-plane static behavior of curved nanobeams.展开更多
Aim To analyse the static temperature field ofthe solid rubber tire(SRT).Methods The mechanical and thermal FE models were developed and analyzed respectively with the FE software ANSYS.Results The maximum temperature...Aim To analyse the static temperature field ofthe solid rubber tire(SRT).Methods The mechanical and thermal FE models were developed and analyzed respectively with the FE software ANSYS.Results The maximum temperature becomes higher with the higher with the higher velocity of tire and scales down slightly with the higher convection coefficients.The mixed models are reasonable.Conclusion The study on static temperature field is important and reasonable.It gives the fundament for life analysis of SRT.展开更多
The static dent resistance performance of the aluminum alloy double-curved panel formed using viscous pressure forming (VPF)was studied by finite element analysis,which mainly considers the forming process conditions....The static dent resistance performance of the aluminum alloy double-curved panel formed using viscous pressure forming (VPF)was studied by finite element analysis,which mainly considers the forming process conditions.The whole simulation consisting of three stages,i.e.,forming,spring-back and static dent resistance,was carried out continuously using the finite element code ANSYS.The influence of blank holder pressure(BHP)and the drawbead on the stiffness and the static dent resistance of the panels formed using VPF was analyzed.The results show that the adequate setting of the drawbead can increase the plastic deformation of the double-curved panel,which is beneficial to the initial stiffness and the static dent resistance.There is an optimum BHP range for the stiffness and the static dent resistance.展开更多
This paper presents a procedure to calculate the safety factor against sliding of a marine gravity structure subjected to a combination of static and cyclic loads. This procedure claculates the stress at the sliding s...This paper presents a procedure to calculate the safety factor against sliding of a marine gravity structure subjected to a combination of static and cyclic loads. This procedure claculates the stress at the sliding surface by the finite element method (FEM) and takes the dynamic properties of clay into account. With this procedure, the stability of a Bohai oil-drilling ship is analyzed. The calculated safety factor is much smaller than 1, indicating that this oil-drilling ship would fail just as what had happened to it.展开更多
I IntroductionSmartphones have become more complex in terms of functions and third-party applications, and this makes lhem a living space for malware. People store private information such as accounts and passwordson ...I IntroductionSmartphones have become more complex in terms of functions and third-party applications, and this makes lhem a living space for malware. People store private information such as accounts and passwordson their smartphones, the loss of which could have serious con- sequences.展开更多
To detect security vulnerabilities in a web application,the security analyst must choose the best performance Security Analysis Static Tool(SAST)in terms of discovering the greatest number of security vulnerabilities ...To detect security vulnerabilities in a web application,the security analyst must choose the best performance Security Analysis Static Tool(SAST)in terms of discovering the greatest number of security vulnerabilities as possible.To compare static analysis tools for web applications,an adapted benchmark to the vulnerability categories included in the known standard Open Web Application Security Project(OWASP)Top Ten project is required.The information of the security effectiveness of a commercial static analysis tool is not usually a publicly accessible research and the state of the art on static security tool analyzers shows that the different design and implementation of those tools has different effectiveness rates in terms of security performance.Given the significant cost of commercial tools,this paper studies the performance of seven static tools using a new methodology proposal and a new benchmark designed for vulnerability categories included in the known standard OWASP Top Ten project.Thus,the practitioners will have more precise information to select the best tool using a benchmark adapted to the last versions of OWASP Top Ten project.The results of this work have been obtaining using widely acceptable metrics to classify them according to three different degree of web application criticality.展开更多
Based on the method of reverberation ray matrix(MRRM), a reverberation matrix for planar framed structures composed of anisotropic Timoshenko(T) beam members containing completely hinged joints is developed for st...Based on the method of reverberation ray matrix(MRRM), a reverberation matrix for planar framed structures composed of anisotropic Timoshenko(T) beam members containing completely hinged joints is developed for static analysis of such structures.In the MRRM for dynamic analysis, amplitudes of arriving and departing waves for joints are chosen as unknown quantities. However, for the present case of static analysis, displacements and rotational angles at the ends of each beam member are directly considered as unknown quantities. The expressions for stiffness matrices for anisotropic beam members are developed. A corresponding reverberation matrix is derived analytically for exact and unified determination on the displacements and internal forces at both ends of each member and arbitrary cross sectional locations in the structure. Numerical examples are given and compared with the finite element method(FEM) results to validate the present model. The characteristic parameter analysis is performed to demonstrate accuracy of the present model with the T beam theory in contrast with errors in the usual model based on the Euler-Bernoulli(EB) beam theory. The resulting reverberation matrix can be used for exact calculation of anisotropic framed structures as well as for parameter analysis of geometrical and material properties of the framed structures.展开更多
