Inexpensive flocculant-modified iron tailings sand(ITS)were converted into effective flocculation materials for cyanobacteria blooms.After composite modification with polyaluminum chloride(PAC)and polyacrylamide(PAM),...Inexpensive flocculant-modified iron tailings sand(ITS)were converted into effective flocculation materials for cyanobacteria blooms.After composite modification with polyaluminum chloride(PAC)and polyacrylamide(PAM),the surface charge of ITS was altered from negative to positive,and surface adhesion was increased by~1.5 times.PAC/PAM-modified ITS(PP-ITS)had strong flocculating effects on cyanobacteria,facilitating their removal.When the dosage of PP-ITS was 150 mg/L and the ratio of flocculant to ITS was 1:20,the elimination rate of cyanobacteria was as high as 90%.The flocs formed were better than those with chitosan-modified clays(CS-CA)and PAC-modified ITS(PAC-ITS)in terms of settling velocity,size,and recovery ability.The positively charged groups in the flocculant,such as-NH_(2) and Al^(3+),are attracted to negatively charged ions on the surface of ITS,altering the surface charge.Additionally,hydrogen bonds could form between amide side groups,and surface adhesion was improved through molecular association.Coupled with the strong bridging and sweeping effects of the flocculant,the flocs generated by PP-ITS formed rapidly and were large and resilient.The use of PP-ITS could effectively treat cyanobacteria blooms as well as solve the problem of ore tailings disposal.These results are of practical importance for engineering strategies to control cyanobacteria blooms,though there are still some issues that need to be addressed,such as how cyanobacteria flocs are collected and utilized after settling.展开更多
The flocculation behavior of carbon black (CB)-filled isoprene rubber (IR) nanocomposites was systematically investigated under both dynamic and static conditions to unravel the distinct mechanisms governing filler ne...The flocculation behavior of carbon black (CB)-filled isoprene rubber (IR) nanocomposites was systematically investigated under both dynamic and static conditions to unravel the distinct mechanisms governing filler network evolution.Under dynamic conditions,small oscillatory shear strains (0.1%) significantly enhanced filler particle motion,leading to pronounced agglomeration and a flocculation degree of about 4.3MPa at 145℃.In contrast,static flocculation exhibited a fundamentally different mechanism dominated by polymer chain dynamics,which is driven mainly by thermal activation.Radial distribution function (RDF) analysis of transmission electron microscopy (TEM) images revealed a slight decrease (2 nm) in the interparticle distance peak after static annealing at 100℃ for 7 h,indicating localized motion of CB particles.However,the overall filler network remained stable,with no significant agglomeration observed.The increase in bound rubber content from about 23% to 28% with rising temperature further confirmed the dominant role of polymer chain adsorption and interfacial reinforcement in static flocculation.These findings highlight the critical influence of external strain on filler network formation and provide new insights into the polymer-dominated mechanism of static flocculation.The results offer practical guidance for optimizing the storage and processing of rubber nanocomposites,particularly in applications where static flocculation during prolonged storage is a concern.展开更多
The clay mineral flocculation encapsulation poses a major technical challenge in the field of fine mineral separation.Enhancing the ability to separate clay minerals from target mineral surfaces is key to addressing t...The clay mineral flocculation encapsulation poses a major technical challenge in the field of fine mineral separation.Enhancing the ability to separate clay minerals from target mineral surfaces is key to addressing this issue.In the flotation process of ultrafine hematite,sodium polyacrylate(PAAS)was used as a selective flocculant for hematite,polyaluminum chloride(PAC)as a flocculant for kaolinite and chlorite,and sodium oleate(NaOL)as the collector to achieve asynchronous flocculation flotation.This study examines the flotation separation performance and validates it through experiments on actual mineral samples.The results indicate that with PAAS and PAC dosages of 1.25 and 50 mg·L^(-1),respectively,the iron grade and recovery of the actual mineral samples increased by 9.39%and 7.97%.Through Zeta potential,XPS analysis,infrared spectroscopy,and total organic carbon(TOC)testing,the study reveals the microscopic interaction mechanisms of different flocculants with minerals,providing insights for the clean and efficient utilization of ultrafine mineral resources.展开更多
A series of novel chitosan-based magnetic flocculants FS@CTS-P(AM-DMC)was prepared by molecular structure control.The characterization results showed that FS@CTS-P(AM-DMC)had a uniform size of about 21.46 nm,featuring...A series of novel chitosan-based magnetic flocculants FS@CTS-P(AM-DMC)was prepared by molecular structure control.The characterization results showed that FS@CTS-P(AM-DMC)had a uniform size of about 21.46 nm,featuring a typical core-shell structure,and the average coating layer thickness of CTS-P(AM-DMC)was about 5.03 nm.FS@CTS-P(AM-DMC)exhibited excellent flocculation performance for kaolin suspension,achieved 92.54% turbidity removal efficiency under dosage of 150 mg/L,pH 7.0,even at high turbidity(2000 NTU)with a removal efficiency of 96.96%.The flocculation mechanism was revealed to be dominated by charge neutralization under acidic and neutral conditions,while adsorption and bridging effects play an important role in alkaline environments.The properties of magnetic aggregates during flocculation,breakage,and regeneration were studied at different pH levels and dosages.In the process of magnetophoretic,magnetic particles collide and adsorb with kaolin particles continuously due to magnetic and electrostatic attraction,transform into magnetic chain clusters,and then further form three-dimensional network magnetic aggregates that can capture free kaolin particles and other chain clusters.Particle image velocimetry confirmed the formation of eddy current of magnetic flocs and experienced three stages:acceleration,stabilization,and deceleration.展开更多
