期刊文献+
共找到782,638篇文章
< 1 2 250 >
每页显示 20 50 100
Orbital hybridization-engineered electronic structure in multicomponent sulfides boosts the performance of polysulfide/iodide flow batteries 被引量:1
1
作者 Wenjing Li Renhua Qian +7 位作者 Boxu Dong Zhou Xu Changyu Yan Menghan Yang Yuxuan Liu Xinrui Yan Jiantao Zai Xuefeng Qian 《International Journal of Minerals,Metallurgy and Materials》 2025年第11期2814-2820,共7页
Despite their attractive features of high energy density,low cost,and safety,polysulfide/iodide flow batteries(SIFBs)are hampered by the sluggish kinetics of the iodide redox couple,which restricts overall performance... Despite their attractive features of high energy density,low cost,and safety,polysulfide/iodide flow batteries(SIFBs)are hampered by the sluggish kinetics of the iodide redox couple,which restricts overall performance.Multicomponent sulfides are demonstrated as promising catalysts for accelerating I^(-)/I_(3)^(-) redox reactions.Concurrently,the enhanced configurational entropy arising from multinary compositions drives synergistic effects among constituent elements,establishing a viable pathway to optimize catalytic performance.Building on these foundations,this work introduces a targeted orbital hybridization-optimized electron density strategy to enhance the catalytic activity.Implementing this concept,we developed an in-situ solvothermal synthesis process for an entropy-enhanced AgCuZnSnS_(4) loaded graphite felt(ACZTS/GF)electrode.The engineered electrode demonstrates exceptional electrocatalytic performance with improved bulk conductivity and interfacial charge transfer kinetics within a SIFB.The cell achieves a high energy efficiency of 88.5%at 20 mA·cm^(−2) with 10%state-of-charge.Furthermore,the battery delivers a maximum power density of 119.8 mW·cm^(−2) and exhibits excellent long-term cycling stability.These significant results stem from orbital hybridization-driven electronic state optimization and entropy effect-induced synergistic catalysis. 展开更多
关键词 multicomponent sulfides electronic properties synergistic effect polysulfide/iodide redox flow batteries
在线阅读 下载PDF
Enhanced Flow Boiling Heat Transfer of HFE-7100 in Open Microchannels Using Micro-Nano Composite Structures
2
作者 Liaofei Yin Kexin Zhang +3 位作者 Tianjun Qin Wenhao Ma YiDing Yawei Xu 《Frontiers in Heat and Mass Transfer》 2025年第3期751-764,共14页
Flow boiling in open microchannels offers highly efficient heat transfer performance and has attracted increasing attention in the fields of heat transfer and thermalmanagement of electronic devices in recent years.Ho... Flow boiling in open microchannels offers highly efficient heat transfer performance and has attracted increasing attention in the fields of heat transfer and thermalmanagement of electronic devices in recent years.However,the continuous rise in power density of electronic components imposesmore stringent requirements on the heat transfer capability of microchannel flow boiling.HFE-7100,a dielectric coolant with favorable thermophysical properties,has become a focal point of research for enhancing flow boiling performance in open microchannels.The flow boiling heat transfer performance ofHFE-7100 was investigated in this study by fabricating micro-nano composite structures on the bottom surface of open microchannels using laser ablation technology.Based on visualization results,a comparative analysis was conducted on the bubble dynamics and flow pattern characteristics of HFE-7100 flow boiling in micronano structured open microchannels(MNSOMC)and smooth-surface open microchannels(SSOMC),to elucidate the enhancement mechanism of micro-nano structures on flow boiling heat transfer in open microchannels.The results indicate that the surface structures and strong wettability of MNSOMC accelerated bubble nucleation and departure.Moreover,bubbles in the channel tended to coalesce along the flow direction,forming elongated slug bubbles with high aspect ratios,which enabled efficient thin film evaporation in conjunction with intense nucleate boiling,thereby significantly enhancing flow boiling heat transfer.Under the experimental conditions of this study,the maximum enhancements in the heat transfer coefficient(HTC)and critical heat flux(CHF)of HFE-7100 inMNSOMC were 33.4%and 133.1%,respectively,with the CHF reaching up to 1542.3 kW⋅m^(−2).Furthermore,due to the superior wettability and capillary wicking capability of the micro-nano composite structures,the significant enhancement in flow boiling heat transfer was achieved without incurring a noticeable pressure drop penalty. 展开更多
关键词 Open microchannel laser ablation micro-nano composite structures flow boiling heat transfer enhancement
在线阅读 下载PDF
Dual Cold Crystallization Kinetics of Heterogeneous Amorphous Structure in Poly(_(L)-lactide)upon Extensional Flow
3
作者 Jie Zhang Xin-Rui Gao +5 位作者 Zhi-Kang Ni De-Zhuang Jia Hao Lin Hua-Dong Huang Gan-Ji Zhong Zhong-Ming Li 《Chinese Journal of Polymer Science》 2025年第7期1231-1239,共9页