In an incremental dynamic analysis(IDA) using a set of ground motion records,nonlinear time history analysis needs to be performed on structures.It is well recognized that IDA calls for high computational efforts and ...In an incremental dynamic analysis(IDA) using a set of ground motion records,nonlinear time history analysis needs to be performed on structures.It is well recognized that IDA calls for high computational efforts and the results are highly sensitive to selected ground motions.As a result,alternative static methods are needed.This study aims to introduce a new double-stage(N1- N2) static method to estimate capacity curves of MR frames.The technique is regulated to resemble IDA results with specific emphasis on near-field ground motions.Using an ensemble of 56 near-field earthquake records,required ID As have been carried out for SAC-Los Angeles 3-,9- and 20-story buildings and an additional 15-story building.The results of the proposed static method are compared with those from IDA,displacement-based adaptive procedure(DAP),and multimodal procedure(MMP).The results indicate that in addition to enhanced accuracy,very little time is required in the case of N1-N2 method.Thus,for the 3-story structure,the time required is less than 1 minute.The proposed N1-N2 method shows the best accuracy in terms of lateral mechanisms for the 15-story frame while for the other cases,the first mode load pattern leads to the best accuracy.展开更多
Fuzzing is an effective technique to find security bugs in programs by quickly exploring the input space of programs.To further discover vulnerabilities hidden in deep execution paths,the hybrid fuzzing combines fuzzi...Fuzzing is an effective technique to find security bugs in programs by quickly exploring the input space of programs.To further discover vulnerabilities hidden in deep execution paths,the hybrid fuzzing combines fuzzing and concolic execution for going through complex branch conditions.In general,we observe that the execution path which comes across more and complex basic blocks may have a higher chance of containing a security bug.Based on this observation,we propose a hybrid fuzzing method assisted by static analysis for binary programs.The basic idea of our method is to prioritize seed inputs according to the complexity of their associated execution paths.For this purpose,we utilize static analysis to evaluate the complexity of each basic block and employ the hardware trace mechanism to dynamically extract the execution path for calculating the seed inputs’weights.The key advantage of our method is that our system can test binary programs efficiently by using the hardware trace and hybrid fuzzing.To evaluate the effectiveness of our method,we design and implement a prototype system,namely SHFuzz.The evaluation results show SHFuzz discovers more unique crashes on several real-world applications and the LAVA-M dataset when compared to the previous solutions.展开更多
Objective:To explore the mechanical behavior of acetabulum loaded by static stress and provide the mechanical basis for clinical analysis and judgement on acetabular mechanical distribution and effect of static stress...Objective:To explore the mechanical behavior of acetabulum loaded by static stress and provide the mechanical basis for clinical analysis and judgement on acetabular mechanical distribution and effect of static stress.Methods:By means of computer simulation, acetabular three dimensional model was input into three dimensional finite element analysis software ANSYS7.0. The acetabular mechanical behavior was calculated and the main stress value, stress distribution and acetabular unit displacement in the direction of main stress were analyzed when anterior wall of acetabulum and acetabular crest were loaded by 1 000 N static stress. Results:When acetabular anterior wall loaded by X direction and Z direction composition force, the stress passed along 4 directions: (1)from acetabular anterior wall to pubic symphysis along superior branch of pubis firstly, (2)from acetabular anterior wall to cacroiliac joint along pelvic ring,(3)in the acetabulum,(4)from the suffered point to ischium. When acetabular crest loaded by X direction and Y direction composition force, the stress transmitted to 4 directions: (1)from acetabular crest to ilium firstly, (2)from suffered point to cacroiliac joint along pelvic ring,(3) in the acetabulum ,(4)along the pubic branch,but no stress transmitted to the ischium branch.Conclusion:Analyzing the stress distribution of acetabulum and units displacement when static stress loaded can provide internal fixation point for acetabular fracture treatment and help understand the stress distribution of acetabulum.展开更多
Objective To study mechanics characteristics of two cooperative reconfigurable planetary robots when they get across an obstacle, and to find out the relationship between the maximum height of a stair with the configu...Objective To study mechanics characteristics of two cooperative reconfigurable planetary robots when they get across an obstacle, and to find out the relationship between the maximum height of a stair with the configuration of the two-robot, and to find some restrictions of kinematics for the cooperation. Methods Multirobot cooperation theory is used in the whole study process. Inverse kinematics of the robot is used to form a desired configuration in the cooperation process. Static equations are established to analyze the relations between the friction factor, the configuration of robots and the maximum height of a stair. Kinematics analysis is used to find the restrictions of the two collaborative robots in position, velocity and acceleration. Results 3D simulation shows that the two cooperative robots can climb up a stair under the condition of a certain height and a certain friction factor between robot wheel and the surface of the stair. Following the restrictions of kinematics, the climbing mission is fulfilled successfully and smoothly. Conclusion The maximum height of a stair, which the two cooperative robots can climb up, is involved in the configuration of robots, friction factor between the stair and the robots. The most strict restriction of the friction factor does not appear in the horizontal position. In any case, the maximum height is smaller than half of the distance between the centroid of robot1 with the centroid of robot2. However, the height can be higher than the radius of one robot wheel, which profit from the collaboration.展开更多
