期刊文献+
共找到245篇文章
< 1 2 13 >
每页显示 20 50 100
Static compressive mechanical properties and disturbed state concept-based theoretical model of gypsum rocks with coupled influences of wet-dry cycles and flow rates
1
作者 JIANG Song HUANG Ming +2 位作者 WANG Gang XU Chao-shui XIONG Jun 《Journal of Central South University》 2025年第7期2638-2660,共23页
Gypsum rocks are highly susceptible to mechanical deterioration under the coupled effects of wet-dry(W-D)cycles and flow rates,which significantly influence the stability of underground excavations.Despite extensive r... Gypsum rocks are highly susceptible to mechanical deterioration under the coupled effects of wet-dry(W-D)cycles and flow rates,which significantly influence the stability of underground excavations.Despite extensive research on the effects of W-D cycles,the coupling influence of flow rates and W-D cycles on gypsum rocks remains poorly understood.This study investigates the mechanical behavior and deterioration mechanisms of gypsum rocks subjected to varying W-D cycles and flow rate conditions.Axial compression tests,along with nuclear magnetic resonance(NMR)techniques,were employed to analyze the stress-strain response and microstructural changes.Based on the disturbed state concept(DSC)theory,a W-D deterioration model and a DSC-based constitutive model were developed to describe the degradation trends and mechanical responses of gypsum rocks under different conditions.The results demonstrate that key mechanical indices,elastic modulus,cohesion,uniaxial compressive strength(UCS),and internal friction angle,exhibit logarithmic declines with increasing W-D cycles,with higher flow rates accelerating the deterioration process.The theoretical models accurately capture the nonlinear compaction behavior,peak stress,and post-peak response of gypsum specimens.This study provides valuable insights for predicting the mechanical behavior of gypsum rocks and improving the stability assessments of underground structures under complex environmental conditions. 展开更多
关键词 gypsum rocks wet-dry cycles flow rates mechanical properties disturbed state concept
在线阅读 下载PDF
Polymer-Based Micro Flow Sensor with Alternative Electronic Signal Interfaces for Low and High Flow Rates
2
作者 Thomas Schoenstein 《Journal of Chemistry and Chemical Engineering》 2014年第4期417-420,共4页
The qualitative and quantitative assessment of gas flow has become increasingly relevant in the use of everyday systems. The micro flow sensor, developed by Innovative Sensor Technology AG (Switzerland), is by princ... The qualitative and quantitative assessment of gas flow has become increasingly relevant in the use of everyday systems. The micro flow sensor, developed by Innovative Sensor Technology AG (Switzerland), is by principle a calorimetric flow sensor produced as a micro system on a glass substrate by means of photolithography and glass etching technology. These structures are arranged as a platinum micro heater and sensor in a Wheatstone bridge. The subsequent etching process produces an exposed area of polyimide membrane that is only a few microns thick and includes the resistive sensor structure as the active area. In addition, the RTD (resistance temperature detector) technology included on the sensor allows for the implementation of a variety of electronic biasing and signal processing modes. Since the sensor can be powered and the bridge can be measured in both CTA (constant temperature anemometer) and calorimetric mode, new possibilities are presented for both low and high flow rates with regard to temperature compensation, self-calibration and self-monitoring. 展开更多
关键词 Calorimetric flow sensor pick place assembly CTA-mode low and high flow rates.