Poly(_(L)-lactide)(PLLA),a leading biodegradable polyester,has demonstrated potential as a sustainable alternative,owing to its excellent biodegradability and rigidity.However,their slow crystallization kinetics and p... Poly(_(L)-lactide)(PLLA),a leading biodegradable polyester,has demonstrated potential as a sustainable alternative,owing to its excellent biodegradability and rigidity.However,their slow crystallization kinetics and poor heat resistance limit their application scope.Recent advances have highlighted that the combination of extensional flow and thermal fields can achieve toughness–stiffness balance,high transparency,and good heat resistance.However,the effect of extensional flow on the post-non-isothermal crystallization of PLLA during heating and the resulting crystalline texture remains unclear.In this study,PLLA with a heterogeneous amorphous structure and oriented polymorph was prepared by extensional flow.The effect of heterogeneous amorphous structures on non-isothermal crystallization kinetics during the heating process was studied by thermal analysis,polarized optical microscopy,infrared spectroscopy,and ex situ/in situ X-ray characterization.These results clearly illustrate that extensional flow enhances the formation of oriented crystalline structures,accelerates non-isothermal crystallization,and modulates the polymorphic composition of PLLA.Moreover,an unexpected dual cold-crystallization behavior is identified in ordered PLLA samples upon extensional flow,which is from the extensional flow-induced heterogeneous amorphous phase into α' phase(low-temperature peak)and the pristine amorphous phase intoαphase(high-temperature peak).The extensional flow primarily promotes the formation of the more perfectαandα'phases,but has a negative effect on the final content ofαphase formed after cold crystallization andα'-to-αphase transformation.The findings of this work advance the understanding of PLLA non-isothermal crystallization after extensional flow and offer valuable guidance for high-performance PLLA upon heat treatment in practical processing. 展开更多
关键词 Poly(_(L)-lactide) Extensional flow Heterogeneous amorphous structure Dual cold crystallization
原文传递
Manipulating the local electronic structure microenvironment at the MXene interface to achieve efficient anode for vanadium redox flow battery
4
作者 Xingrong Chen Lin Li +6 位作者 Yingqiao Jiang Zemin Feng Qiang Li Long Jiang Lei Dai Ling Wang Zhangxing He 《Journal of Energy Chemistry》 2025年第5期118-126,共9页
The sluggish electrochemical catalytic activity of the graphite felt electrodes for anode reaction is still a barrier for achieving high-performance vanadium redox flow battery(VRFB).It is significant to leverage the ... The sluggish electrochemical catalytic activity of the graphite felt electrodes for anode reaction is still a barrier for achieving high-performance vanadium redox flow battery(VRFB).It is significant to leverage the exceptional conductivity,excellent electrocatalytic activity,and structural tunability of MXene to address this issue.Herein,this work introduces nitrogen atoms to modulate the carbon layer structure of Ti_(3)C_(2)T_(x)MXene,inducing a reconfiguration of the local electronic structure,which enhances the anode interface activity and thereby improves the performance of VRFB.Ti_(3)C_(2)T_(x)exhibits high conductivity,excellent hydrophilicity,and a large specific surface area,providing excellent interface characteristics for V^(3+)/V^(2+)redox reaction.Moreover,interlayer treatment to modulate the mesoporous structure of MXene further increases the reactive surface area.Importantly,doping nitrogen atoms at carbon layer induces lattice distortions in Ti_(3)C_(2)T_(x),which enhances the charge transfer processes of the V^(3+)/V^(2+)redox reaction.The catalysis mechanism is also validated through density functional theory.Furthermore,the modified graphite felt electrode,as the anode of VRFB,relieves a higher energy efficiency of 68%at 250 mA cm^(-2),while the pristine electrode cannot operate at this current density.In addition,at 150 mA cm^(-2),the modified battery maintains energy efficiency at 75%without degradation after 500 cycles.This study utilizes rational atomic-level engineering for effective structural modulation to significantly enhance the catalytic activity of electrode reaction,offering a unique perspective for developing high-performance MXene electrocatalysts of VRFB. 展开更多
关键词 Vanadium redox flow battery ANODE Ti_(3)C_(2)T_(x)MXene structural modulation Lattice distortion
在线阅读 下载PDF
Nonlinear flow control mechanism of two flexible flaps with fluid-structure interaction
5
作者 Jiakun Han Chao Dong +1 位作者 Jian Zhang Gang Chen 《Acta Mechanica Sinica》 2025年第2期116-131,共16页