The transport sector is increasing day by day to satisfy the global market requirement. The bus is still the main mode of intercity transportation in Canada. Despite, an essentially unchanged conception, the total wei...The transport sector is increasing day by day to satisfy the global market requirement. The bus is still the main mode of intercity transportation in Canada. Despite, an essentially unchanged conception, the total weight of the bus has increased by over 25% during the last three decades. To solve this problem, industrialists have moved to the use of light metals in the transportation field. Therefore, use of lightweight materials, such as aluminum is essential to reduce the total weight of bus. In this study, the focus is on the bus frame as it represents 30% of the total weight and it is the most stressed part of the bus. Its life duration is more important compared to that of all other elements. Thus, a study of the static and vibratory behavior would be very decisive. In this article, two types of analysis are carried out. First is the modal analysis to determine the natural frequencies and the mode shapes using a developed dynamic model of the bus. Because if any of the excitation frequencies coincides with the natural frequencies of the bus frame, then resonance phenomenon occurs. This may lead to excessive deflection, high stress concentration, fatigue of the structure and vehicle discomfort. In this case, the results analysis shows that the natural frequencies are not affected by the change of material. The second type of analysis is the linear static stress analysis to consider the stress distribution and deformation frame pattern under static loads numerically. For the numerical method, the frame is designed using SolidWorks and the analysis is made using Ansys WorkBench. The maximum Von Mises stress obtained for the static loading is in the same order for the three chassis frames studied. But in the case of the aluminium frame, the weight of 764 kg was reduced.展开更多
A macro-model of a reinforced concrete (RC) shear wall is developed for static inelastic analysis.The model is composed of RC column elements and RC membrane elements.The column elements are used to model the boundary...A macro-model of a reinforced concrete (RC) shear wall is developed for static inelastic analysis.The model is composed of RC column elements and RC membrane elements.The column elements are used to model the boundary zone and the membrane elements are used to model the wall panel.Various types of constitutive relationships of concrete could be adopted for the two kinds of elements.To perform analysis,the wall is divided into layers along its height.Two adjacent layers are connected with a rigid beam.There are only three unknown displacement components for each layer.A method called single degree of freedom compensation is adopted to solve the peak value of the capacity curve.The post-peak stage analysis is performed using a forced iteration approach.The macro-model developed in the study and the complete process analysis methodology are verified by the experimental and static inelastic analytical results of four RC shear wall specimens.展开更多
The Android platform is the most popular mobile operating system.With the increase of the number of Android users,a lot of security issues have occurred.In order to detect the malicious behaviors for the installed And...The Android platform is the most popular mobile operating system.With the increase of the number of Android users,a lot of security issues have occurred.In order to detect the malicious behaviors for the installed Android Apps,in this paper,we propose an Android malware detecting scheme by integrating static and dynamic analysis methods.We use Androguard and Droid Box to extract the features,and then remove the irrelevant features.Then we employ the support vector machine(SVM) to classify the Android malware and benignware.From the result of our proposed scheme,the proposed integrated static and dynamic analysis scheme with SVM can effectively detect the Android malware.展开更多
A simple method is proposed, for incremental static analysis of a set of inter-colliding particles, simulating 2D flow. Within each step of proposed algorithm, the particles perform small displacements, proportional t...A simple method is proposed, for incremental static analysis of a set of inter-colliding particles, simulating 2D flow. Within each step of proposed algorithm, the particles perform small displacements, proportional to the out-of-balance forces, acting on them. Numerical experiments show that if the liquid is confined within boundaries of a set of inter-communicating vessels, then the proposed method converges to a final equilibrium state. This incremental static analysis approximates dynamic behavior with strong damping and can provide information, as a first approximation to 2D movement of a liquid. In the initial arrangement of particles, a rhombic element is proposed, which assures satisfactory incompressibility of the fluid. Based on the proposed algorithm, a simple and short computer program (a “pocket” program) has been developed, with only about 120 Fortran instructions. This program is first applied to an amount of liquid, contained in a single vessel. A coarse and refined discretization is tried. In final equilibrium state of liquid, the distribution on hydro-static pressure on vessel boundaries, obtained by proposed computational model, is found in satisfactory approximation with corresponding theoretical data. Then, an opening is formed, at the bottom of a vertical boundary of initial vessel, and the liquid is allowed to flow gradually to an adjacent vessel. Almost whole amount of liquid is transferred, from first to second vessel, except of few drops-particles, which remain, in equilibrium, at the bottom of initial vessel. In the final equilibrium state of liquid, in the second vessel, the free surface level of the liquid confirms that the proposed rhombing element assures a satisfactory incompressibility of the fluid.展开更多