在线阅读 下载PDF
Comparison of the precision of glacier flow rates derived from offset-tracking using Sentinel-2 and Landsat-8/9 imagery
3
作者 YANG Zhibin CHEN Zhuoqi +3 位作者 LI Gang MAO Yanting FENG Xiaoman CHENG Xiao 《Advances in Polar Science》 CSCD 2024年第2期238-251,共14页
Offset-tracking is an essential method for deriving glacier flow rates using optical imagery.Sentinel-2(S2)and Landsat-8/9(L8/9)are popular optical satellites or constellations for polar studies,offering high spatial ... Offset-tracking is an essential method for deriving glacier flow rates using optical imagery.Sentinel-2(S2)and Landsat-8/9(L8/9)are popular optical satellites or constellations for polar studies,offering high spatial resolution with relatively short revisit time,wide swath width,and free accessibility.To evaluate and compare the precision of offset-tracking results yielded with these two kinds of data,in this study S2 and L8/9 imagery observed in Petermann Glacier in Greenland,Karakoram in High-Mountains Asia,and Amery Ice Shelf in the Antarctic are analyzed.Outliers and various systematic error sources in the offset-tracking results including orbital and strip errors were analyzed and eliminated at the pre-process stage.Precision at the off-glacier(bare rock)region was evaluated by presuming that no deformation occurred;then for both glacierized and the off-glacier regions,precision of velocity time series was evaluated based on error propagation theory.The least squares method based on connected components was used to solve flow rates time series based on multi-pair images offset-tracking.The results indicated that S2 achieved slightly higher precision than L8/9 in terms of both single-pair derived displacements and least square solved daily flow rates time series.Generally,the RMSE of daily velocity is 26%lower for S2 than L8/9.Moreover,S2 provided higher temporal resolution for monitoring glacier flow rates. 展开更多
关键词 Sentinel-2 LANDSAT glacier flow rates offset-tracking PRECISION
在线阅读 下载PDF
Nitrification Performance in Lab Scale Biological Treatment System: Effect of Flow Rates
4
作者 A.L. Ahmad N.R. Sajuni V.M. Vadivelu 《Journal of Environmental Science and Engineering》 2011年第6期700-707,共8页
Lab scale biological treatment system was constructed from acrylic and operated using synthetic wastewater to evaluate the nitrification performance using different media. The media used for were Ceramic Ring A (CRA... Lab scale biological treatment system was constructed from acrylic and operated using synthetic wastewater to evaluate the nitrification performance using different media. The media used for were Ceramic Ring A (CRA), Ceramic Ring B (CRB), Japanese Filter Mat (JFM), and Filter Wool (FW). Laboratory studies were conducted, in order to evaluate the nitrification performance of different media types, at different synthetic wastewater flow rates, ranging from 0.03 to 0.045 m3/hr. The results from experiments suggest that at higher water flow rates, there was a decrease in nitrification for all media types. Based on the ammonia and nitrite removal rates, FW media gave the optimum nitrification, of up to 0.46 g/m2/day and 0.09 g/m2/day, respectively. Besides, in this study, the surface texture of the media is the main factor that affected the volumetric ammonia and nitrite conversion rates (VTR and VNR). JFM gave the greatest VTR and VNR performance, compared with the other media 展开更多
关键词 Biological treatment synthetic wastewater NITRIFICATION MEDIA flow rates
在线阅读 下载PDF
Influences of gas flow rates on melting of particles of HVOF sprayed CoCrW coating and coating properties 被引量:3
5
作者 YANGZhongyuan 《Rare Metals》 SCIE EI CAS CSCD 2004年第1期53-58,共6页
This paper discussed influences of flow rates of O_2, C_3H_8, and compressedair on the melting degree of particles during HVOF (high velocity oxy-fuel) sprayed CoCrW coating.The O_2 flow rate has the maximal effect on... This paper discussed influences of flow rates of O_2, C_3H_8, and compressedair on the melting degree of particles during HVOF (high velocity oxy-fuel) sprayed CoCrW coating.The O_2 flow rate has the maximal effect on the melting of particles, the C_3H_8 flow rate has thesecond, and the compressed air flow rate has the minimal effect. The bond strength of the HVOFsprayed CoCrW coating is over 54 MPa. The porosity ratio of the HVOF sprayed CoCrW coating afteroptimization of gas flow rates is less than 2%. The average microhardness of the coating is up toHV_(0.1) 545. The oxidation amount per unit area of the HVOF sprayed CoCrW coating increases withthe holding time increasing at 800℃. In the same way, the oxidation amount of the coating increasesas the temperature increases. Particularly, the oxidation of the coating drastically increases over850℃. 展开更多