Particle size is an important characteristic of suspended matter,and it contains crucial information about the deposition process.Suspended particle samples in the water mixing zone of the Changjiang River Estuary wer...Particle size is an important characteristic of suspended matter,and it contains crucial information about the deposition process.Suspended particle samples in the water mixing zone of the Changjiang River Estuary were collected in December 2016.Untreated original grain size and the decentralized grain size of the suspended particles were measured via a laser particle size analyzer.Morphological characteristics and the chemical composition of the suspended particles were also studied systematically using a scanning electron microscope(SEM)with an energy dispersive X-ray spectrometer(EDS).Then,the flocculation and sedimentation of suspended matter in the water mixing zone were explored by combining them with the water mixing processes in the estuary.The average particle size of suspended matter in the mixing zone of the Changjiang River Estuary ranges fromФ5.73 toФ7.98.The particle size distribution pattern is an abnormal model with a mainly unimodal pattern.In the freshwater area that was dominated by runoff,the suspended matter is mainly composed of fine particles,the settling velocity is slow,and the flocculation is weak.Floc particles were often seen in the mixing zone,with the flocs having a relatively large particle size,a low density and a loose structure appearing at the weak mixing zone;the flocs had a compacted structure in most areas of the mixing zone.The changes of suspended particle size in the estuarine mixing zone promote the settling and deposition of suspended matter,which has an important influence on the bed geomorphology and preservation of the fine suspended particles in the estuary.展开更多
Effects of stirring speed and time, pH and sodium oleate concentration on the shear hydrophobic flocculation of ultrafine Anshan hematite with sodium oleate as the surfactant were discussed. The results show that thes...Effects of stirring speed and time, pH and sodium oleate concentration on the shear hydrophobic flocculation of ultrafine Anshan hematite with sodium oleate as the surfactant were discussed. The results show that these parameters significantly affect the shear hydrophobic flocculation of ultrafine hematite. The optimum conditions for the flocculation are: stirring speed 1 400 r/min, flocculation time 20 min, pH 9 and sodium oleate concentration 3.94×10-4 mol/L; the flotation recovery of hematite flocs is remarkably high compared with non flocculated ultrafine hematite. According to the extended DLVO theory, the total interaction potential of Anshan ultrafine hematite was determined. The calculation results indicate that the hydrophobic flocculation state of the ultrafine hematite-sodium oleate system is mainly dominated by electric double layer repulsive interaction potential and hydrophobic interaction potential. A mechanical agitation is required to impart particles a kinetic energy to overcome potential barrier between them due to the existence of electric double layer repulsive interaction potential. Those particles further approach to form flocs due to the significant increase of the hydrophobic interaction potential.展开更多
In order to accelerate the sedimentation of super-large-scale argillized ultrafine tailings with bad features such as low settling velocity, muddy overflow water, and large flocculant dosage, a fly-ash-based magnetic ...In order to accelerate the sedimentation of super-large-scale argillized ultrafine tailings with bad features such as low settling velocity, muddy overflow water, and large flocculant dosage, a fly-ash-based magnetic coagulant (FAMC) was used in a dynamic experimental device. To obtain the best possible combination of the impact factors (magnetic intensity, FAMC dosage, flocculant dosage, and feed speed) for minimum overflow turbidity, a response surface methodology test coupled with a four-factor five-level central composite design was conducted. The synergy mechanism of FAMC and flocculant was analyzed based on the potential measurement and scanning electron microscopy. The results show that the flocculant dosage, overflow turbidity, and solid content can be reduced by 50%, 90%, and 80%, while the handling capacity per unit and efficiency of backfill and dry stacking can be promoted by 20%, 17%, and 13%, respectively, with a magnetic intensity of 0.3 T, FAMC dosage of 200 mL/t, flocculant dosage of 30 g/t, and feed speed of 0.6 t/(m^2·h). Therefore, synergy of FAMC and flocculant has obvious efficiency in saving energy and protecting the environment by allowing 70×10^6 t/a of argillized ultrafine tailings slurry to be disposed safely and efficiently with a cost saving of more than 53×106 Yuan/a, which gives it great promise for use in domestic and foreign mines.展开更多
The effect of electrolyte on settling behavior of kaolinite was studied. Effects of hard water on selective flocculation of diasporic bauxite was tested and the measures were taken to eliminate the effects of Ca2+ an...The effect of electrolyte on settling behavior of kaolinite was studied. Effects of hard water on selective flocculation of diasporic bauxite was tested and the measures were taken to eliminate the effects of Ca2+ and Mg2+ in hard water. The results indicated that, not only the concentration of electrolyte ions but also the ionic valence of the electrolyte ions affects the settling behavior of kaolinite; hard water significantly affects its selective flocculation owing to Ca2+ and Mg2+; general dispersants could not eliminate the effects of Ca2+ and Mg2+. Self-made softening agent in our lab could weaken or eliminate the effects of hard water on flocculation processes. The results of molecular dynamics simulation show that softening agent molecules could restrict Ca2+ and prevent them from playing their roles, so as to eliminate the effects. The continuous pilot experiment results of bauxite flocculation were even better than those obtained in laboratory.展开更多