In the present study,the static and dynamic analyses of elliptical functionally graded sandwich(FGS)plates are investigated.The constituent materials of the sandwich plates are ceramic and metal so that the core is ma...In the present study,the static and dynamic analyses of elliptical functionally graded sandwich(FGS)plates are investigated.The constituent materials of the sandwich plates are ceramic and metal so that the core is made of pure metal,while the face sheets consist of a combination of metal and ceramic according to a four-parameter power-law distribution.Different material profiles such as classic,symmetric,and asymmetric can be obtained using the applied generalized power-law distribution relation.The analysis is performed based on the classical laminated plate theory(CLPT)and the Ritz method.The effects of four parameters in the material distribution relation as well as different geometric parameters on the deflection and natural frequencies of elliptical FGS plates are studied.The results of this study show that with a proper distribution of materials,the optimal static and dynamic behavior can be achieved.The results also indicate that the generalized power-law distribution has significant effects on the natural frequencies of elliptical FGS plates.For example,although the frequency parameter of a plate with ceramic face sheets is more than the one with metal face sheets,the use of larger amounts of ceramic does not necessarily increase the natural frequency of the structure.展开更多
This paper presents a procedure for assessing the reinforcement force of geosynthetics required for maintaining dynamic stability of a steep soil slope. Such a procedure is achieved with the use of the discretization ...This paper presents a procedure for assessing the reinforcement force of geosynthetics required for maintaining dynamic stability of a steep soil slope. Such a procedure is achieved with the use of the discretization technique and kinematic analysis of plasticity theory, i.e. discretization-based kinematic analysis. The discretization technique allows discretization of the analyzed slope into various components and generation of a kinematically admissible failure mechanism based on an associated flow rule.Accordingly, variations in soil properties including soil cohesion, internal friction angle and unit weight are accounted for with ease, while the conventional kinematic analysis fails to consider the changes in soil properties. The spatialetemporal effects of dynamic accelerations represented by primary and shear seismic waves are considered using the pseudo-dynamic approach. In the presence of geosynthetic reinforcement, tensile failure is discussed providing that the geosynthetics are installed with sufficient length. Equating the total rates of work done by external forces to the internal rates of work yields the upper bound solution of required reinforcement force, below which slopes fail. The reinforcement force is sought by optimizing the objective function with regard to independent variables, and presented in a normalized form. Pseudo-static analysis is a special case and hence readily transformed from pseudodynamic analysis. Comparisons of the pseudo-static/dynamic solutions calculated in this study are highlighted. Although the pseudo-static approach yields a conservative solution, its ability to give a reasonable result is substantiated for steep slopes. In order to provide a more meaningful solution to a stability analysis, the pseudo-dynamic approach is recommended due to considerations of spatial etemporal effect of earthquake input.展开更多
According to the purpose of the opening and the structural designer, the shape of the web opening is decided. It is too easy to choose the shape of openings from regular shape whether it is circular or rectangular sha...According to the purpose of the opening and the structural designer, the shape of the web opening is decided. It is too easy to choose the shape of openings from regular shape whether it is circular or rectangular shape. The presence of openings in the web of steel beams decreases stiffness of the beam and introducing a larger deflection than in the steel web opening with solid opening. A steel beam with web opening is analyzed in this paper. ABAQUS software is using for analyzing nonlinear static and dynamic opening of steel beam with different position and supporting conditions.展开更多
The finite element analysis was carried out for a composite vertical axis wind turbine with lift-drag combined starting structures to ensure the structure safety of a vertical axis wind turbine(VAWT).The static and mo...The finite element analysis was carried out for a composite vertical axis wind turbine with lift-drag combined starting structures to ensure the structure safety of a vertical axis wind turbine(VAWT).The static and modal analysis of rotor of a composite vertical axis wind turbine was conducted by using ANSYS software.The relevant contour sketch of stress and deformation was obtained.The analysis was made for static structural mechanics,modal analysis of rotor and the total deformation and vibration profile to evaluate the influence on the working capability of the rotor.The analysis results show that the various structure parameters lie in the safety range of structural mechanics in the relative standards.The analysis showing the design safe to operate the rotor of a vertical axis wind turbine.The methods used in this study can be used as a good reference for the structural mechanics′analysis of VAWTs.展开更多
This paper focuses on the structural characteristics of ant nests,which are complex structures.Natural underground ant nests generally have good air circulation,pressure resistance, waterproof properties,thermal insul...This paper focuses on the structural characteristics of ant nests,which are complex structures.Natural underground ant nests generally have good air circulation,pressure resistance, waterproof properties,thermal insulation and a favorable temperature and relative humidity. Additionally,ant nests are often surrounded by trees and other natural barriers.In this study, the natural underground ant nests of Iridomyrmex anceps were gathered from different collection sites.Manual cutting and frozen computer numerical control milling were performed on the ant nests in a laboratory.The internal structure of each nest was measured and recorded,and then, the 2D and 3D numerical structure models of the Iridomyrmex anceps nest were created.The static and dynamic simulation analysis of an underground ant nest structure was performed by using finite element analysis software (ABAQUS),and the mechanical properties of the ant nest were discussed.The underground ant nest structure effectively resisted the additional stress due to external static and live loads,and the ant nest was not completely destroyed.展开更多
基金supported by Scientific Research Projects Department of Istanbul Technical University.Project Number:MGA-2018-41546.Grant receiver:E.T.