关键词 CoCrW flow rate HVOF bond strength OXIDATION ORTHOGONALITY
在线阅读 下载PDF
Effect of flow rates of gases flowing through a coal bed during coal heating and cooling on concentrations of gases emitted and fire hazard assessment
6
作者 Marek Wieckowski Natalia Howaniec Adam Smolinski 《International Journal of Coal Science & Technology》 EI 2020年第1期107-121,共15页
The flow velocity of gases in gobs directly influences the kinetics and intensity of gaseous components release during heating and cooling of coal.The assessment of fire hazard is performed on the basis of concentrati... The flow velocity of gases in gobs directly influences the kinetics and intensity of gaseous components release during heating and cooling of coal.The assessment of fire hazard is performed on the basis of concentrations of particular gases in a mine air.These concentrations differ in coal heating and cooling phase which was proven in the study.This paper presented the results of the experimental study on temperature distribution in a simulated coal bed in heating(50–250°C)and cooling(250–35°C)phases as well as its correlation to variations in concentration of gases released in these phases and flow rates of gases flowing through the coal bed.The research was performed on twenty-two samples of bituminous coals acquired from various coal beds of Polish coal mines.Considerable differences were observed between heating and cooling phases in terms of the concentrations of gases taken into account in calculations of self-combustion index.In the heating phase temperature increase resulted in the decrease of concentrations ratios of ethane,ethylene,propane,propylene and acetylene,while in the cooling phase these ratios increased systemically.The effect of air(in heating phase)and nitrogen(in cooling phase)flow rate on the self-ignition index CO/CO2 was also determined. 展开更多
关键词 COAL SELF-HEATING Fire hazard flow rate
在线阅读 下载PDF
System Energy and Efficiency Analysis of 12.5 W VRFB with Different Flow Rates
7
作者 Kehuan Xie Longhai Yu Chuanchang Li 《Energy Engineering》 EI 2023年第12期2903-2915,共13页
Vanadium redox flow battery(VRFB)is considered one of the most potential large-scale energy storage technolo-gies in the future,and its electrolyte flow rate is an important factor affecting the performance of VRFB.To... Vanadium redox flow battery(VRFB)is considered one of the most potential large-scale energy storage technolo-gies in the future,and its electrolyte flow rate is an important factor affecting the performance of VRFB.To study the effect of electrolyte flow rate on the performance of VRFB,the hydrodynamic model is established and a VRFB system is developed.The results show that under constant current density,with the increase of electrolyte flow rate,not only the coulombic efficiency,energy efficiency,and voltage efficiency will increase,but also the capacity and energy discharged by VRFB will also increase.But on the other hand,as the flow rate increases,the power of the pump also increases,resulting in a decrease in system efficiency.The energy discharged by the system does not increase with the increase in flow rate.Considering the balance between efficiency and pump power loss,it is experimentally proved that 120 mL·min-1 is the optimal working flow rate of the VRFB system,which can maximize the battery performance and discharge more energy. 展开更多
关键词 Vanadium redox flow battery flow rate system energy EFFICIENCY
在线阅读 下载PDF
Electrical Resistivity Contrasts and High Flow Rates Discontinuous Aquifers Identification in a Sheared Crystallophyllian Basement Zone at Boniérédougou (North-Central Côte d’Ivoire)
8
作者 Simon Pierre Djroh Kouamelan Serge Kouamelan +1 位作者 Yacouba Ouattara Serge Pacome Dégine Gnoleba 《Journal of Geoscience and Environment Protection》 2022年第11期35-49,共15页
This study proposes an alternative approach to the investigation of high flow hydrogeological fractures within the basement in the Dabakala region of north-central C&#244;te d’Ivoire. The used approach consists o... This study proposes an alternative approach to the investigation of high flow hydrogeological fractures within the basement in the Dabakala region of north-central C&#244;te d’Ivoire. The used approach consists of exploring the subsurface by measuring electrical resistivity contrasts along the main shear direction within crystallophyllian rocks. Electrical resistivity profiling and vertical electrical sounding techniques, coupled with boreholes monitoring, have identified fractured aquifers whose best flow rates are around 96 and 116 m<sup>3</sup>/h. These aquifers mostly hosted in granodiorite have an average strength of 10 meters and are located at depth of around 100 meters. They are associated with open fractures created by tangential shear stresses that have affected the Dabakala volcano-sedimentary trench formations. The search for fractured aquifers along the main shear direction offers great perspective for obtaining high flow rates. 展开更多