[Objective] This study aimed to screen a bacterial strain capable of producing bioflocculant. [Method] A bacterial strain T-11 capable of producing bioflocculant was isolated from activated sludge. Detailed tests on t...[Objective] This study aimed to screen a bacterial strain capable of producing bioflocculant. [Method] A bacterial strain T-11 capable of producing bioflocculant was isolated from activated sludge. Detailed tests on the morphological, physiological and biochemical characteristics were carried out and identification was performed to identify the strain. Finally, the bioflocculant was isolated and purified, and the flocculating activity and chemical characteristics were measured. [Result] It was identified as Serratia plumuthica based on its morphological, physiological and biochemical characteristics. This strain secreted flocculant best in a culture medium which included sucrose and NaNO3. The maximal cell growth was achieved within 10 h and the flocculating activity paralleled to it. It was found to be effective for flocculation of kaolin suspension, when added at a final concentration of 0.7 mg/L, over a range of pHs (2-7), and temperature (approximately 30-80 ℃). Chemical analysis indicated that the bioflocculant was an acidic polysaccharide consisting of glucose, glucuronic acid and galactose, talose and altrose. Infrared spectrum analysis also revealed typical characteristics of polysaccharides. [Conclusion] The biofloccu- lants produced by strain T-11 can greatly improve the ability of activated sludge to settle.展开更多
Water supply and sanitation demands are foreseen to face enormous challenges over the coming decades to meet the fast growing needs in a global perspective. Significant growth in the industry is predicted and membrane...Water supply and sanitation demands are foreseen to face enormous challenges over the coming decades to meet the fast growing needs in a global perspective. Significant growth in the industry is predicted and membrane separation technologies have been identified as one of the possible solutions to meet future demands. Application and implementation of membrane technology is expected both in production of potable water as well as in treatment of wastewater. In potable water production membranes are substituting conventional separation technologies due to the superior performance, potential for less chemical use and sludge production, as well as the potential to fulfill hygienic barrier requirements. Membrane bio-reactor (MBR) technology is probably the membrane process which has had most success and has the best prospects for the future in wastewater treatment. Trends and developments indicate that this technology is becoming accepted and is rapidly becoming the best available technology for many wastewater treatment applications. A major drawback of MBR systems is membrane fouling. Studies have shown that fouling mitigation in MBR systems can potentially be done by coupling coagulation and flocculation to the process.展开更多
In this study,a high-efficiency cationic flocculant,P(DAC-MAPTAC-AM),was successfully prepared using UV-induced polymerization technology.The monomer Acrylamide(AM):Acryloxyethyl Trimethyl ammonium chloride(DAC):metha...In this study,a high-efficiency cationic flocculant,P(DAC-MAPTAC-AM),was successfully prepared using UV-induced polymerization technology.The monomer Acrylamide(AM):Acryloxyethyl Trimethyl ammonium chloride(DAC):methacrylamido propyl trimethyl ammonium chloride(MAPTAC)ratio,monomer concentration,photoinitiator concentration,urea content,and cationic monomer DAC:MAPTAC ratio,light time,and power of highpressure mercury lamp were studied.The characteristic groups,characteristic diffraction peaks,and characteristic proton peaks of P(DAC-MAPTAC-AM)were confirmed by fourier transform infrared spectroscopy(FTIR),X-Ray diffraction(XRD),1H nuclear magnetic resonance spectrometer(1H NMR),and scanning electron microscopy(SEM).The effects of dosage,pH value,and velocity gradient(G)value on the removal efficiencies of turbidity,COD,ammonia nitrogen,and total phenol by poly aluminum ferric chloride(PAFC),P(DACMAPTAC-AM),and PAFC/P(DAC-MAPTAC-AM)in the flocculation treatment of coal chemical wastewater were investigated.Results showed that the optimal conditions for the flocculation of coal chemical wastewater using P(DAC-MAPTAC-AM)alone are as follows:dosage of 8-12 mg/L,G value of 100-250 s^-1,and pH value of 4-8.The optimal dosage of PAFC is 90-150 mg/L with a pH of 2-12.The optimal dosage for PAFC/P(DAC-MAPTAC-AM)is as follows:PAFC dosage of 90-150 mg/L,P(DAC-MAPTAC-AM)dosage of 8-12 mg/L,and pH range of 2-6.When P(DAC-MAPTAC-AM)was used alone,the optimal removal efficiencies of turbidity,COD,ammonia nitrogen,and total phenol were 81.0%,35.0%,75.0%,and 80.3%,respectively.PAFC has good tolerance to wastewater pH and good pH buffering.Thus,the flocculation treatment of coal chemical wastewater using the PAFC/P(DAC-MAPTAC-AM)compound also exhibits excellent resistance and buffering capacity.展开更多
Hydrophobic flocculation pretreatment was performed to assess its effect on the recovery of fine cuprite in sulfidation-flotation. The results of the micro-flotation experiment showed that cuprite recovery is related ...Hydrophobic flocculation pretreatment was performed to assess its effect on the recovery of fine cuprite in sulfidation-flotation. The results of the micro-flotation experiment showed that cuprite recovery is related to the particle size, and that an excessive content of fine particles(<18 μm) impacted the recovery of coarse particles. When hydrophobic flocculation pretreatment was used, the recovery of fine cuprite in sulfidation-flotation increased from 60.3% to 86.3% under optimum conditions(pH 9.5; sodium oleate concentration, 2 × 10^(-4) mol×L^(-1); stirring time, 6 min; stirring speed, 1600 r×min^(-1)). The laser particle size analysis and optical microscopy results indicate that hydrophobic flocculation pretreatment effectively reduces the content of fine cuprite, and augments the apparent particle size in the pulp. We performed the Derjaguin–Landau–Verwey–Overbeek(DLVO) theory and extended DLVO theory calculations to further support the interpretation of the results.展开更多