文摘Due to their superior properties, the interest in nanostructures is increasing today in engineering. This study presents a new two-noded curved finite element for analyzing the in-plane static behaviors of curved nanobeams. Opposite to traditional curved finite elements developed by using approximate interpolation functions, the proposed curved finite element is developed by using exact analytical solutions. Although this approach was first introduced for analyzing the mechanical behaviors of macro-scale curved beams by adopting the local theory of elasticity, the exact analytical expressions used in this study were obtained from the solutions of governing equations that were expressed via the differential form of the nonlocal theory of elasticity. Therefore, the effects of shear strain and axial extension included in the analytical formulation are also inherited by the curved finite element developed here. The rigidity matrix and the consistent force vector are developed for a circular finite element. To demonstrate the applicability of the method, static analyses of various curved nanobeams subjected to different boundary conditions and loading scenarios are performed, and the obtained results are compared with the exact analytical ones. The presented study provides an accurate and low computational cost method for researchers to investigate the in-plane static behavior of curved nanobeams.
文摘Aim To analyse the static temperature field ofthe solid rubber tire(SRT).Methods The mechanical and thermal FE models were developed and analyzed respectively with the FE software ANSYS.Results The maximum temperature becomes higher with the higher with the higher velocity of tire and scales down slightly with the higher convection coefficients.The mixed models are reasonable.Conclusion The study on static temperature field is important and reasonable.It gives the fundament for life analysis of SRT.
文摘The static dent resistance performance of the aluminum alloy double-curved panel formed using viscous pressure forming (VPF)was studied by finite element analysis,which mainly considers the forming process conditions.The whole simulation consisting of three stages,i.e.,forming,spring-back and static dent resistance,was carried out continuously using the finite element code ANSYS.The influence of blank holder pressure(BHP)and the drawbead on the stiffness and the static dent resistance of the panels formed using VPF was analyzed.The results show that the adequate setting of the drawbead can increase the plastic deformation of the double-curved panel,which is beneficial to the initial stiffness and the static dent resistance.There is an optimum BHP range for the stiffness and the static dent resistance.
文摘This paper presents a procedure to calculate the safety factor against sliding of a marine gravity structure subjected to a combination of static and cyclic loads. This procedure claculates the stress at the sliding surface by the finite element method (FEM) and takes the dynamic properties of clay into account. With this procedure, the stability of a Bohai oil-drilling ship is analyzed. The calculated safety factor is much smaller than 1, indicating that this oil-drilling ship would fail just as what had happened to it.
基金supported in part by the Fundamental Research Funds for the Central Universities of China (Grant No.WK0110000007)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20113402120026)+2 种基金the Natural Science Foundation of Anhui Province,China (Grant No. 1208085QF112)the Foundation for Young Talents in College of Anhui Province,China (GrantNo.2012SQRL001ZD)the Research Fund of ZTE Corpo ration
文摘I IntroductionSmartphones have become more complex in terms of functions and third-party applications, and this makes lhem a living space for malware. People store private information such as accounts and passwordson their smartphones, the loss of which could have serious con- sequences.
文摘To detect security vulnerabilities in a web application,the security analyst must choose the best performance Security Analysis Static Tool(SAST)in terms of discovering the greatest number of security vulnerabilities as possible.To compare static analysis tools for web applications,an adapted benchmark to the vulnerability categories included in the known standard Open Web Application Security Project(OWASP)Top Ten project is required.The information of the security effectiveness of a commercial static analysis tool is not usually a publicly accessible research and the state of the art on static security tool analyzers shows that the different design and implementation of those tools has different effectiveness rates in terms of security performance.Given the significant cost of commercial tools,this paper studies the performance of seven static tools using a new methodology proposal and a new benchmark designed for vulnerability categories included in the known standard OWASP Top Ten project.Thus,the practitioners will have more precise information to select the best tool using a benchmark adapted to the last versions of OWASP Top Ten project.The results of this work have been obtaining using widely acceptable metrics to classify them according to three different degree of web application criticality.