关键词 SHEAR Fractured Aquifer High flow Rate Côte d’Ivoire
在线阅读 下载PDF
An optimized calculation method of critical erosionflow rates of UGS injection/production wells
9
作者 Wang Yun Zhang Jianjun 《Natural Gas Industry B》 2020年第3期262-268,共7页
Critical erosionflow rate is the key factor restricting the injection/production capacity of an injection/production well.At present,it is commonly calculated according to API RP 14E standard and its calculation resul... Critical erosionflow rate is the key factor restricting the injection/production capacity of an injection/production well.At present,it is commonly calculated according to API RP 14E standard and its calculation result tends to be conservative.So far,however,there is no definite laboratory experiment orfield data that can prove that critical erosionflow rate can be increased on the basis of API RP 14E.To deal this end,the concept of critical erosionflow rate was proposed based on corrosion rate for thefirst time in this paper.Then,a laboratory equivalent simulation experiment under real injection and production conditions was carried out by comprehensively taking into account the factors influencing string erosion(including temperature,pressure,gas component,water content,solid particle content and string material)while introducing the wall shear stress.Accordingly,the critical erosion coefficient(C)under experimental working conditions was calculated.Finally,a C value chart for three kinds of strings that are commonly used onfield(N80,SM80S and S13Cr)was established.And the following research results are ob-tained.First,solid particle content,water content,CO_(2)differential pressure and wall shear stress are the main erosion controlling factors.Second,solid particle content is the most significant factor that affects the erosion of N80,SM80S and S13Cr strings,and erosion of N80 and SM80S strings is more sensitive to wall shear stress and water content.Third,as for S13Cr string,the C value can be 100 when the solid particle content is lower than 250 mg/L,180 when thefluid contains liquid but no solid particles,and 275 when thefluid is gas phase.Fourth,as for N80 and SM80S strings,the C value can be in the range of 100e180 based on different water content and wall shear stress when thefluid contains liquid but no solid particles,and 275 when thefluid is in gas phase.Fifth,in view that thefluid produced from the injection/production wells of Hutubi gas storage has a water content of 0.0010‰without solid particles,S13Cr is adopted as string material and the C value is set at 180.It is shown in the laboratory erosion experiments that no erosion trace occurs on the string samples under injection and production conditions and the erosion rate is extremely low without point erosion.In conclusion,the C value chart established in this paper is reliable and can provide the guidance for the scientific and reasonable determination of critical erosionflow rate. 展开更多
关键词 Underground gas storage Injection/production capacity of an injection/production wel Critical erosion flow rate Critical crosion coefficient Wall shear stress Injection and production optimization Chart
在线阅读 下载PDF
Unsteady flow characteristics of backflow vortices in an axial-flow pump at low flow rates
10
作者 Shu-ting Cai Ren-fang Huang +2 位作者 Zhao-hui Qian Xian-wu Luo Yi-wei Wang 《Journal of Hydrodynamics》 2025年第2期359-376,共18页
Axial flow pumps are widely used in water conservancy,petrochemical and agricultural industries.Efficient operation is crucial for energy conservation and emission reduction.Improving efficiency under severe condition... Axial flow pumps are widely used in water conservancy,petrochemical and agricultural industries.Efficient operation is crucial for energy conservation and emission reduction.Improving efficiency under severe conditions requires studying the internal flow of axial-flow pumps,particularly at low flow rates where backflow vortices form near the impeller inlet.This study investigates the unsteady flow characteristics of backflow vortices at different flow rates in an axial-flow pump.Results show that backflow vortices form when the flow rate decreases to 0.59Q_(d).As the flow rate further declines,the backflow vortex progresses upstream,contracts,and rebounds.The flow rate range is divided into three stages:Stage Ⅰ with no backflow vortex,stage Ⅱ with initial vortex development extending upstream and relatively fragmented,and stage Ⅲ with vortex contraction and rebound forming a more coherent structure.Besides,backflow vortices induce significant pressure fluctuations and velocity oscillations with the primary frequency being 0.5 fb.They exhibit a three-dimensional spiral motion involving changes in axial length,self-rotation,and revolution around the pump axis,with an angular velocity of approximately half the impeller’s rotational speed.This work enhances insights into backflow vortex behaviors,which is essential for optimizing pump design and improving operational stability in challenging environments. 展开更多
