In order to investigate the process of laser cladding(LC)Inconel 625 alloy powder on Q235 steel plate,this paper focuses on analyzing the effects of different process parameters on the temperature field,stress field a...In order to investigate the process of laser cladding(LC)Inconel 625 alloy powder on Q235 steel plate,this paper focuses on analyzing the effects of different process parameters on the temperature field,stress field and flow behavior of the molten pool through a combination of finite element simulation and experiment.The simulation part established a geometric model,applied the Goldak double el-lipsoid heat source model,and simulated the LC process by varying the laser power and scanning speed.For the experimental part,LC equipment was used,parameters such as laser power and scanning speed were adjusted,and the molten pool dynamics were observed by in-frared temperature measurement and high-speed photography.The results show that the laser power and scanning speed are the key factors affecting the quality of cladding,and the experimental observation coincides with the simulation results,which verifies the validity of the simulation method and provides theoretical basis and experimental support for the optimization of the LC process.展开更多
The formed characteristics of thin-wall part is studied when it is in the process of MPAW. Finite element method is used to sinmlate the temperature field coupling flow field in the welding of thin-wall part. It is fo...The formed characteristics of thin-wall part is studied when it is in the process of MPAW. Finite element method is used to sinmlate the temperature field coupling flow field in the welding of thin-wall part. It is found that because of the obvious effect of heat accumution in cross-section, where the distribution of temperature field area presents trapezoidal inverted approximately in the molten pool and the non-molten pool area presents level. The surface tension, the electromagnetic force and buoyancy are considered for analyzing the effects on the fluid flow of welding-pool. It can be obtained that the surface tension is the main driving force in the welding pool, which is far greater than electromagnetic force and buoyancy.展开更多
A mathematical model is presented to describe transient behavior of heat transfer and fluid flow in stationary pulsed current tungsten inert gas (PC-TIG) weld pool, which considers three kinds of driving, forces for w...A mathematical model is presented to describe transient behavior of heat transfer and fluid flow in stationary pulsed current tungsten inert gas (PC-TIG) weld pool, which considers three kinds of driving, forces for weld pool convection, i,e. buoyancyforce, electromagnetic force and surface tension force. furthermore. the effect of vaporization heat flux at the free surface of weld pool and the temperature coefficient of surface tenston which is a function of temperatuer and composition are considered in the model In order to accelerate the convergence of iteration the AST(additive source term)method which concerns with the thermal energv boundary conditions is extended successfully to deal with the momentum boundary conditions by which the transient momentum equation and energy equation are mutually coupled. At the same time. ADI (Alternating direction implicit) method and DBC (double blocks correction) technque are employed to solve the finite difference equations. The results of numerical simulation demonstrate the transient behavior of PC-TIG weld pool, as well as the periodic variation of fluid flow and heat transfer with the periodic variation of welding current in stationary PC-TIG weld pool. The theoretical predictions based on this model are, shown to be in good accordance with the experimental measurements.展开更多
A model is established to analyze three-dimensional fluid flow and heat transfer in TICweld pools with full penetration.It considers the deformation of the molten pool surfaceat the condition of full penetrated workpi...A model is established to analyze three-dimensional fluid flow and heat transfer in TICweld pools with full penetration.It considers the deformation of the molten pool surfaceat the condition of full penetrated workpieees,takes the are pressure as the drivingforce of the pool surface deformation,and determines the surface configuration of weldpool based on the dynamic balance of arc pressure,pool gravity and surface tension atdeformed weld pool surface. The SIMPLER algorithm is used to calculate the fluid flowfield and temperature distribution in TIG weld pools of stainless steel workpieces.TIGwelding experiments are made to verify the validity of the model.It shows the calculatedresults by the model are in good agreement with experimental measurements. professor,Dept of Welding Engineering,Harbin Institute of Technology,Harbin 150006,China展开更多
基金supported by Natural Science Foundation of Shandong Province of China(Grant No.ZR2023ME201)Qingdao Key Technology Research and Industrialization Demonstration Project(23-1-2-qljh-17-gx).
文摘In order to investigate the process of laser cladding(LC)Inconel 625 alloy powder on Q235 steel plate,this paper focuses on analyzing the effects of different process parameters on the temperature field,stress field and flow behavior of the molten pool through a combination of finite element simulation and experiment.The simulation part established a geometric model,applied the Goldak double el-lipsoid heat source model,and simulated the LC process by varying the laser power and scanning speed.For the experimental part,LC equipment was used,parameters such as laser power and scanning speed were adjusted,and the molten pool dynamics were observed by in-frared temperature measurement and high-speed photography.The results show that the laser power and scanning speed are the key factors affecting the quality of cladding,and the experimental observation coincides with the simulation results,which verifies the validity of the simulation method and provides theoretical basis and experimental support for the optimization of the LC process.
基金supported by the National Natural Science Foundation of China(Grant No.U1333128,U1733125)Science and Technology Project of Tianjin(Grant No.14ZCDZGX00802,17JCZDJC38700)
文摘The formed characteristics of thin-wall part is studied when it is in the process of MPAW. Finite element method is used to sinmlate the temperature field coupling flow field in the welding of thin-wall part. It is found that because of the obvious effect of heat accumution in cross-section, where the distribution of temperature field area presents trapezoidal inverted approximately in the molten pool and the non-molten pool area presents level. The surface tension, the electromagnetic force and buoyancy are considered for analyzing the effects on the fluid flow of welding-pool. It can be obtained that the surface tension is the main driving force in the welding pool, which is far greater than electromagnetic force and buoyancy.
文摘A mathematical model is presented to describe transient behavior of heat transfer and fluid flow in stationary pulsed current tungsten inert gas (PC-TIG) weld pool, which considers three kinds of driving, forces for weld pool convection, i,e. buoyancyforce, electromagnetic force and surface tension force. furthermore. the effect of vaporization heat flux at the free surface of weld pool and the temperature coefficient of surface tenston which is a function of temperatuer and composition are considered in the model In order to accelerate the convergence of iteration the AST(additive source term)method which concerns with the thermal energv boundary conditions is extended successfully to deal with the momentum boundary conditions by which the transient momentum equation and energy equation are mutually coupled. At the same time. ADI (Alternating direction implicit) method and DBC (double blocks correction) technque are employed to solve the finite difference equations. The results of numerical simulation demonstrate the transient behavior of PC-TIG weld pool, as well as the periodic variation of fluid flow and heat transfer with the periodic variation of welding current in stationary PC-TIG weld pool. The theoretical predictions based on this model are, shown to be in good accordance with the experimental measurements.
基金The research work was surpported by the National Natural Science Foundation of China.
文摘A model is established to analyze three-dimensional fluid flow and heat transfer in TICweld pools with full penetration.It considers the deformation of the molten pool surfaceat the condition of full penetrated workpieees,takes the are pressure as the drivingforce of the pool surface deformation,and determines the surface configuration of weldpool based on the dynamic balance of arc pressure,pool gravity and surface tension atdeformed weld pool surface. The SIMPLER algorithm is used to calculate the fluid flowfield and temperature distribution in TIG weld pools of stainless steel workpieces.TIGwelding experiments are made to verify the validity of the model.It shows the calculatedresults by the model are in good agreement with experimental measurements. professor,Dept of Welding Engineering,Harbin Institute of Technology,Harbin 150006,China