This study explores the initiation mechanisms of convective wind events,emphasizing their variability across different atmospheric circulation patterns.Historically,the inadequate feature categorization within multi-f...This study explores the initiation mechanisms of convective wind events,emphasizing their variability across different atmospheric circulation patterns.Historically,the inadequate feature categorization within multi-faceted forecast models has led to suboptimal forecast efficacy,particularly for events in dynamically weak forcing conditions during the warm season.To improve the prediction accuracy of convective wind events,this research introduces a novel approach that combines machine learning techniques to identify varying meteorological flow regimes.Convective winds(CWs)are defined as wind speeds reaching or exceeding 17.2 m s^(-1)and severe convective winds(SCWs)as speeds surpassing 24.5 m s^(-1).This study examines the spatial and temporal distribution of CW and SCW events from 2013 to 2021 and their circulation dynamics associated with three primary flow regimes:cold air advection,warm air advection,and quasibarotropic conditions.Key circulation features are used as input variables to construct an effective weather system pattern recognition model.This model employs an Adaptive Boosting(AdaBoost)algorithm combined with Random Under-Sampling(RUS)to address the class imbalance issue,achieving a recognition accuracy of 90.9%.Furthermore,utilizing factor analysis and Support Vector Machine(SVM)techniques,three specialized and independent probabilistic prediction models are developed based on the variance in predictor distributions across different flow regimes.By integrating the type of identification model with these prediction models,an enhanced comprehensive model is constructed.This advanced model autonomously identifies flow types and accordingly selects the most appropriate prediction model.Over a three-year validation period,this improved model outperformed the initially unclassified model in terms of prediction accuracy.Notably,for CWs and SCWs,the maximum Peirce Skill Score(PSS)increased from 0.530 and 0.702 to 0.628 and 0.726,respectively,and the corresponding maximum Threat Score(TS)improved from 0.087 and 0.024 to 0.120 and 0.026.These improvements were significant across all samples,with the cold air advection type showing the greatest enhancement due to the significant spatial variability of each factor.Additionally,the model improved forecast precision by prioritizing thermal factors,which played a key role in modulating false alarm rates in warm air advection and quasi-barotropic flow regimes.The results confirm the critical contribution of circulation feature recognition and segmented modeling to enhancing the adaptability and predictive accuracy of weather forecast models.展开更多
To address the problems about the difficulty in accurate recognition of distribution features of gas flow center at blast furnace throat and determine the relationship between gas flow center distribution and gas util...To address the problems about the difficulty in accurate recognition of distribution features of gas flow center at blast furnace throat and determine the relationship between gas flow center distribution and gas utilization rate,a method for recognizing distribution features of blast furnace gas flow center was proposed based on infrared image processing,and distribution features of blast furnace gas flow center and corresponding gas utilization rates were categorized by using fuzzy C-means clustering and statistical methods.A concept of gas flow center offset was introduced.The results showed that,when the percentage of gas flow center without offset exceeded 85%,the average blast furnace gas utilization rate was as high as 41%;when the percentage of gas flow center without offset exceeded50%,the gas utilization rate was primarily the center gas utilization rate,and exhibited a positive correlation with no center offset degree;when the percentage of gas flow center without offset was below 50% but the sum of the percentage of gas flow center without offset and that of gas flow center with small offset exceeded 86%,the gas utilization rate depended on both the center and the edges,and was primarily the edge gas utilization rate.The method proposed was able to accurately and effectively recognize gas flow center distribution state and the relationship between it and gas utilization rate,providing evidence in favor of on-line blast furnace control.展开更多
基金Guangdong S&T Program(2024A1111120024)CMA Innovation and Development Fund(CXFZ2024J014)+3 种基金CMA Youth Innovation Team(CMA2024QN01)PRB Meteorological Open Research Fund(ZJLY202425-GD02)GBA Meteorological S&T Program(GHMA2024Y04)Guangzhou Meteorological Research Project(Z202401)。
文摘This study explores the initiation mechanisms of convective wind events,emphasizing their variability across different atmospheric circulation patterns.Historically,the inadequate feature categorization within multi-faceted forecast models has led to suboptimal forecast efficacy,particularly for events in dynamically weak forcing conditions during the warm season.To improve the prediction accuracy of convective wind events,this research introduces a novel approach that combines machine learning techniques to identify varying meteorological flow regimes.Convective winds(CWs)are defined as wind speeds reaching or exceeding 17.2 m s^(-1)and severe convective winds(SCWs)as speeds surpassing 24.5 m s^(-1).This study examines the spatial and temporal distribution of CW and SCW events from 2013 to 2021 and their circulation dynamics associated with three primary flow regimes:cold air advection,warm air advection,and quasibarotropic conditions.Key circulation features are used as input variables to construct an effective weather system pattern recognition model.This model employs an Adaptive Boosting(AdaBoost)algorithm combined with Random Under-Sampling(RUS)to address the class imbalance issue,achieving a recognition accuracy of 90.9%.Furthermore,utilizing factor analysis and Support Vector Machine(SVM)techniques,three specialized and independent probabilistic prediction models are developed based on the variance in predictor distributions across different flow regimes.By integrating the type of identification model with these prediction models,an enhanced comprehensive model is constructed.This advanced model autonomously identifies flow types and accordingly selects the most appropriate prediction model.Over a three-year validation period,this improved model outperformed the initially unclassified model in terms of prediction accuracy.Notably,for CWs and SCWs,the maximum Peirce Skill Score(PSS)increased from 0.530 and 0.702 to 0.628 and 0.726,respectively,and the corresponding maximum Threat Score(TS)improved from 0.087 and 0.024 to 0.120 and 0.026.These improvements were significant across all samples,with the cold air advection type showing the greatest enhancement due to the significant spatial variability of each factor.Additionally,the model improved forecast precision by prioritizing thermal factors,which played a key role in modulating false alarm rates in warm air advection and quasi-barotropic flow regimes.The results confirm the critical contribution of circulation feature recognition and segmented modeling to enhancing the adaptability and predictive accuracy of weather forecast models.
基金Item Sponsored by National Natural Science Foundation of China(61263015)
文摘To address the problems about the difficulty in accurate recognition of distribution features of gas flow center at blast furnace throat and determine the relationship between gas flow center distribution and gas utilization rate,a method for recognizing distribution features of blast furnace gas flow center was proposed based on infrared image processing,and distribution features of blast furnace gas flow center and corresponding gas utilization rates were categorized by using fuzzy C-means clustering and statistical methods.A concept of gas flow center offset was introduced.The results showed that,when the percentage of gas flow center without offset exceeded 85%,the average blast furnace gas utilization rate was as high as 41%;when the percentage of gas flow center without offset exceeded50%,the gas utilization rate was primarily the center gas utilization rate,and exhibited a positive correlation with no center offset degree;when the percentage of gas flow center without offset was below 50% but the sum of the percentage of gas flow center without offset and that of gas flow center with small offset exceeded 86%,the gas utilization rate depended on both the center and the edges,and was primarily the edge gas utilization rate.The method proposed was able to accurately and effectively recognize gas flow center distribution state and the relationship between it and gas utilization rate,providing evidence in favor of on-line blast furnace control.