关键词 Axial-flow pump backflow vortex pressure fluctuation unsteady flow low flow rates
原文传递
Enhancing production monitoring: A back allocation methodology to estimate well flow rates and assist well test scheduling
11
作者 G.S.Chaves V.J.M.Ferreira Filho 《Petroleum Research》 EI 2024年第3期369-379,共11页
Production flow rates are crucial to make operational decisions,monitor,manage,and optimize oil and gas fields.Flow rates also have a financial importance to correctly allocate production to fiscal purposes required b... Production flow rates are crucial to make operational decisions,monitor,manage,and optimize oil and gas fields.Flow rates also have a financial importance to correctly allocate production to fiscal purposes required by regulatory agencies or to allocate production in fields owned by multiple operators.Despite its significance,usually only the total field production is measured in real time,which requires an alternative way to estimate wells'production.To address these challenges,this work presents a back allocation methodology that leverages real-time instrumentation,simulations,algorithms,and mathe-matical programming modeling to enhance well monitoring and assist in well test scheduling.The methodology comprises four modules:simulation,classification,error calculation,and optimization.These modules work together to characterize the flowline,wellbore,and reservoir,verify simulation outputs,minimize errors,and calculate flow rates while honoring the total platform flow rate.The well status generated through the classification module provides valuable information about the current condition of each well(i.e.if the well is deviating from the latest well test parameters),aiding in decision-making for well testing scheduling and prioritizing.The effectiveness of the methodology is demonstrated through its application to a representative offshore oil field with 14 producing wells and two years of daily production data.The results highlight the robustness of the methodology in properly classifying the wells and obtaining flow rates that honor the total platform flow rate.Furthermore,the methodology supports well test scheduling and provides reliable indicators for well conditions.By uti-lizing real-time data and advanced modeling techniques,this methodology enhances production monitoring and facilitates informed operational decision-making in the oil and gas industry. 展开更多
关键词 Production estimation Real-time production Production monitoring Back allocation Well test scheduling flow rate estimation
原文传递
Energy flow rate equation for river networks
12
作者 Sai-yu Yuan Jia-wei Lin Hong-wu Tang 《Water Science and Engineering》 2025年第2期221-224,共4页
Rational allocation of water flow energy in river networks is essential to addressing water-related issues in river network areas.However,current methods of calculating the spatiotemporal distribution of flow energy i... Rational allocation of water flow energy in river networks is essential to addressing water-related issues in river network areas.However,current methods of calculating the spatiotemporal distribution of flow energy in river networks lack precision and efficiency.This paper introduces a novel hydrodynamic representation,the energy flow rate,defined as the product of the flow rate and kinetic energy head,to quantify the kinetic energy stored and transported in river networks.A linear equation system for the energy flow rate in a river network has been theoretically derived,enabling rapid calculations under steady flow conditions.A simplified equation is proposed to describe the exponential decay of the energy flow rate,accompanied by potential energy conversion.The coefficients in the linear equation system are determined using control equations at flow confluence and diversion nodes.This study provides foundational insights that can be used to develop new hydrodynamic modeling strategies to regulate water flow energy and achieve coordinated management of water-related issues in river networks. 展开更多
关键词 River network Energy flow rate Hydrodynamic reconstruction flow energy allocation Integrated management
在线阅读 下载PDF
Enhancement of Thermal Performance of Counter Flow Double Pipe Heat Exchanger by Inserting Wavy-Edged Tape