This paper reports the systematic investigation on the flocculation,sedimentation and consolidation characteristics of kaolinite using guar gum as a green flocculant.In-situ flocculation behavior of kaolinite at vario...This paper reports the systematic investigation on the flocculation,sedimentation and consolidation characteristics of kaolinite using guar gum as a green flocculant.In-situ flocculation behavior of kaolinite at various pH,guar gum dosages,and ionic strength were studied using a light scattering technique.The effect of these parameters on the settling rate,solid consolidation,and supernatant liquid clarity was recorded.The morphology of kaolinite and flocculated kaolinite aggregates were analyzed using FESEM.The morphology studies suggest that it is poorly crystalline with multiple steps on edge,broken edge;laminar with high aspect ratio and have rough basal surface.The complex irregularity on the basal surface and the presence of multiple steps in the edges,broken edges(hydroxyl groups)have facilitated the guar gum adsorption.The isoelectric point of kaolinite is pH 3.96.The pH,ionic strength and flocculant dosage have a significant effect on the kaolinite settling rate.The guar gum has exhibited excellent turbidity removal efficiency at pH 5.The turbidity removal is inefficient at pH 10.However,guar gum has shown high turbidity removal with 80%transmission at pH 10 in the presence of a KNO3 electrolyte.展开更多
Rapid flocculation and settlement(FS)of mine tailings is significant for the improvement and development of the filling process,whereas the settlement velocity(SV)of tailings in FS has been recognized as a key paramet...Rapid flocculation and settlement(FS)of mine tailings is significant for the improvement and development of the filling process,whereas the settlement velocity(SV)of tailings in FS has been recognized as a key parameter to evaluate the settlement effect.However,the influence of temperature on the SV and its mechanism have not been studied.FS experiments on tailings with various ambient temperatures were carried out.The SVs of tailings with a solid waste content of 10wt%and an anionic polyacrylamide content of 20 g·t^−1 were measured at different temperatures.The SV presented an“N”-shaped variation curve as the temperature changed from 5 to 40℃.The mechanism of these results can be explained from the perspective of the electric double-layer repulsive force,molecular dynamics,and the polymer flocculation principle,as revealed from the scanning electron microscopy of floc particles.The findings will be beneficial in the design of tailings dewatering processes and save costs in the production of cemented paste backfill.展开更多
Deep cone thickener (DCT) is the key equipment in cemented paste backfill (CPB), so it is essential to study the flocculation settling and thickening characteristics of the whole-tailings in DCT. Coupled with populati...Deep cone thickener (DCT) is the key equipment in cemented paste backfill (CPB), so it is essential to study the flocculation settling and thickening characteristics of the whole-tailings in DCT. Coupled with population balance model (PBM), computational fluid dynamics (CFD) was used to study the characteristics, namely particle size distribution (PSD) and underflow concentration in DCT. Based on actual production, the effects of rake rotational speed, feed rate and tailings slurry concentration were simulated and analyzed in a certain range. The PSD varied with rake rational speed, feed rate and tailings slurry concentration almost in the same trend, but the influence of feed rate was less than that of rake rational speed and tailings slurry concentration. The underflow concentration increased at first and then declined with rake rational speed and feed rate, but it rose and fell with the tailings slurry concentration. Finally, the optimal key parameters on the flocculation settling and thickening of the whole-tailings in DCT were obtained: rake rotational speed of 17 r/min, feed rate of 3.25 m^3/h and tailings slurry concentration of 20%, giving the reference values to the industrial production in Baishitamu Copper Mine.展开更多
Using chitosan modified soil to flocculate and sediment algal cells has been considered as a promising strategy to combat cyanobacteria blooms in natural waters. However, the flocculation efficiency often varies with ...Using chitosan modified soil to flocculate and sediment algal cells has been considered as a promising strategy to combat cyanobacteria blooms in natural waters. However, the flocculation efficiency often varies with algal cells with different zeta potential(ZP) attributed to different growth phases or water conditions. This article investigated the relationship between ZP of Microcystis aeruginosa and its influence to the flocculation efficiency using chitosan modified soil. Results suggested that the optimal removal efficiency was obtained when the ZP was between- 20.7 and- 6.7 m V with a removal efficiency of more than 80% in 30 min and large floc size of 〉 350 μm. When the algal cells were more negatively charged than- 20.7 m V, the effect of chitosan modified soil was depressed(〈 60%) due to the insufficient charge density of chitosan to neutralize and destabilize the algal suspension. When the algal cells were less negative than- 6.7 m V or even positively charged, a small floc size(〈 120 μm) was formed, which may be difficult to sink under natural water conditions. Therefore, manipulation of ZP provided a viable tool to improve the flocculation efficiency of chitosan modified soil and an important guidance for practical engineering of cyanobacteria bloom control.展开更多