The flow control at low Reynolds numbers is one of the most promising technologies in the field of aerodynamics,and it is also an important source of the innovation for novel aircraft.In this study,a new way of nonlin... The flow control at low Reynolds numbers is one of the most promising technologies in the field of aerodynamics,and it is also an important source of the innovation for novel aircraft.In this study,a new way of nonlinear flow control by interaction between two flexible flaps is proposed,and their flow control mechanism is studied employing the self-constructed immersed boundary-lattice Boltzmann-finite element method(IB-LB-FEM).The effects of the difference in material properties and flap length between the two flexible flaps on the nonlinear flow control of the airfoil are discussed.It is suggested that the relationship between the deformation of the two flexible flaps and the evolution of the vortex under the fluid-structure interaction(FSI).It is shown that the upstream flexible flap plays a key role in the flow control of the two flexible flaps.The FSI effect of the upstream flexible flap will change the unsteady flow behind it and affect the deformation of the downstream flexible flap.Two flexible flaps with different material properties and different lengths will change their own FSI characteristics by the induced vortex,effectively suppressing the flow separation on the airfoil’s upper surface.The interaction of two flexible flaps plays an extremely important role in improving the autonomy and adjustability of flow control.The numerical results will provide a theoretical basis and technical guidance for the development and application of a new flap passive control technology. 展开更多
关键词 Nonlinear flow control Flexible flap Fluid-structure interaction flow separation IB-LB-FEM
原文传递
Solitons-Like Coherent Structures in Shear Flows
6
作者 Ning Hu Cunbiao Lee 《Fluid Dynamics & Materials Processing》 2025年第10期2389-2417,共29页
The formation,evolution,and dynamics of flow structures in wall-bounded turbulence have long been central themes in fluid-mechanics research.Over the past three decades,Soliton-like Coherent Structures(SCSs)have emerg... The formation,evolution,and dynamics of flow structures in wall-bounded turbulence have long been central themes in fluid-mechanics research.Over the past three decades,Soliton-like Coherent Structures(SCSs)have emerged as a ubiquitous and unifying feature across a wide range of shear flows,including K-type,O-type,N-type,and bypass transitional boundary layers,as well as fully developed turbulent boundary layers,mixing layers,and pipe flows.This paper presents a systematic review of the fundamental properties of SCSs and highlights their fundamental role in multiple transition scenarios.The analysis further explores the connection between SCSs and low-speed streaks,offering insight into their coupled dynamics.The phenomenon of turbulent bursting is also examined within the context of SCS dynamics.Together,these studies underscore the potential of SCSs to serve as a coherent dynamical framework for understanding turbulence generation mechanisms in wall-bounded flows.Finally,the review extends to the manifestation of SCSs in other canonical flows,including mixing layers,stratified shear flows,and jets,confirming their universality and significance in fluid dynamics.These findings not only advance our understanding of turbulence generation but also offer a promising theoretical foundation for future research in transitional and turbulent flows. 展开更多
关键词 SCSs transition to turbulence wall-bounded flows
在线阅读 下载PDF
Mechanical properties and flow stress constitutive relationship of Ti–6Al–4V alloy with equiaxed microstructure at cryogenic temperatures
7
作者 Jingwen HU Xun CHEN +1 位作者 Yashun WANG Chen YANG 《Chinese Journal of Aeronautics》 2025年第1期365-379,共15页
This paper investigates the uniaxial tensile mechanical properties and flow behavior of Ti-6Al-4V alloys with equiaxed microstructure at cryogenic temperatures ranging from 77 K to298 K and strain rates from 10^(-4)/s... This paper investigates the uniaxial tensile mechanical properties and flow behavior of Ti-6Al-4V alloys with equiaxed microstructure at cryogenic temperatures ranging from 77 K to298 K and strain rates from 10^(-4)/s to 10^(-2)/s.Scanning electron microscopy is utilized to analyze the fracture morphology,aiming to reveal the fracture behavior at various temperatures.The applicability of the Zener-Hollomon parameter and the Johnson-Cook model in describing the flow stress of Ti-6Al-4V at cryogenic temperatures is analyzed.Moreover,a constitutive relationship modeling method based on the variational recurrent networks is proposed.Mechanical test results show a significant increase in the strength of equiaxed Ti-6Al-4V alloy under cryogenic conditions while the plastic deformation process is shortened.However,the fracture analysis indicates that even at 77 K,the fracture process is still dominated by ductile fracture,and brittle fracture does not occur within the range of 77 K to 298 K.The fitting results validate the performance of the Zener-Hollomon parameter and the Johnson-Cook model in describing the deformation flow stress of Ti-6Al-4V alloy at cryogenic temperatures.The results also indicate that the proposed constitutive relationship modeling method based on the variational recurrent network performs better,making it a potential method for widespread applications. 展开更多
关键词 Titanium alloys Mechanical properties Cryogenics Fracture testing flow behavior
原文传递
Characterization of Pore Structure and Simulation of Pore-Scale Flow in Tight Sandstone Reservoirs
8
作者 Min Feng Long Wang +5 位作者 Lei Sun Bo Yang Wei Wang Jianning Luo Yan Wang Ping Liu 《Fluid Dynamics & Materials Processing》 2025年第3期573-587,共15页
