Flooding has been one of the recurring occurred natural disasters that induce detrimental impacts on humans, property and environment. Frequent floods is a severe issue and a complex natural phenomenon in Pakistan wit...Flooding has been one of the recurring occurred natural disasters that induce detrimental impacts on humans, property and environment. Frequent floods is a severe issue and a complex natural phenomenon in Pakistan with respect to population affected, environmental degradations, and socio-economic and property damages. The Super Flood, which hit Sindh in 2010, has turned out to be a wakeup call and has underlined the overwhelming challenge of natural calamities, as 2010 flood and the preceding flood in 2011 caused a huge loss to life, property and land use. These floods resulted in disruption of power, telecommunication, and water utilities in many districts of Pakistan, including 22 districts of Sindh. These floods call for risk assessment and hazard mapping of Lower Indus Basin flowing in the Sindh Province as such areas were also inundated in 2010 flood, which were not flooded in the past in this manner. This primary focus of this paper is the use of Multi-criteria Evaluation (MCE) methods in integration with the Geographical Information System (GIS) for the analysis of areas prone to flood. This research demonstrated how GIS tools can be used to produce map of flood vulnerable areas using MCE techniques. Slope, Aspect, Curvature, Soil, and Distance from Drainage, Land use, Precipitation, Flow Direction, and Flow Accumulation are taken as the causative factors for flooding in Lower Indus Basin. Analytical Hierarchy Process-AHP was used for the calculation of weights of all these factors. Finally, a flood hazard Map of Lower Indus Basin was generated which delineates the flood prone areas in the Sindh province along Indus River Basin that could be inundated by potential flooding in future. It is aimed that flood hazard mapping and risk assessment using open source geographic information system can serve as a handy tool for the development of land-use strategies so as to decrease the impact from flooding.展开更多
When linear regressive models such as AR or ARMA model are used for fitting and predicting climatic time series,results are often not sufficiently good because nonlinear variations in the time series.In this paper, a ...When linear regressive models such as AR or ARMA model are used for fitting and predicting climatic time series,results are often not sufficiently good because nonlinear variations in the time series.In this paper, a nonlinear self-exciting threshold autoregressive(SETAR)model is applied to modeling and predicting the time series of flood/drought runs in Beijing,which were derived from the graded historical flood/drought records in the last 511 years(1470—1980).The results show that the modeling and predicting with the SETAR model are much better than that of the AR model.The latter can predict the flood/drought runs with a length only less than two years,while the formal can predict more than three-year length runs.This may be due to the fact that the SETAR model can renew the model according to the run-turning points in the process of predic- tion,though the time series is nonstationary.展开更多
文摘Flooding has been one of the recurring occurred natural disasters that induce detrimental impacts on humans, property and environment. Frequent floods is a severe issue and a complex natural phenomenon in Pakistan with respect to population affected, environmental degradations, and socio-economic and property damages. The Super Flood, which hit Sindh in 2010, has turned out to be a wakeup call and has underlined the overwhelming challenge of natural calamities, as 2010 flood and the preceding flood in 2011 caused a huge loss to life, property and land use. These floods resulted in disruption of power, telecommunication, and water utilities in many districts of Pakistan, including 22 districts of Sindh. These floods call for risk assessment and hazard mapping of Lower Indus Basin flowing in the Sindh Province as such areas were also inundated in 2010 flood, which were not flooded in the past in this manner. This primary focus of this paper is the use of Multi-criteria Evaluation (MCE) methods in integration with the Geographical Information System (GIS) for the analysis of areas prone to flood. This research demonstrated how GIS tools can be used to produce map of flood vulnerable areas using MCE techniques. Slope, Aspect, Curvature, Soil, and Distance from Drainage, Land use, Precipitation, Flow Direction, and Flow Accumulation are taken as the causative factors for flooding in Lower Indus Basin. Analytical Hierarchy Process-AHP was used for the calculation of weights of all these factors. Finally, a flood hazard Map of Lower Indus Basin was generated which delineates the flood prone areas in the Sindh province along Indus River Basin that could be inundated by potential flooding in future. It is aimed that flood hazard mapping and risk assessment using open source geographic information system can serve as a handy tool for the development of land-use strategies so as to decrease the impact from flooding.
文摘When linear regressive models such as AR or ARMA model are used for fitting and predicting climatic time series,results are often not sufficiently good because nonlinear variations in the time series.In this paper, a nonlinear self-exciting threshold autoregressive(SETAR)model is applied to modeling and predicting the time series of flood/drought runs in Beijing,which were derived from the graded historical flood/drought records in the last 511 years(1470—1980).The results show that the modeling and predicting with the SETAR model are much better than that of the AR model.The latter can predict the flood/drought runs with a length only less than two years,while the formal can predict more than three-year length runs.This may be due to the fact that the SETAR model can renew the model according to the run-turning points in the process of predic- tion,though the time series is nonstationary.