13
作者 Zainab Mahdi Saleh Riyadh S.Al-Turaihi Zena Khalefa Kadhim 《Frontiers in Heat and Mass Transfer》 2025年第2期615-650,共36页
This study involved numerical simulations of a double tube heat exchanger using the ANSYS FLUENT programversion 22.The study aims to examine methods for minimizing pressure loss and consequently enhancing the thermal ... This study involved numerical simulations of a double tube heat exchanger using the ANSYS FLUENT programversion 22.The study aims to examine methods for minimizing pressure loss and consequently enhancing the thermal performance index(TPI)of a heat exchanger fitted with wavy edge tape that is a heat recovery system(the hot air in simulation instead of t heat from the exhaust gases of the brick factory furnaces and return it to warm the heavy fuel oil by substituting the electrical heater with a heat exchanger to recuperate waste heat from the flue gases,so elevating the temperature of Heavy fuel oil(HFO)to inject from the roof nozzles of combustion chamber of the furnace furthermore reducing cost(by finding the optimal design of wavy edge tape))and energy consumption.Air was selected as the hot gas in the inner pipe instead of furnace exhaust gases due to their similar thermal characteristics.A numerical analysis was conducted to create a novel wavy edge tape with varying widths(50%Di,75%Di,and 95%Di),lengths(1000,1200,1400)mm,amplitudes(5,10,15)mm,and periods of wavy length(5,10,15)mm.The flow rate of the outer pipe fluid(oil)ranges from(0.06 to 0.1)kg/s,while the velocity of the hot fluid(air)varies from(1 to 27)m/s,Re_(air)(6957 to 187,837).The entrance temperature of the hot fluid can be either(200,225,and 250)℃.The study finds that wavy edge tape tubes are more effective than smooth tubes in terms of oil outlet temperature;results revealed that an increase in the oil mass flow rate leads to a decrease in the oil outlet temperature and an increase in the heat transfer rate,at the air temperature 250℃.Additionally,the results indicate that increasing the width,length,and amplitude also leads to an increase in the oil outlet temperature of(94-94.12)℃,the pressure drop of(568.3)Pa,and the Nusselt number(65.7-66.5)respectively on the oil side.Finally,the heat exchanger’s best thermal performance index was found by investigating temperature contour at amplitude(A=5),period(p=15),width(w=75%Di),and length(L=1200 mm).The values for these parameters are,in order(1.02,1.025,1.02,and 1.0077). 展开更多
关键词 Double tube heat exchanger wavy edge tape oil mass flow rate oil outlet temperature thermal performance index
在线阅读 下载PDF
Output speed and flow of double-acting double-stator multi-pumps and multi-motors 被引量:23
14
作者 De-sheng WEN Zhi-li WANG +3 位作者 Jun GAO Yong ZHANG Shi-jun LV Tetsuhiro TSUKIJI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2011年第4期301-309,共9页
The primary focus of this study was to investigate a series of novel motors and pumps,based on a new type of structure called double-stator.The double-stator structure can be used as pump or motor just based on the ap... The primary focus of this study was to investigate a series of novel motors and pumps,based on a new type of structure called double-stator.The double-stator structure can be used as pump or motor just based on the application requirements.A certain amount of pumps or motors can be formed in one shell,and these sub-pumps or sub-motors can work alone or be combined without influence on each other.So this kind of double-stator pump(motor) is called a multi-pump(multi-motor).Through the analysis of multifarious connection modes of the double-acting double-stator multi-pumps and multi-motors,the mathematical expressions of the output flow rate and the rotational speed are acquired.The results indicate that a quantity of different flow rates can be provided by one fixed-displacement multi-pump under the condition of unalterable driven speed by electromotor.Likewise,when supplied by settled input flow,without complex variable mechanism,the functions of double-speed,multiple-speed,and even differential connection can be obtained by employing the use of a double-stator multi-motor.The novel hydraulic transmission is made of such a double-stator multi-pump and multi-motor,and has broad application prospects. 展开更多
关键词 Multi-pumps Multi-motors flow rate Rotational speed Hydraulic transmission Differential motor
原文传递
A study of hydrate plug formation in a subsea natural gas pipeline using a novel high-pressure flow loop 被引量:12
15
作者 Li Wenqing Gong Jing +3 位作者 Lü Xiaofang Zhao Jiankui Feng Yaorong Yu Da 《Petroleum Science》 SCIE CAS CSCD 2013年第1期97-105,共9页