This study sheds light on how pore structure characteristics and varying dynamic pressure conditions influence the permeability of tight sandstone reservoirs,with a particular focus on the Paleozoic reservoirs in the ... This study sheds light on how pore structure characteristics and varying dynamic pressure conditions influence the permeability of tight sandstone reservoirs,with a particular focus on the Paleozoic reservoirs in the Qingshimao Gas Field.Using CT scans of natural core samples,a three-dimensional digital core was constructed.The maximum ball method was applied to extract a related pore network model,and the pore structure characteristics of the core samples,such as pore radius,throat radius,pore volume,and coordination number,were quantitatively evaluated.The analysis revealed a normally distributed pore radius,suggesting a high degree of reservoir homogeneity and favorable conditions for a connected pore system.However,it was found that the majority of throat radii measured less than 1μm,which severely restricted fluid flow and diminished permeability.Over 50%of the pores measured under 100μm^(3),further constraining fluid movement.Additionally,30%-50%of the pore network was composed of isolated and blind-end pores,which significantly impaired formation connectivity and reduced permeability.Based on this,the lattice Boltzmann method(LBM)was used for pore-scale flow simulation to investigate the influence mechanism of pore structure characteristics and dynamic-static parameters such as displacement pressure difference on the permeability performance of the considered tight sandstone reservoirs for various pressure gradients(0.1,1,and 10 MPa).The simulations revealed a strong relationship between pressure differential and both the number of streamlines and flow path tortuosity.When the pressure differential increased to 1 MPa,30 streamlines were observed,with a tortuosity factor of 1.5,indicating the opening of additional seepage channels and the creation of increasingly winding flow paths. 展开更多
关键词 Tight sandstone digital core flow simulation lattice Boltzmann method
在线阅读 下载PDF
Gene flow extension between Korean pine populations and its impact on genetic diversity and structure in Northeast China
9
作者 David Kombi Kaviriri Qun Zhang +3 位作者 Shuoran Tang Hailong Shen Yuhua Li Ling Yang 《Journal of Forestry Research》 2025年第2期218-234,共17页
Pinus koraiensis(Sieb.et Zucc.) is a coniferous tree species naturally distributed in northeastern China.However,the effects of gene flow on its genetic diversity and structure remain unclear.This study investigates t... Pinus koraiensis(Sieb.et Zucc.) is a coniferous tree species naturally distributed in northeastern China.However,the effects of gene flow on its genetic diversity and structure remain unclear.This study investigates these dynamics in seven populations using ten microsatellite markers.The results show a high level of genetic diversity within the populations(Ho=0.633,He=0.746).In addition,molecular analysis of variance(AMOVA) shows that 98% of genetic diversity occurs within populations,with minimal differentiation between populations(Fst=0.009-0.033).Gene flow analysis shows significant migration rates between specific population pairs,particularly C-TH(87%),LS-Y(69%) and TH-LS(69%),suggesting genetic homogenization.Bayesian clustering(STRUCTURE) supports admixture and weak population differentiation.Environmental factors,especially temperature-related variables,significantly influence genetic patterns.Partial Mantel tests and multiple matrix regression show strong correlations between genetic distance and adaptations to cold temperatures(bio6 and bio11).Overall,this study emphasizes the robust genetic diversification and high migration rates in the populations of P.koraiensis and highlights their resilience.These results emphasize the importance of incorporating genetic and ecological factors into conservation strategies for sustainable forest management.This research provides valuable insights into the complex interplay of genetic variation,gene flow and environmental influences in forest tree species and improves our understanding of their adaptive mechanisms. 展开更多
关键词 Pinus koraiensis Gene flow Migration rate Genetic variability Bioclimatic variables
在线阅读 下载PDF
Flow stress softening and deformation mechanism under competition of current density and strain rate in basket structured high-entropy alloy
10
作者 Hu-Shan Li Chao-Gang Ding +7 位作者 Hao Zhang Jing-Yi Wang Yu-Xi Chen Zhi-Qin Yang Jie Xu Bin Guo De-Bin Shan Terence G.Langdon 《Rare Metals》 2025年第4期2705-2719,共15页