基金Project supported by the Program for New Century Excellent Talents in Universities(NCET)by the Ministry of Education of China(No.NCET-04-0373)
文摘Based on the method of reverberation ray matrix(MRRM), a reverberation matrix for planar framed structures composed of anisotropic Timoshenko(T) beam members containing completely hinged joints is developed for static analysis of such structures.In the MRRM for dynamic analysis, amplitudes of arriving and departing waves for joints are chosen as unknown quantities. However, for the present case of static analysis, displacements and rotational angles at the ends of each beam member are directly considered as unknown quantities. The expressions for stiffness matrices for anisotropic beam members are developed. A corresponding reverberation matrix is derived analytically for exact and unified determination on the displacements and internal forces at both ends of each member and arbitrary cross sectional locations in the structure. Numerical examples are given and compared with the finite element method(FEM) results to validate the present model. The characteristic parameter analysis is performed to demonstrate accuracy of the present model with the T beam theory in contrast with errors in the usual model based on the Euler-Bernoulli(EB) beam theory. The resulting reverberation matrix can be used for exact calculation of anisotropic framed structures as well as for parameter analysis of geometrical and material properties of the framed structures.
文摘In an incremental dynamic analysis(IDA) using a set of ground motion records,nonlinear time history analysis needs to be performed on structures.It is well recognized that IDA calls for high computational efforts and the results are highly sensitive to selected ground motions.As a result,alternative static methods are needed.This study aims to introduce a new double-stage(N1- N2) static method to estimate capacity curves of MR frames.The technique is regulated to resemble IDA results with specific emphasis on near-field ground motions.Using an ensemble of 56 near-field earthquake records,required ID As have been carried out for SAC-Los Angeles 3-,9- and 20-story buildings and an additional 15-story building.The results of the proposed static method are compared with those from IDA,displacement-based adaptive procedure(DAP),and multimodal procedure(MMP).The results indicate that in addition to enhanced accuracy,very little time is required in the case of N1-N2 method.Thus,for the 3-story structure,the time required is less than 1 minute.The proposed N1-N2 method shows the best accuracy in terms of lateral mechanisms for the 15-story frame while for the other cases,the first mode load pattern leads to the best accuracy.
基金the National Key Research and Development Program of China under Grant No.2016QY07X1404National Natural Science Foundation of China(NSFC)under Grant No.61602035 and 61772078+1 种基金Beijing Science and Technology Project under Grant No.Z191100007119010,CCF-NSFOCUS Kun-Peng Scientific Research FoundationOpen Found of Key Laboratory of Network Assessment Technology,Institute of Information Engineering,Chinese Academy of Sciences.
文摘Fuzzing is an effective technique to find security bugs in programs by quickly exploring the input space of programs.To further discover vulnerabilities hidden in deep execution paths,the hybrid fuzzing combines fuzzing and concolic execution for going through complex branch conditions.In general,we observe that the execution path which comes across more and complex basic blocks may have a higher chance of containing a security bug.Based on this observation,we propose a hybrid fuzzing method assisted by static analysis for binary programs.The basic idea of our method is to prioritize seed inputs according to the complexity of their associated execution paths.For this purpose,we utilize static analysis to evaluate the complexity of each basic block and employ the hardware trace mechanism to dynamically extract the execution path for calculating the seed inputs’weights.The key advantage of our method is that our system can test binary programs efficiently by using the hardware trace and hybrid fuzzing.To evaluate the effectiveness of our method,we design and implement a prototype system,namely SHFuzz.The evaluation results show SHFuzz discovers more unique crashes on several real-world applications and the LAVA-M dataset when compared to the previous solutions.
文摘Objective:To explore the mechanical behavior of acetabulum loaded by static stress and provide the mechanical basis for clinical analysis and judgement on acetabular mechanical distribution and effect of static stress.Methods:By means of computer simulation, acetabular three dimensional model was input into three dimensional finite element analysis software ANSYS7.0. The acetabular mechanical behavior was calculated and the main stress value, stress distribution and acetabular unit displacement in the direction of main stress were analyzed when anterior wall of acetabulum and acetabular crest were loaded by 1 000 N static stress. Results:When acetabular anterior wall loaded by X direction and Z direction composition force, the stress passed along 4 directions: (1)from acetabular anterior wall to pubic symphysis along superior branch of pubis firstly, (2)from acetabular anterior wall to cacroiliac joint along pelvic ring,(3)in the acetabulum,(4)from the suffered point to ischium. When acetabular crest loaded by X direction and Y direction composition force, the stress transmitted to 4 directions: (1)from acetabular crest to ilium firstly, (2)from suffered point to cacroiliac joint along pelvic ring,(3) in the acetabulum ,(4)along the pubic branch,but no stress transmitted to the ischium branch.Conclusion:Analyzing the stress distribution of acetabulum and units displacement when static stress loaded can provide internal fixation point for acetabular fracture treatment and help understand the stress distribution of acetabulum.
基金This workis supported in part by the Hi-tech Research and Development Programof China (2002AA422130) .