The hydrophobic flocculation flotation of rutile fines in the presence of styryl phosphonic acid(SPA) was investigated by flotation tests, zeta-potential measurement, optical microscope observation, laser-based part...The hydrophobic flocculation flotation of rutile fines in the presence of styryl phosphonic acid(SPA) was investigated by flotation tests, zeta-potential measurement, optical microscope observation, laser-based particle size analysis, adsorption measurements and DLVO theory. The flotation tests indicated that rutile fines could be flocculated by SPA, and pH, shear force(stirring speed) and stirring time played significant roles in flocculation. The isoelectric point(IEP) and zeta-potential in whole range all moved to negative values as SPA was added according to the results from zeta-potential measurement. It was demonstrated that the primary reason for above was chemical adsorption. The laser-based particle size results showed the particle size at a stirring speed of 1800 r/min and 1000 mg/L SPA was the largest in all experiments. Furthermore, using the optical microscope observation and flotation tests, it was important for flotation of rutile fines to produce the flocculant. In the light of above-mentioned facts, floc flotation of rutile fines could be induced in the form of chemical adsorption by SPA to increase particle size. The data calculated from DLVO theory also indicated that chemical adsorption was the main reason for the formation of flocculant.展开更多
A series of biodegradable amphoteric chitosan-based flocculants (3-chloro-2-hydroxypropyl trimethyl ammonium chloride (CTA) modified carboxymethyl chitosan, denoted as CMC-CTA) with different substitution degrees ...A series of biodegradable amphoteric chitosan-based flocculants (3-chloro-2-hydroxypropyl trimethyl ammonium chloride (CTA) modified carboxymethyl chitosan, denoted as CMC-CTA) with different substitution degrees of CTA were prepared successfully. The content of carboxymethyl groups in each CMC-CTA sample was kept almost constant. The solubility of the various flocculants showed that, higher cationic content of flocculants caused a better solubility. The flocculation experiments using kaolin suspension as synthetic water at the laboratory scale indicated that the substitution degree of CTA was one of the key factors for the flocculation properties. With the increase of cationic content, the flocculants were demonstrated better flocculation performance and lower dosage requirement. Flocculation kinetics model of particles collisions combining zeta potential and turbidity measurements was employed to investigate the effects of the cationic content of the flocculants on the flocculation properties from the viewpoint of flocculation mechanism in detail. Furthermore, flocculation performance using raw water from Zhenjiang part of Yangtze River at the pilot scale showed the similar effects to those at the laboratory scale.展开更多
Flotation tailings were successfully flocculated in the presence of cationic polyacrylamide and silica gel.The effects of various parameters such as polymer weight,charge density,and pH on the rate of flocculation wer...Flotation tailings were successfully flocculated in the presence of cationic polyacrylamide and silica gel.The effects of various parameters such as polymer weight,charge density,and pH on the rate of flocculation were also investigated in the current study.The flocculation mechanism of the flocculant on tailings was investigated using zeta potential and Fourier transform infrared(FTIR)measurements.The results obtained reveal that 1)sodium silicate gel,used as a binder for the consolidation of tailings form primary flocs,acts as an anchor and the adsorption of polymer flocculant on these anchors results in the formation of larger flocs and,consequently,enhanced settling rate;2)flocculation in the presence of silica gel and polymer has a faster settling rate than single-polymer flocculation owing to the mechanisms of charge neutralization and bridging as identified using zeta potential and FTIR measurements.A pilot level study was conducted to investigate the influence of processed water on the flotation of scheelite.The results show that the proposed tailing disposal method could improve scheelite recovery by 2%(approximately)and could reduce the daily operation costs of the plant by approximately 108.57 USD.展开更多
基金Supported by the National Key Research and Development Program of China(No.2022 YFC 3202700)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX 24_0904)。
文摘Inexpensive flocculant-modified iron tailings sand(ITS)were converted into effective flocculation materials for cyanobacteria blooms.After composite modification with polyaluminum chloride(PAC)and polyacrylamide(PAM),the surface charge of ITS was altered from negative to positive,and surface adhesion was increased by~1.5 times.PAC/PAM-modified ITS(PP-ITS)had strong flocculating effects on cyanobacteria,facilitating their removal.When the dosage of PP-ITS was 150 mg/L and the ratio of flocculant to ITS was 1:20,the elimination rate of cyanobacteria was as high as 90%.The flocs formed were better than those with chitosan-modified clays(CS-CA)and PAC-modified ITS(PAC-ITS)in terms of settling velocity,size,and recovery ability.The positively charged groups in the flocculant,such as-NH_(2) and Al^(3+),are attracted to negatively charged ions on the surface of ITS,altering the surface charge.Additionally,hydrogen bonds could form between amide side groups,and surface adhesion was improved through molecular association.Coupled with the strong bridging and sweeping effects of the flocculant,the flocs generated by PP-ITS formed rapidly and were large and resilient.The use of PP-ITS could effectively treat cyanobacteria blooms as well as solve the problem of ore tailings disposal.These results are of practical importance for engineering strategies to control cyanobacteria blooms,though there are still some issues that need to be addressed,such as how cyanobacteria flocs are collected and utilized after settling.
基金supported by the National Natural Science Foundation of China(No.52293471)National Key R&D Program of China(No.2022YFB3707303).