Electrically assisted forming(EAF)is a reliable method of reducing the deformation resistance of metallic materials and enhancing their formability.In this study,the mechanical properties and microstructure of Al_(0.5... Electrically assisted forming(EAF)is a reliable method of reducing the deformation resistance of metallic materials and enhancing their formability.In this study,the mechanical properties and microstructure of Al_(0.5)CoCrFeNi high-entropy alloy(HEA)under electrically assisted compression(EAC)were investigated.The results showed that the flow stress decreased with increasing current density in the EAC.Specifically,the flow curves exhibited S-shaped softening at a higher current density,which was dominated by the non-uniform distribution of the Joule heating temperature during EAC.When the flow stress was fixed at 500 MPa and 80 A·mm^(−2),compressible deformation amounts of 63.7%were observed at a strain rate of 1 s−1,indicating full compression of Al_(0.5)CoCrFeNi HEA at low-stress levels.Based on the microstructure,the flowability of Al_(0.5)CoCrFeNi HEA was improved during EAC,and the flow direction shifted from 45°to the horizontal direction.The current density,which influences the Joule heating temperature and strain rate,synergistically affects the stacking fault energy(SFE)and critical resolved shear stress(CRSS),which affect the tendency for twinning behavior.Thererfore,deformation nanoscale twins(DTs)were observed,indicating a shift in the deformation mechanisms from dislocation slip domination to a mixed pattern of dislocation slip and twinning.This study confirmed the deformability of Al_(0.5)CoCrFeNi HEA during EAC and provided an experimental foundation and theoretical support for the formation of HEAs. 展开更多
关键词 High-entropy alloys Current density Strain rate flow stress Deformation twins
原文传递
High-performance Flow Chemistry Platform for Scalable Continuous Synthesis of Branched Block Copolymers with Precise Chain Structures
11
作者 Bang-Bang Wang Zhuang Zhang +3 位作者 Jing-Tao Wang Li Pan Yue-Sheng Li Dong-Po Song 《Chinese Journal of Polymer Science》 2025年第3期457-467,共11页
Cutting-edge research has primarily focused on flow synthesis of linear block copolymers,lacking the ability for manipulating chain architectures for more extensive applications.Herein,we develop a flow chemistry plat... Cutting-edge research has primarily focused on flow synthesis of linear block copolymers,lacking the ability for manipulating chain architectures for more extensive applications.Herein,we develop a flow chemistry platform for the continuous microflow synthesis of bottlebrush block copolymers(BBCPs)using a grafting-through method.This involves performing ring-opening metathesis polymerization(ROMP)of two different macromonomers within two microfluidic reactors connected in series.The microflow environment allows for complete monomer conversion within a few tens of seconds,benefiting from the superior mixing efficiency achieved in Z-shaped channels as indicated by both theoretical simulations and experimental results.Consequently,a library of well-defined BBCPs of up to 528 distinct samples can be produced within one day through automation of the continuous procedure,while keeping precise control on degree of polymerization(DP<4)and polydispersity indices(PDI<1.2).The synthetic method is generally applicable to different macromonomers with different compositions and contour lengths,yielding libraries of branched block copolymers with great diversity in physiochemical properties and chain architectures.This work presents a powerful platform for high-throughput production of branched copolymers,significantly lowering the costs of the materials for real applications. 展开更多
关键词 Continuous flow synthesis Ring opening metathesis polymerization Branched copolymer
原文传递
The role of energetic flow structures on the aeolian transport of sediment and plastic debris
12
作者 Manousos Valyrakis Xiaohu Zhao +1 位作者 Thomas Pähtz Zhenshan Li 《Acta Mechanica Sinica》 2025年第1期67-81,共15页
Recently,significant progress has been made in conceptually describing the dynamic aspects of coarse particle entrainment,which has been explored experimentally for open channel flows.The aim of this study is to exten... Recently,significant progress has been made in conceptually describing the dynamic aspects of coarse particle entrainment,which has been explored experimentally for open channel flows.The aim of this study is to extend the application of energy criterion to the low mobility aeolian transport of solids(including both natural sediment and anthropogenic debris such as plastics),ranging from incomplete(rocking)to full(rolling)entrainments.This is achieved by linking particle movements to energetic flow events,which are defined as flow structures with the ability to work on particles,setting them into motion.It is hypothesized that such events should impart sufficient energy to the particles,above a certain threshold value.The concept’s validity is demonstrated experimentally,using a wind tunnel and laser distance sensor to capture the dynamics of an individual target particle,exposed on a rough bed surface.Measurements are acquired at a high spatiotemporal resolution,and synchronously with the instantaneous air velocity at an appropriate distance upwind of the target particle,using a hot film anemometer.This enables the association of flow events with rocking and rolling entrainments.Furthermore,it is shown that rocking and rolling may have distinct energy thresholds.Estimates of the energy transfer efficiency,normalized by the drag coefficient,range over an order of magnitude(from about 0.001 to 0.0048 for rocking,up to about 0.01,for incipient rolling).The proposed event-based theoretical framework is a novel approach to characterizing the energy imparted from the wind to the soil surface and could have potential implications for modelling intermittent creep transport of coarse particles and related aeolian bedforms. 展开更多