文摘Objective To study mechanics characteristics of two cooperative reconfigurable planetary robots when they get across an obstacle, and to find out the relationship between the maximum height of a stair with the configuration of the two-robot, and to find some restrictions of kinematics for the cooperation. Methods Multirobot cooperation theory is used in the whole study process. Inverse kinematics of the robot is used to form a desired configuration in the cooperation process. Static equations are established to analyze the relations between the friction factor, the configuration of robots and the maximum height of a stair. Kinematics analysis is used to find the restrictions of the two collaborative robots in position, velocity and acceleration. Results 3D simulation shows that the two cooperative robots can climb up a stair under the condition of a certain height and a certain friction factor between robot wheel and the surface of the stair. Following the restrictions of kinematics, the climbing mission is fulfilled successfully and smoothly. Conclusion The maximum height of a stair, which the two cooperative robots can climb up, is involved in the configuration of robots, friction factor between the stair and the robots. The most strict restriction of the friction factor does not appear in the horizontal position. In any case, the maximum height is smaller than half of the distance between the centroid of robot1 with the centroid of robot2. However, the height can be higher than the radius of one robot wheel, which profit from the collaboration.
基金The financial support of the Aluminium Research Center(REGAL)is greatly appreciated.
文摘The transport sector is increasing day by day to satisfy the global market requirement. The bus is still the main mode of intercity transportation in Canada. Despite, an essentially unchanged conception, the total weight of the bus has increased by over 25% during the last three decades. To solve this problem, industrialists have moved to the use of light metals in the transportation field. Therefore, use of lightweight materials, such as aluminum is essential to reduce the total weight of bus. In this study, the focus is on the bus frame as it represents 30% of the total weight and it is the most stressed part of the bus. Its life duration is more important compared to that of all other elements. Thus, a study of the static and vibratory behavior would be very decisive. In this article, two types of analysis are carried out. First is the modal analysis to determine the natural frequencies and the mode shapes using a developed dynamic model of the bus. Because if any of the excitation frequencies coincides with the natural frequencies of the bus frame, then resonance phenomenon occurs. This may lead to excessive deflection, high stress concentration, fatigue of the structure and vehicle discomfort. In this case, the results analysis shows that the natural frequencies are not affected by the change of material. The second type of analysis is the linear static stress analysis to consider the stress distribution and deformation frame pattern under static loads numerically. For the numerical method, the frame is designed using SolidWorks and the analysis is made using Ansys WorkBench. The maximum Von Mises stress obtained for the static loading is in the same order for the three chassis frames studied. But in the case of the aluminium frame, the weight of 764 kg was reduced.
基金National Natural Science Foundation of China,Grant number 59895410
文摘A macro-model of a reinforced concrete (RC) shear wall is developed for static inelastic analysis.The model is composed of RC column elements and RC membrane elements.The column elements are used to model the boundary zone and the membrane elements are used to model the wall panel.Various types of constitutive relationships of concrete could be adopted for the two kinds of elements.To perform analysis,the wall is divided into layers along its height.Two adjacent layers are connected with a rigid beam.There are only three unknown displacement components for each layer.A method called single degree of freedom compensation is adopted to solve the peak value of the capacity curve.The post-peak stage analysis is performed using a forced iteration approach.The macro-model developed in the study and the complete process analysis methodology are verified by the experimental and static inelastic analytical results of four RC shear wall specimens.
基金partially supported by MOST under Grant No.105-2221-E-327-036
文摘The Android platform is the most popular mobile operating system.With the increase of the number of Android users,a lot of security issues have occurred.In order to detect the malicious behaviors for the installed Android Apps,in this paper,we propose an Android malware detecting scheme by integrating static and dynamic analysis methods.We use Androguard and Droid Box to extract the features,and then remove the irrelevant features.Then we employ the support vector machine(SVM) to classify the Android malware and benignware.From the result of our proposed scheme,the proposed integrated static and dynamic analysis scheme with SVM can effectively detect the Android malware.
文摘A simple method is proposed, for incremental static analysis of a set of inter-colliding particles, simulating 2D flow. Within each step of proposed algorithm, the particles perform small displacements, proportional to the out-of-balance forces, acting on them. Numerical experiments show that if the liquid is confined within boundaries of a set of inter-communicating vessels, then the proposed method converges to a final equilibrium state. This incremental static analysis approximates dynamic behavior with strong damping and can provide information, as a first approximation to 2D movement of a liquid. In the initial arrangement of particles, a rhombic element is proposed, which assures satisfactory incompressibility of the fluid. Based on the proposed algorithm, a simple and short computer program (a “pocket” program) has been developed, with only about 120 Fortran instructions. This program is first applied to an amount of liquid, contained in a single vessel. A coarse and refined discretization is tried. In final equilibrium state of liquid, the distribution on hydro-static pressure on vessel boundaries, obtained by proposed computational model, is found in satisfactory approximation with corresponding theoretical data. Then, an opening is formed, at the bottom of a vertical boundary of initial vessel, and the liquid is allowed to flow gradually to an adjacent vessel. Almost whole amount of liquid is transferred, from first to second vessel, except of few drops-particles, which remain, in equilibrium, at the bottom of initial vessel. In the final equilibrium state of liquid, in the second vessel, the free surface level of the liquid confirms that the proposed rhombing element assures a satisfactory incompressibility of the fluid.