The natural gas pipeline from Platform QKI8-1 in the southwest of Bohai Bay to the onshore processing facility is a subsea wet gas pipeline exposed to high pressure and low temperature for a long distance. Blockages i... The natural gas pipeline from Platform QKI8-1 in the southwest of Bohai Bay to the onshore processing facility is a subsea wet gas pipeline exposed to high pressure and low temperature for a long distance. Blockages in the pipeline occur occasionally. To maintain the natural gas flow in the pipeline, we proposed a method for analyzing blockages and ascribed them to the hydrate formation and agglomeration. A new high-pressure flow loop was developed to investigate hydrate plug formation and hydrate particle size, using a mixture of diesel oil, water, and natural gas as experimental fluids. The influences of pressure and initial flow rate were also studied. Experimental results indicated that when the flow rate was below 850 kg/h, gas hydrates would form and then plug the pipeline, even at a low water content (10%) of a water/oil emulsion. Furthermore, some practical suggestions were made for daily management of the subsea pipeline. 展开更多
关键词 Natural gas hydrate BLOCKAGE flow assurance high-pressure loop water cut flow rate
原文传递
Effects of bleed hole size on supersonic boundary layer bleed mass flow rate 被引量:9
16
作者 Bao-hu ZHANG Yu-xin ZHAO Jun LIU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2020年第8期652-662,共11页
The bleed hole diameter,depth,and boundary layer thickness are key design parameters of a supersonic bleed system.The evolution trend of single-hole bleed flow coefficient with the ratio of boundary layer thickness to... The bleed hole diameter,depth,and boundary layer thickness are key design parameters of a supersonic bleed system.The evolution trend of single-hole bleed flow coefficient with the ratio of boundary layer thickness to bleed hole diameter and the ratio of bleed hole depth to diameter is investigated by numerical simulations under choking and non-choking conditions.The results show that the subsonic leading edge of the circular hole and the subsonic part of the boundary layer are the main factors causing lateral flow of the bleed hole.The effect of diameter on bleed mass flow rate is due to the viscous effect which reduces the effective diameter.The larger the ratio of displacement thickness to bleed hole diameter,the more obvious the viscous effect is.The depth affects bleed flow rate by changing the opening and closing states of the separation zone.When a certain depth is reached,the development of the boundary layer reduces the effective captured stream tube and thus reduces the bleed mass flow rate.The main objective of the study is to obtain the physical mechanism of the bleed hole size parameters affecting the bleed mass flow rate,and to provide theoretical guidance for the selection of the size of bleed holes in the design of a porous arrays bleed system in hypersonic inlets. 展开更多
关键词 INLET Supersonic bleed Scale effects CHOKING Bleed mass flow rate Lateral flow
原文传递
Effect of gas blowing nozzle angle on multiphase flow and mass transfer during RH refining process 被引量:8
17
作者 Jiahao Wang Peiyuan Ni +2 位作者 Chao Chen Mikael Ersson Ying Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期844-856,共13页
A three-dimensional mathematical model was developed to investigate the effect of gas blowing nozzle angles on multiphase flow,circulation flow rate,and mixing time during Ruhrstahl-Heraeus(RH) refining process.Also,a... A three-dimensional mathematical model was developed to investigate the effect of gas blowing nozzle angles on multiphase flow,circulation flow rate,and mixing time during Ruhrstahl-Heraeus(RH) refining process.Also,a water model with a geometric scale of 1:4 from an industrial RH furnace of 260 t was built up,and measurements were carried out to validate the mathematical model.The results show that,with a conventional gas blowing nozzle and the total gas flow rate of 40 L·min^(-1),the mixing time predicted by the mathematical model agrees well with the measured values.The deviations between the model predictions and the measured values are in the range of about 1.3%–7.3% at the selected three monitoring locations,where the mixing time was defined as the required time when the dimensionless concentration is within 3% deviation from the bath averaged value.In addition,the circulation flow rate was 9 kg·s^(-1).When the gas blowing nozzle was horizontally rotated by either 30° or 45°,the circulation flow rate was found to be increased by about 15% compared to a conventional nozzle,due to the rotational flow formed in the up-snorkel.Furthermore,the mixing time at the monitoring point 1,2,and 3 was shortened by around 21.3%,28.2%,and 12.3%,respectively.With the nozzle angle of 30° and 45°,the averaged residence time of 128 bubbles in liquid was increased by around 33.3%. 展开更多