关键词 Particle rocking Incipient rolling Wind tunnel experiments Threshold flow energy Aeolian transport Plastics Plastic debris
原文传递
Viscosity and structure relationship with equimolar substitution of CaO with MgO in the CaO–MgO–Al_(2)O_(3)–SiO_(2)slag melts 被引量:1
13
作者 Yong Hou Shuo Zhang +3 位作者 Jie Dang Jia Guo Hanghang Zhou Xuewei Lü 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期70-79,共10页
Currently,the Al_(2)O_(3)content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%,making it challenging to overcome this limitation.Unlike most studies that concentrated on... Currently,the Al_(2)O_(3)content in the high-alumina slag systems within blast furnaces is generally limited to 16wt%–18.5wt%,making it challenging to overcome this limitation.Unlike most studies that concentrated on managing the MgO/Al_(2)O_(3)ratio or basicity,this paper explored the effect of equimolar substitution of MgO for CaO on the viscosity and structure of a high-alumina CaO-MgO-Al_(2)O_(3)-SiO_(2)slag system,providing theoretical guidance and data to facilitate the application of high-alumina ores.The results revealed that the viscosity first decreased and then increased with higher MgO substitution,reaching a minimum at 15mol%MgO concentration.Fourier transform infrared spectroscopy(FTIR)results found that the depths of the troughs representing[SiO_(4)]tetrahedra,[AlO_(4)]tetrahedra,and Si-O-Al bending became progressively deeper with increased MgO substitution.Deconvolution of the Raman spectra showed that the average number of bridging oxygens per Si atom and the X_(Q^(3))/X_(Q^(2))(X_(Q^(i))is the molar fraction of Q^(i) unit,and i is the number of bridging oxygens in a[SiO_(4)]tetrahedral unit)ratio increased from 2.30 and 1.02 to 2.52 and 2.14,respectively,indicating a progressive polymerization of the silicate structure.X-ray photoelectron spectroscopy(XPS)results highlighted that non-bridging oxygen content decreased from 77.97mol% to 63.41mol% with increasing MgO concentration,whereas bridging oxygen and free oxygen contents increased.Structural analysis demonstrated a gradual increase in the polymerization degree of the tetrahedral structure with the increase in MgO substitution.However,bond strength is another important factor affecting the slag viscosity.The occurrence of a viscosity minimum can be attributed to the complex evolution of bond strengths of non-bridging oxygens generated during depolymerization of the[SiO_(4)]and[AlO_(4)]tetrahedral structures by CaO and MgO. 展开更多
关键词 ALUMINOSILICATE VISCOSITY structure spectroscopy
在线阅读 下载PDF
Graphene Aerogel Composites with Self‑Organized Nanowires‑Packed Honeycomb Structure for Highly Efficient Electromagnetic Wave Absorption 被引量:1
14
作者 Xiao You Huiying Ouyang +6 位作者 Ruixiang Deng Qiuqi Zhang Zhenzhong Xing Xiaowu Chen Qingliang Shan Jinshan Yang Shaoming Dong 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期533-547,共15页
With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite h... With vigorous developments in nanotechnology,the elaborate regulation of microstructure shows attractive potential in the design of electromagnetic wave absorbers.Herein,a hierarchical porous structure and composite heterogeneous interface are constructed successfully to optimize the electromagnetic loss capacity.The macro–micro-synergistic graphene aerogel formed by the ice template‑assisted 3D printing strategy is cut by silicon carbide nanowires(SiC_(nws))grown in situ,while boron nitride(BN)interfacial structure is introduced on graphene nanoplates.The unique composite structure forces multiple scattering of incident EMWs,ensuring the combined effects of interfacial polarization,conduction networks,and magnetic-dielectric synergy.Therefore,the as-prepared composites present a minimum reflection loss value of−37.8 dB and a wide effective absorption bandwidth(EAB)of 9.2 GHz(from 8.8 to 18.0 GHz)at 2.5 mm.Besides,relying on the intrinsic high-temperature resistance of SiC_(nws) and BN,the EAB also remains above 5.0 GHz after annealing in air environment at 600℃ for 10 h. 展开更多
关键词 Hierarchical porous structure Interface High-temperature resistance Graphene aerogel composites Electromagnetic wave absorption
在线阅读 下载PDF
Copper complexes of anthrahydrazone bearing pyridyl side chain:Synthesis,crystal structure,anticancer activity,and DNA binding 被引量:1
15
作者 HUANG Yao WU Yingshu +5 位作者 BAO Zhichun HUANG Yue TANG Shangfeng LIU Ruixue LIU Yancheng LIANG Hong 《无机化学学报》 北大核心 2025年第1期213-224,共12页