文摘The flocculation behavior of carbon black (CB)-filled isoprene rubber (IR) nanocomposites was systematically investigated under both dynamic and static conditions to unravel the distinct mechanisms governing filler network evolution.Under dynamic conditions,small oscillatory shear strains (0.1%) significantly enhanced filler particle motion,leading to pronounced agglomeration and a flocculation degree of about 4.3MPa at 145℃.In contrast,static flocculation exhibited a fundamentally different mechanism dominated by polymer chain dynamics,which is driven mainly by thermal activation.Radial distribution function (RDF) analysis of transmission electron microscopy (TEM) images revealed a slight decrease (2 nm) in the interparticle distance peak after static annealing at 100℃ for 7 h,indicating localized motion of CB particles.However,the overall filler network remained stable,with no significant agglomeration observed.The increase in bound rubber content from about 23% to 28% with rising temperature further confirmed the dominant role of polymer chain adsorption and interfacial reinforcement in static flocculation.These findings highlight the critical influence of external strain on filler network formation and provide new insights into the polymer-dominated mechanism of static flocculation.The results offer practical guidance for optimizing the storage and processing of rubber nanocomposites,particularly in applications where static flocculation during prolonged storage is a concern.
基金funded by the National Natural Science Foundation of China(No.52374265)the Central Guided Local Science and Technology Development Funding Program(No.236Z4106G)+1 种基金the Natural Science Foundation of Hebei Province(No.E2022209108)Key Projects of Hebei Provincial Department of Education(No.ZD2022059)。
文摘The clay mineral flocculation encapsulation poses a major technical challenge in the field of fine mineral separation.Enhancing the ability to separate clay minerals from target mineral surfaces is key to addressing this issue.In the flotation process of ultrafine hematite,sodium polyacrylate(PAAS)was used as a selective flocculant for hematite,polyaluminum chloride(PAC)as a flocculant for kaolinite and chlorite,and sodium oleate(NaOL)as the collector to achieve asynchronous flocculation flotation.This study examines the flotation separation performance and validates it through experiments on actual mineral samples.The results indicate that with PAAS and PAC dosages of 1.25 and 50 mg·L^(-1),respectively,the iron grade and recovery of the actual mineral samples increased by 9.39%and 7.97%.Through Zeta potential,XPS analysis,infrared spectroscopy,and total organic carbon(TOC)testing,the study reveals the microscopic interaction mechanisms of different flocculants with minerals,providing insights for the clean and efficient utilization of ultrafine mineral resources.
基金supported by the National Natural Science Foundation of China(No.51672028)the Fundamental Research Funds for the Central Universities(Nos.2015ZCQ-HJ-02 and 2015PY-08)。
文摘A series of novel chitosan-based magnetic flocculants FS@CTS-P(AM-DMC)was prepared by molecular structure control.The characterization results showed that FS@CTS-P(AM-DMC)had a uniform size of about 21.46 nm,featuring a typical core-shell structure,and the average coating layer thickness of CTS-P(AM-DMC)was about 5.03 nm.FS@CTS-P(AM-DMC)exhibited excellent flocculation performance for kaolin suspension,achieved 92.54% turbidity removal efficiency under dosage of 150 mg/L,pH 7.0,even at high turbidity(2000 NTU)with a removal efficiency of 96.96%.The flocculation mechanism was revealed to be dominated by charge neutralization under acidic and neutral conditions,while adsorption and bridging effects play an important role in alkaline environments.The properties of magnetic aggregates during flocculation,breakage,and regeneration were studied at different pH levels and dosages.In the process of magnetophoretic,magnetic particles collide and adsorb with kaolin particles continuously due to magnetic and electrostatic attraction,transform into magnetic chain clusters,and then further form three-dimensional network magnetic aggregates that can capture free kaolin particles and other chain clusters.Particle image velocimetry confirmed the formation of eddy current of magnetic flocs and experienced three stages:acceleration,stabilization,and deceleration.
基金The National Natural Science Foundation of China under contract No.42176077。
文摘Particle size is an important characteristic of suspended matter,and it contains crucial information about the deposition process.Suspended particle samples in the water mixing zone of the Changjiang River Estuary were collected in December 2016.Untreated original grain size and the decentralized grain size of the suspended particles were measured via a laser particle size analyzer.Morphological characteristics and the chemical composition of the suspended particles were also studied systematically using a scanning electron microscope(SEM)with an energy dispersive X-ray spectrometer(EDS).Then,the flocculation and sedimentation of suspended matter in the water mixing zone were explored by combining them with the water mixing processes in the estuary.The average particle size of suspended matter in the mixing zone of the Changjiang River Estuary ranges fromФ5.73 toФ7.98.The particle size distribution pattern is an abnormal model with a mainly unimodal pattern.In the freshwater area that was dominated by runoff,the suspended matter is mainly composed of fine particles,the settling velocity is slow,and the flocculation is weak.Floc particles were often seen in the mixing zone,with the flocs having a relatively large particle size,a low density and a loose structure appearing at the weak mixing zone;the flocs had a compacted structure in most areas of the mixing zone.The changes of suspended particle size in the estuarine mixing zone promote the settling and deposition of suspended matter,which has an important influence on the bed geomorphology and preservation of the fine suspended particles in the estuary.
