In this work,we study the impacts of the isospin-independent momentum-dependent interaction(MDI)and near-threshold NN→NΔcross sections(σ_(NN→NΔ))on the nucleonic flow and pion production observables in the ultra-...In this work,we study the impacts of the isospin-independent momentum-dependent interaction(MDI)and near-threshold NN→NΔcross sections(σ_(NN→NΔ))on the nucleonic flow and pion production observables in the ultra-relativistic quantum molecular dynamics(UrQMD)model.With the updated isospin-independent MDI and the near-threshold NN→NΔcross sections in the Ur QMD model,17 observables,which are the directed flow(v_(1))and elliptic flow(v_(2))of neutrons,protons,Hydrogen(H),and charged particles as a function of transverse momentum(p_t∕A)or normalized rapidity(y^(lab)_0),and the observables constructed from them,the charged pion multiplicity(M(π))and its ratio(M(π^(-))∕M(π^(+))),can be simultaneously described at certain forms of symmetry energy.The refinement of the UrQMD model provides a solid foundation for further understanding the effects of the missed physics,such as the threshold effect,the pion potential,and the momentum-dependent symmetry potential.Circumstantial constraints on the symmetry energy at the flow characteristic density 1.2±0.6ρ_(0)and the pion characteristic density 1.5±0.5ρ_(0)were obtained with the current version of UrQMD,and the corresponding symmetry energies were S(1.2ρ_(0))=34±4 MeV and S(1.5ρ_(0))=36±8 MeV,respectively.Furthermore,the discrepancies between the data and the calculated results of v_(2)^(n)and v_(2)^(9)at high p_(t)(rapidity)imply that the roles of the missing ingredients,such as the threshold effect,the pion potential,and the momentum-dependent symmetry potential,should be investigated by differential observables,such as the momentum and rapidity distributions of the nucleonic and pionic probes over a wide beam energy range.展开更多
The purpose of this study was to clarify grid convergence property of three-dimensional measurement-integrated (3D-MI) simulation for a flow behind a square cylinder with Karman vortex street. Measurement-integrated (...The purpose of this study was to clarify grid convergence property of three-dimensional measurement-integrated (3D-MI) simulation for a flow behind a square cylinder with Karman vortex street. Measurement-integrated (MI) simulation is a kind of the observer in the dynamical system theory by using CFD scheme as a mathematical model of the system. In a former study, two-dimensional MI (2D-MI) simulation with a coarse grid system showed a fairly good result in comparison with a 2D ordinary (2D-O) simulation, but the results were degraded with grid refinement. In this study, 3D-MI simulation and three-dimensional ordinary (3D-O) simulation were performed with three grid systems of different grid resolutions, and their grid convergence properties were compared. As a result, all 3D-MI simulations reproduced the vortex shedding frequency identical to that of the experiment, and the flow fields obtained were very close, within 5% difference between the results, while the results of the 3D-O simulations showed variation of the solution under convergence. It is shown that the grid convergence property of 3D-MI simulation is monotonic and better than that of 3D-O simulation, whereas those of 2D-O and 2D-MI simulations for streamwise velocity fluctuation are divergent. The solution of 3D-MI simulation with a relatively coarse grid system properly reproduces the basic three-dimensional structure of the wake flow as well as the drag and lift coefficients.展开更多
An automatic control technique for the flow regulation in pipeline systems is developed in the paper. The improvement for the previous work is the use of an optimal observer that reduces greatly the time of changing n...An automatic control technique for the flow regulation in pipeline systems is developed in the paper. The improvement for the previous work is the use of an optimal observer that reduces greatly the time of changing now states and the adaptability for the regulation of frictioness now. By first order Taylor-expanding the frictioness flow equations of motion and continuity at equilibrium states, a set of linear equations are obtained then, the linear quadratic design technique in automatic control theory is used to control the now states. In order to avoid measuring all states, an optimal state estimator is constructed. A pipeline system is taken as example. The regulation results are satisfactory. If the changes of discharges are within 20%, the method developed in this paper is effective for valve-motion synthesis in real pipeline systems.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11875323,12275359,12205377,12335008,U2032145,11790320,11790323,11790325,and 11961141003)the National Key R&D Program of China(No.2018 YFA0404404)+2 种基金the Continuous Basic Scientific Research Project(No.WDJC-2019-13)the China Institute of Atomic Energy(No.YZ222407001301)the Leading Innovation Project of the CNNC(Nos.LC192209000701 and LC202309000201)。