To expand the study on the structures and biological activities of the anthracyclines anticancer drugs and reduce their toxic side effects,the new anthraquinone derivatives,9‑pyridylanthrahydrazone(9‑PAH)and 9,10‑bisp... To expand the study on the structures and biological activities of the anthracyclines anticancer drugs and reduce their toxic side effects,the new anthraquinone derivatives,9‑pyridylanthrahydrazone(9‑PAH)and 9,10‑bispyridylanthrahydrazone(9,10‑PAH)were designed and synthesized.Utilizing 9‑PAH and 9,10‑PAH as promising anticancer ligands,their respective copper complexes,namely[Cu(L1)Cl_(2)]Cl(1)and{[Cu_(4)(μ_(2)‑Cl)_(3)Cl_(4)(9,10‑PAH)_(2)(DMSO)_(2)]Cl_(2)}_(n)(2),were subsequently synthesized,where the new ligand L1 is formed by coupling two 9‑PAH ligands in the coordination reaction.The chemical and crystal structures of 1 and 2 were elucidated by IR,MS,elemental analysis,and single‑crystal X‑ray diffraction.Complex 1 forms a mononuclear structure.L1 coordinates with Cu through its three N atoms,together with two Cl atoms,to form a five‑coordinated square pyramidal geometry.Complex 2 constitutes a polymeric structure,wherein each structural unit centrosymmetrically encompasses two five‑coordinated binuclear copper complexes(Cu1,Cu2)of 9,10‑PAH,with similar square pyramidal geometry.A chlorine atom(Cl_(2)),located at the symmetry center,bridges Cu1 and Cu1A to connect the two binuclear copper structures.Meanwhile,the two five‑coordinated Cu2 atoms symmetrically bridge the adjacent structural units via one coordinated Cl atom,respectively,thus forming a 1D chain‑like polymeric structure.In vitro anticancer activity assessments revealed that 1 and 2 showed significant cytotoxicity even higher than cisplatin.Specifically,the IC_(50)values of 2 against HeLa‑229 and SK‑OV‑3 cancer cell lines were determined to be(5.92±0.32)μmol·L^(-1)and(6.48±0.39)μmol·L^(-1),respectively.2 could also block the proliferation of HeLa‑229 cells in S phase and significantly induce cell apoptosis.In addition,fluorescence quenching competition experiments suggested that 2 might interact with DNA by an intercalative binding mode,offering insights into its underlying anticancer mechanism.CCDC:2388918,1;2388919,2. 展开更多
关键词 anthrahydrazone metal complex crystal structure anticancer activity cell apoptosis
在线阅读 下载PDF
Design Guidelines for Composition of Brazing Filler Metals and Evolution Mechanisms of Typical Microstructures 被引量:5
16
作者 Long Weimin 《稀有金属材料与工程》 北大核心 2025年第4期837-853,共17页
Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler ... Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects. 展开更多
关键词 design of brazing filler metals design guidelines for composition Ag based brazing filler metals eutectic structures evolution
原文传递
Characterization and Analysis of Abnormal Grain Structures in WSTi6421 Titanium Alloy AfterβAnnealing Treatment 被引量:1
17
作者 Wang Wensheng Liu Xianghong +5 位作者 Wang Haipeng Wang Kaixuan Tian Yanwen Yan Jianchuan Li Yulu Chen Haisheng 《稀有金属材料与工程》 北大核心 2025年第2期354-362,共9页
As-forged WSTi6421 titanium alloy billet afterβannealing was investigated.Abnormally coarse grains larger than adjacent grains could be observed in the microstructures,forming abnormal grain structures with uneven si... As-forged WSTi6421 titanium alloy billet afterβannealing was investigated.Abnormally coarse grains larger than adjacent grains could be observed in the microstructures,forming abnormal grain structures with uneven size distribution.Through electron backscattered diffraction(EBSD),the forged microstructure at various locations of as-forged WSTi6421 titanium alloy billet was analyzed,revealing that the strength of theβphase cubic texture generated by forging significantly influences the grain size afterβannealing.Heat treatment experiments were conducted within the temperature range from T_(β)−50°C to T_(β)+10°C to observe the macro-and micro-morphologies.Results show that the cubic texture ofβphase caused by forging impacts the texture of the secondaryαphase,which subsequently influences theβphase formed during the post-βannealing process.Moreover,the pinning effect of the residual primaryαphase plays a crucial role in the growth ofβgrains during theβannealing process.EBSD analysis results suggest that the strength ofβphase with cubic texture formed during forging process impacts the orientation distribution differences ofβgrains afterβannealing.Additionally,the development of grains with large orientations within the cubic texture shows a certain degree of selectivity duringβannealing,which is affected by various factors,including the pinning effect of the primaryαphase,the strength of the matrix cubic texture,and the orientation relationship betweenβgrain and matrix.Comprehensively,the stronger the texture in a certain region,the less likely the large misoriented grains suffering secondary growth,thereby aggregating the difference in microstructure and grain orientation distribution across different regions afterβannealing. 展开更多
关键词 WSTi6421 titanium alloy βannealing abnormal grain structure
原文传递
Influence of ground effect on flow field structure and aerodynamic noise of high-speed trains 被引量:1
18
作者 Xiaoming TAN Linli GONG +1 位作者 Xiaohong ZHANG Zhigang YANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第2期147-160,共14页