基金Project (20062026) supported by Natural Science Foundation of Liaoning Province, China
文摘Effects of stirring speed and time, pH and sodium oleate concentration on the shear hydrophobic flocculation of ultrafine Anshan hematite with sodium oleate as the surfactant were discussed. The results show that these parameters significantly affect the shear hydrophobic flocculation of ultrafine hematite. The optimum conditions for the flocculation are: stirring speed 1 400 r/min, flocculation time 20 min, pH 9 and sodium oleate concentration 3.94×10-4 mol/L; the flotation recovery of hematite flocs is remarkably high compared with non flocculated ultrafine hematite. According to the extended DLVO theory, the total interaction potential of Anshan ultrafine hematite was determined. The calculation results indicate that the hydrophobic flocculation state of the ultrafine hematite-sodium oleate system is mainly dominated by electric double layer repulsive interaction potential and hydrophobic interaction potential. A mechanical agitation is required to impart particles a kinetic energy to overcome potential barrier between them due to the existence of electric double layer repulsive interaction potential. Those particles further approach to form flocs due to the significant increase of the hydrophobic interaction potential.
基金Project(2012BAC09B02)supported by the 12th-Five Years Key Programs for Science and Technology Development of ChinaProject(2015zzts078)supported by the Fundamental Research Funds for the Central Universities of Central South University,ChinaProject(2015CX005)supported by Innovation Driven Plan of Central South University,China
文摘In order to accelerate the sedimentation of super-large-scale argillized ultrafine tailings with bad features such as low settling velocity, muddy overflow water, and large flocculant dosage, a fly-ash-based magnetic coagulant (FAMC) was used in a dynamic experimental device. To obtain the best possible combination of the impact factors (magnetic intensity, FAMC dosage, flocculant dosage, and feed speed) for minimum overflow turbidity, a response surface methodology test coupled with a four-factor five-level central composite design was conducted. The synergy mechanism of FAMC and flocculant was analyzed based on the potential measurement and scanning electron microscopy. The results show that the flocculant dosage, overflow turbidity, and solid content can be reduced by 50%, 90%, and 80%, while the handling capacity per unit and efficiency of backfill and dry stacking can be promoted by 20%, 17%, and 13%, respectively, with a magnetic intensity of 0.3 T, FAMC dosage of 200 mL/t, flocculant dosage of 30 g/t, and feed speed of 0.6 t/(m^2·h). Therefore, synergy of FAMC and flocculant has obvious efficiency in saving energy and protecting the environment by allowing 70×10^6 t/a of argillized ultrafine tailings slurry to be disposed safely and efficiently with a cost saving of more than 53×106 Yuan/a, which gives it great promise for use in domestic and foreign mines.
基金Project (2005CB623701) supported by the National Basic Research Program of China
文摘The effect of electrolyte on settling behavior of kaolinite was studied. Effects of hard water on selective flocculation of diasporic bauxite was tested and the measures were taken to eliminate the effects of Ca2+ and Mg2+ in hard water. The results indicated that, not only the concentration of electrolyte ions but also the ionic valence of the electrolyte ions affects the settling behavior of kaolinite; hard water significantly affects its selective flocculation owing to Ca2+ and Mg2+; general dispersants could not eliminate the effects of Ca2+ and Mg2+. Self-made softening agent in our lab could weaken or eliminate the effects of hard water on flocculation processes. The results of molecular dynamics simulation show that softening agent molecules could restrict Ca2+ and prevent them from playing their roles, so as to eliminate the effects. The continuous pilot experiment results of bauxite flocculation were even better than those obtained in laboratory.
基金Supported by the Science Research Project of Qingdao Technical College in 2012(12-A-2)~~
文摘[Objective] This study aimed to screen a bacterial strain capable of producing bioflocculant. [Method] A bacterial strain T-11 capable of producing bioflocculant was isolated from activated sludge. Detailed tests on the morphological, physiological and biochemical characteristics were carried out and identification was performed to identify the strain. Finally, the bioflocculant was isolated and purified, and the flocculating activity and chemical characteristics were measured. [Result] It was identified as Serratia plumuthica based on its morphological, physiological and biochemical characteristics. This strain secreted flocculant best in a culture medium which included sucrose and NaNO3. The maximal cell growth was achieved within 10 h and the flocculating activity paralleled to it. It was found to be effective for flocculation of kaolin suspension, when added at a final concentration of 0.7 mg/L, over a range of pHs (2-7), and temperature (approximately 30-80 ℃). Chemical analysis indicated that the bioflocculant was an acidic polysaccharide consisting of glucose, glucuronic acid and galactose, talose and altrose. Infrared spectrum analysis also revealed typical characteristics of polysaccharides. [Conclusion] The biofloccu- lants produced by strain T-11 can greatly improve the ability of activated sludge to settle.
文摘Water supply and sanitation demands are foreseen to face enormous challenges over the coming decades to meet the fast growing needs in a global perspective. Significant growth in the industry is predicted and membrane separation technologies have been identified as one of the possible solutions to meet future demands. Application and implementation of membrane technology is expected both in production of potable water as well as in treatment of wastewater. In potable water production membranes are substituting conventional separation technologies due to the superior performance, potential for less chemical use and sludge production, as well as the potential to fulfill hygienic barrier requirements. Membrane bio-reactor (MBR) technology is probably the membrane process which has had most success and has the best prospects for the future in wastewater treatment. Trends and developments indicate that this technology is becoming accepted and is rapidly becoming the best available technology for many wastewater treatment applications. A major drawback of MBR systems is membrane fouling. Studies have shown that fouling mitigation in MBR systems can potentially be done by coupling coagulation and flocculation to the process.