关键词 Ruhrstahl-Heraeus refining gas blowing nozzle angle circulation flow rate mixing time multiphase flow
在线阅读 下载PDF
Investigation of oil-air two-phase mass flow rate measurement using Venturi and void fraction sensor 被引量:6
18
作者 张宏建 岳伟挺 黄志尧 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第6期601-606,共6页
Oil-air two-phase flow measurement was investigated with a Venturi and void fraction meters in this work. This paper proposes a new flow rate measurement correlation in which the effect of the velocity ratio between g... Oil-air two-phase flow measurement was investigated with a Venturi and void fraction meters in this work. This paper proposes a new flow rate measurement correlation in which the effect of the velocity ratio between gas and liquid was considered. With the pressure drop across the Venturi and the void fraction that was measured by electrical capacitance tomography apparatus, both mixture flow rate and oil flow rate could be obtained by the correlation. Experiments included bubble-, slug-, wave and annular flow with the void fraction ranging from 15% to 83%, the oil flow rate ranging from 0.97 kg/s to 1.78 kg/s, the gas flow rate ranging up to 0.018 kg/s and quality ranging nearly up to 2.0%. The root-mean-square errors of mixture mass flow rate and that of oil mass flow rate were less than 5%. Furthermore, coefficients of the correlation were modified based on flow regimes, with the results showing reduced root-mean-square errors. 展开更多
关键词 Oil-air two-phase flow rate VENTURI Void fraction flow regime Electrical capacitance tomography
在线阅读 下载PDF
Influences of mass flow rate on heat and mass transfer performances of water sublimator combined with fluid loop 被引量:5
19
作者 Yuying WANG Jindong LI +5 位作者 Xianwen NING Qi ZHONG Jianyin MIAO Lu WANG Wei LYU Chang LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第4期888-894,共7页
For spacecraft working in vacuum environment, sublimator is an effective heat rejection approach to reject system's peak heat load, and supplement spacecraft radiation heat rejection. For a spacecraft active fluid... For spacecraft working in vacuum environment, sublimator is an effective heat rejection approach to reject system's peak heat load, and supplement spacecraft radiation heat rejection. For a spacecraft active fluid loop thermal control system combined with sublimator, waste heat generated from multi-point distributed heat sources could be collected by the fluid loop efficiently. However, the heat and mass transfer performances of the sublimator combined with fluid loop have not been adequately studied in previous research, especially for the influences of the heat load. Since work fluid mass flow rate is the main factor affecting heat load of the fluid loop, this context experimentally studied influences of the fluid loop mass flow rate on sublimator start-up transient characteristics, including heat transfer performances, response time, and work stability. Results indicated that the fluid loop mass flow rate affected the sublimator heat and mass transfer performances obviously, but the heat rejection ability is not always increase with the increasing of the fluid loop mass flow rate. In addition, we obtained the condition to judge whether there is a positive correlation between heat rejection ability and fluid loop mass flow rate. 展开更多
关键词 Fluid loop Mass flow rate Sublimator SPACECRAFT Thermal control
原文传递
DYNAMIC CHARACTERISTICS OF LARGE FLOW RATING ELECTROHYDRAULIC PROPORTIONAL CARTRIDGE VALVE 被引量:10
20
作者 FU Linjian WEI Jianhua QIU Minxiu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第6期57-62,共6页
A kind of cartridge servo proportional valve is discussed,which can be used for controlling large flow rate with high performance.By analyzing the structure principle of the valve,the transfer fimction of the valve is... A kind of cartridge servo proportional valve is discussed,which can be used for controlling large flow rate with high performance.By analyzing the structure principle of the valve,the transfer fimction of the valve is derived.With the transfer function,some structure elements that may affect its performance are investigated.Through the numerical simulation and test study,some principles of optimality and effective methods for improving the dynamic performance of the valve are proposed.The test results conform to the results of the theoretical analysis and simulation,which proves the correctness of the study and simulation works.The paper provides theoretical basis for engineering applications and series expanding design works. 展开更多
关键词 Large flow rate electro-hydraulic proportional cartridge valve Dynamic characteristics
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部