文摘In the present study,the static and dynamic analyses of elliptical functionally graded sandwich(FGS)plates are investigated.The constituent materials of the sandwich plates are ceramic and metal so that the core is made of pure metal,while the face sheets consist of a combination of metal and ceramic according to a four-parameter power-law distribution.Different material profiles such as classic,symmetric,and asymmetric can be obtained using the applied generalized power-law distribution relation.The analysis is performed based on the classical laminated plate theory(CLPT)and the Ritz method.The effects of four parameters in the material distribution relation as well as different geometric parameters on the deflection and natural frequencies of elliptical FGS plates are studied.The results of this study show that with a proper distribution of materials,the optimal static and dynamic behavior can be achieved.The results also indicate that the generalized power-law distribution has significant effects on the natural frequencies of elliptical FGS plates.For example,although the frequency parameter of a plate with ceramic face sheets is more than the one with metal face sheets,the use of larger amounts of ceramic does not necessarily increase the natural frequency of the structure.
基金financial support for the first author’s PhD program by the President’s Graduate Fellowship in Singapore
文摘This paper presents a procedure for assessing the reinforcement force of geosynthetics required for maintaining dynamic stability of a steep soil slope. Such a procedure is achieved with the use of the discretization technique and kinematic analysis of plasticity theory, i.e. discretization-based kinematic analysis. The discretization technique allows discretization of the analyzed slope into various components and generation of a kinematically admissible failure mechanism based on an associated flow rule.Accordingly, variations in soil properties including soil cohesion, internal friction angle and unit weight are accounted for with ease, while the conventional kinematic analysis fails to consider the changes in soil properties. The spatialetemporal effects of dynamic accelerations represented by primary and shear seismic waves are considered using the pseudo-dynamic approach. In the presence of geosynthetic reinforcement, tensile failure is discussed providing that the geosynthetics are installed with sufficient length. Equating the total rates of work done by external forces to the internal rates of work yields the upper bound solution of required reinforcement force, below which slopes fail. The reinforcement force is sought by optimizing the objective function with regard to independent variables, and presented in a normalized form. Pseudo-static analysis is a special case and hence readily transformed from pseudodynamic analysis. Comparisons of the pseudo-static/dynamic solutions calculated in this study are highlighted. Although the pseudo-static approach yields a conservative solution, its ability to give a reasonable result is substantiated for steep slopes. In order to provide a more meaningful solution to a stability analysis, the pseudo-dynamic approach is recommended due to considerations of spatial etemporal effect of earthquake input.
文摘According to the purpose of the opening and the structural designer, the shape of the web opening is decided. It is too easy to choose the shape of openings from regular shape whether it is circular or rectangular shape. The presence of openings in the web of steel beams decreases stiffness of the beam and introducing a larger deflection than in the steel web opening with solid opening. A steel beam with web opening is analyzed in this paper. ABAQUS software is using for analyzing nonlinear static and dynamic opening of steel beam with different position and supporting conditions.
文摘The finite element analysis was carried out for a composite vertical axis wind turbine with lift-drag combined starting structures to ensure the structure safety of a vertical axis wind turbine(VAWT).The static and modal analysis of rotor of a composite vertical axis wind turbine was conducted by using ANSYS software.The relevant contour sketch of stress and deformation was obtained.The analysis was made for static structural mechanics,modal analysis of rotor and the total deformation and vibration profile to evaluate the influence on the working capability of the rotor.The analysis results show that the various structure parameters lie in the safety range of structural mechanics in the relative standards.The analysis showing the design safe to operate the rotor of a vertical axis wind turbine.The methods used in this study can be used as a good reference for the structural mechanics′analysis of VAWTs.
基金National Science Foundation (51678430)and the Shanghai Pujiang Program (12PJ1409000).Special thanks are extendedto Dr.Xinqi Mao at Tongji University,China.
文摘This paper focuses on the structural characteristics of ant nests,which are complex structures.Natural underground ant nests generally have good air circulation,pressure resistance, waterproof properties,thermal insulation and a favorable temperature and relative humidity. Additionally,ant nests are often surrounded by trees and other natural barriers.In this study, the natural underground ant nests of Iridomyrmex anceps were gathered from different collection sites.Manual cutting and frozen computer numerical control milling were performed on the ant nests in a laboratory.The internal structure of each nest was measured and recorded,and then, the 2D and 3D numerical structure models of the Iridomyrmex anceps nest were created.The static and dynamic simulation analysis of an underground ant nest structure was performed by using finite element analysis software (ABAQUS),and the mechanical properties of the ant nest were discussed.The underground ant nest structure effectively resisted the additional stress due to external static and live loads,and the ant nest was not completely destroyed.