The simulation of the ground effect has always been a technical difficulty in wind tunnel tests of high-speed trains.In this paper,large eddy simulation and the curl acoustic integral equation were used to simulate th... The simulation of the ground effect has always been a technical difficulty in wind tunnel tests of high-speed trains.In this paper,large eddy simulation and the curl acoustic integral equation were used to simulate the flow-acoustic field results of high-speed trains under four ground simulation systems(GSSs):“moving ground+rotating wheel”,“stationary ground+rotating wheel”,“moving ground+stationary wheel”,and“stationary ground+stationary wheel”.By comparing the fluid-acoustic field results of the four GSSs,the influence laws of different GSSs on the flow field structure,aero-acoustic source,and far-field radiation noise characteristics were investigated,providing guidance for the acoustic wind tunnel testing of high-speed trains.The calculation results of the aerodynamic noise of a 350 km/h high-speed train show that the moving ground and rotating wheel affect mainly the aero-acoustic performance under the train bottom.The influence of the rotating wheel on the equivalent sound source power of the whole vehicle was not more than 5%,but that of the moving ground slip was more than 15%.The average influence of the rotating wheel on the sound pressure level radiated by the whole vehicle was 0.3 dBA,while that of the moving ground was 1.8 dBA. 展开更多
关键词 High-speed train AERO-ACOUSTICS flow field structure Large eddy simulation Moving ground condition Rotating wheel
原文传递
SCS-Net:A DNN-based electromagnetic shielding effectiveness analysis method for slotted composite structures 被引量:1
19
作者 Wanli DU Guangzhi CHEN +4 位作者 Ziang ZHANG Xinsong WANG Shunchuan YANG Xingye CHEN Donglin SU 《Chinese Journal of Aeronautics》 2025年第3期505-520,共16页
As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of ai... As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of aircraft structures. The assessment of electromagnetic SE for Slotted Composite Structures(SCSs) is particularly challenging due to their complex geometries and there remains a lack of suitable models for accurately predicting the SE performance of these intricate configurations. To address this issue, this paper introduces SCS-Net, a Deep Neural Network (DNN) method designed to accurately predict the SE of SCS. This method considers the impacts of various structural parameters, material properties and incident wave parameters on the SE of SCSs. In order to better model the SCS, an improved Nicolson-Ross-Weir (NRW) method is introduced in this paper to provide an equivalent flat structure for the SCS and to calculate the electromagnetic parameters of the equivalent structure. Additionally, the prediction of SE via DNNs is limited by insufficient test data, which hinders support for large-sample training. To address the issue of limited measured data, this paper develops a Measurement-Computation Fusion (MCF) dataset construction method. The predictions based on the simulation results show that the proposed method maintains an error of less than 0.07 dB within the 8–10 GHz frequency range. Furthermore, a new loss function based on the weighted L1-norm is established to improve the prediction accuracy for these parameters. Compared with traditional loss functions, the new loss function reduces the maximum prediction error for equivalent electromagnetic parameters by 47%. This method significantly improves the prediction accuracy of SCS-Net for measured data, with a maximum improvement of 23.88%. These findings demonstrate that the proposed method enables precise SE prediction and design for composite structures while reducing the number of test samples needed. 展开更多
关键词 Deep neural networkcs Measurement-computation fusion Electromagnetic shielding effectiveness Slotted composite structures structural paranmeters
原文传递
In situ constructing lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x) as bifunctional electrocatalyst for high-current-density water splitting 被引量:1
20
作者 Yue Deng Jin Wang +6 位作者 Shao-Fei Zhang Zhi-Jia Zhang Jin-Feng Sun Tian-Tian Li Jian-Li Kang Hao Liu Shi Bai 《Rare Metals》 2025年第2期1053-1066,共14页
The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-... The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x),in situ grown on nickel foam(NF),holds great promise as a high-efficient bifunctional electrocatalyst(named R-CoFe/Ce/NF)for water splitting.Experimental characterization verifies surface reconstruction from CoFe alloy/oxide to highly active CoFeOOH during in situ electrochemical polarization.By virtues of three-dimensional nanoporous architecture and abundant electroactive CoFeOOH/CeO_(2−x) heterostructure interfaces,the R-CoFe/Ce/NF electrode achieves low overpotentials for oxygen evolution(η_(10)=227 mV;η_(500)=450 mV)and hydrogen evolution(η_(10)=35 mV;η_(408)=560 mV)reactions with high normalized electrochemical active surface areas,respectively.Additionally,the alkaline full water splitting electrolyzer of R-CoFe/Ce/NF||R-CoFe/Ce/NF achieves a current density of 50 mA·cm^(−2) only at 1.75 V;the decline of activity is satisfactory after 100-h durability test at 300 mA·cm^(−2).Density functional theory also demonstrates that the electron can transfer from CeO_(2−x) by virtue of O atom to CoFeOOH at CoFeOOH/CeO_(2−x) heterointerfaces and enhancing the adsorption of reactant,thus optimizing electronic structure and Gibbs free energies for the improvement of the activity for water splitting. 展开更多
关键词 Lamellar nanoporous structure Electronic structure regulation High current density Theoretical calculation Overall water splitting
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部