文摘In this work,we study the impacts of the isospin-independent momentum-dependent interaction(MDI)and near-threshold NN→NΔcross sections(σ_(NN→NΔ))on the nucleonic flow and pion production observables in the ultra-relativistic quantum molecular dynamics(UrQMD)model.With the updated isospin-independent MDI and the near-threshold NN→NΔcross sections in the Ur QMD model,17 observables,which are the directed flow(v_(1))and elliptic flow(v_(2))of neutrons,protons,Hydrogen(H),and charged particles as a function of transverse momentum(p_t∕A)or normalized rapidity(y^(lab)_0),and the observables constructed from them,the charged pion multiplicity(M(π))and its ratio(M(π^(-))∕M(π^(+))),can be simultaneously described at certain forms of symmetry energy.The refinement of the UrQMD model provides a solid foundation for further understanding the effects of the missed physics,such as the threshold effect,the pion potential,and the momentum-dependent symmetry potential.Circumstantial constraints on the symmetry energy at the flow characteristic density 1.2±0.6ρ_(0)and the pion characteristic density 1.5±0.5ρ_(0)were obtained with the current version of UrQMD,and the corresponding symmetry energies were S(1.2ρ_(0))=34±4 MeV and S(1.5ρ_(0))=36±8 MeV,respectively.Furthermore,the discrepancies between the data and the calculated results of v_(2)^(n)and v_(2)^(9)at high p_(t)(rapidity)imply that the roles of the missing ingredients,such as the threshold effect,the pion potential,and the momentum-dependent symmetry potential,should be investigated by differential observables,such as the momentum and rapidity distributions of the nucleonic and pionic probes over a wide beam energy range.
文摘The purpose of this study was to clarify grid convergence property of three-dimensional measurement-integrated (3D-MI) simulation for a flow behind a square cylinder with Karman vortex street. Measurement-integrated (MI) simulation is a kind of the observer in the dynamical system theory by using CFD scheme as a mathematical model of the system. In a former study, two-dimensional MI (2D-MI) simulation with a coarse grid system showed a fairly good result in comparison with a 2D ordinary (2D-O) simulation, but the results were degraded with grid refinement. In this study, 3D-MI simulation and three-dimensional ordinary (3D-O) simulation were performed with three grid systems of different grid resolutions, and their grid convergence properties were compared. As a result, all 3D-MI simulations reproduced the vortex shedding frequency identical to that of the experiment, and the flow fields obtained were very close, within 5% difference between the results, while the results of the 3D-O simulations showed variation of the solution under convergence. It is shown that the grid convergence property of 3D-MI simulation is monotonic and better than that of 3D-O simulation, whereas those of 2D-O and 2D-MI simulations for streamwise velocity fluctuation are divergent. The solution of 3D-MI simulation with a relatively coarse grid system properly reproduces the basic three-dimensional structure of the wake flow as well as the drag and lift coefficients.
文摘An automatic control technique for the flow regulation in pipeline systems is developed in the paper. The improvement for the previous work is the use of an optimal observer that reduces greatly the time of changing now states and the adaptability for the regulation of frictioness now. By first order Taylor-expanding the frictioness flow equations of motion and continuity at equilibrium states, a set of linear equations are obtained then, the linear quadratic design technique in automatic control theory is used to control the now states. In order to avoid measuring all states, an optimal state estimator is constructed. A pipeline system is taken as example. The regulation results are satisfactory. If the changes of discharges are within 20%, the method developed in this paper is effective for valve-motion synthesis in real pipeline systems.