基金National Key Research and Development Program of China(No.2017YFB0602500)2018 Six Talent Peaks Project of Jiangsu Province(No.JNHB-038)。
文摘In this study,a high-efficiency cationic flocculant,P(DAC-MAPTAC-AM),was successfully prepared using UV-induced polymerization technology.The monomer Acrylamide(AM):Acryloxyethyl Trimethyl ammonium chloride(DAC):methacrylamido propyl trimethyl ammonium chloride(MAPTAC)ratio,monomer concentration,photoinitiator concentration,urea content,and cationic monomer DAC:MAPTAC ratio,light time,and power of highpressure mercury lamp were studied.The characteristic groups,characteristic diffraction peaks,and characteristic proton peaks of P(DAC-MAPTAC-AM)were confirmed by fourier transform infrared spectroscopy(FTIR),X-Ray diffraction(XRD),1H nuclear magnetic resonance spectrometer(1H NMR),and scanning electron microscopy(SEM).The effects of dosage,pH value,and velocity gradient(G)value on the removal efficiencies of turbidity,COD,ammonia nitrogen,and total phenol by poly aluminum ferric chloride(PAFC),P(DACMAPTAC-AM),and PAFC/P(DAC-MAPTAC-AM)in the flocculation treatment of coal chemical wastewater were investigated.Results showed that the optimal conditions for the flocculation of coal chemical wastewater using P(DAC-MAPTAC-AM)alone are as follows:dosage of 8-12 mg/L,G value of 100-250 s^-1,and pH value of 4-8.The optimal dosage of PAFC is 90-150 mg/L with a pH of 2-12.The optimal dosage for PAFC/P(DAC-MAPTAC-AM)is as follows:PAFC dosage of 90-150 mg/L,P(DAC-MAPTAC-AM)dosage of 8-12 mg/L,and pH range of 2-6.When P(DAC-MAPTAC-AM)was used alone,the optimal removal efficiencies of turbidity,COD,ammonia nitrogen,and total phenol were 81.0%,35.0%,75.0%,and 80.3%,respectively.PAFC has good tolerance to wastewater pH and good pH buffering.Thus,the flocculation treatment of coal chemical wastewater using the PAFC/P(DAC-MAPTAC-AM)compound also exhibits excellent resistance and buffering capacity.
基金financially supported by the National Natural Science Foundation of China (Nos. 51374079 and 51504053) the Hundred, Thousand and Ten Thousand Talent Project of Liaoning Province (No. 2014921014)the Postdoctoral Science Foundation of China (No. 2015M571324)
文摘Hydrophobic flocculation pretreatment was performed to assess its effect on the recovery of fine cuprite in sulfidation-flotation. The results of the micro-flotation experiment showed that cuprite recovery is related to the particle size, and that an excessive content of fine particles(<18 μm) impacted the recovery of coarse particles. When hydrophobic flocculation pretreatment was used, the recovery of fine cuprite in sulfidation-flotation increased from 60.3% to 86.3% under optimum conditions(pH 9.5; sodium oleate concentration, 2 × 10^(-4) mol×L^(-1); stirring time, 6 min; stirring speed, 1600 r×min^(-1)). The laser particle size analysis and optical microscopy results indicate that hydrophobic flocculation pretreatment effectively reduces the content of fine cuprite, and augments the apparent particle size in the pulp. We performed the Derjaguin–Landau–Verwey–Overbeek(DLVO) theory and extended DLVO theory calculations to further support the interpretation of the results.
基金support from the Ministry of Steel,Government of India,India(GAP 214).
文摘This paper reports the systematic investigation on the flocculation,sedimentation and consolidation characteristics of kaolinite using guar gum as a green flocculant.In-situ flocculation behavior of kaolinite at various pH,guar gum dosages,and ionic strength were studied using a light scattering technique.The effect of these parameters on the settling rate,solid consolidation,and supernatant liquid clarity was recorded.The morphology of kaolinite and flocculated kaolinite aggregates were analyzed using FESEM.The morphology studies suggest that it is poorly crystalline with multiple steps on edge,broken edge;laminar with high aspect ratio and have rough basal surface.The complex irregularity on the basal surface and the presence of multiple steps in the edges,broken edges(hydroxyl groups)have facilitated the guar gum adsorption.The isoelectric point of kaolinite is pH 3.96.The pH,ionic strength and flocculant dosage have a significant effect on the kaolinite settling rate.The guar gum has exhibited excellent turbidity removal efficiency at pH 5.The turbidity removal is inefficient at pH 10.However,guar gum has shown high turbidity removal with 80%transmission at pH 10 in the presence of a KNO3 electrolyte.
基金This work was financially supported by the State Key Laboratory of Safety and Health for Metal Mines,China(No.2019-JSKSSYS-02)the Natural Science Foundation of Hunan Province,China(No.2020JJ5718).
文摘Rapid flocculation and settlement(FS)of mine tailings is significant for the improvement and development of the filling process,whereas the settlement velocity(SV)of tailings in FS has been recognized as a key parameter to evaluate the settlement effect.However,the influence of temperature on the SV and its mechanism have not been studied.FS experiments on tailings with various ambient temperatures were carried out.The SVs of tailings with a solid waste content of 10wt%and an anionic polyacrylamide content of 20 g·t^−1 were measured at different temperatures.The SV presented an“N”-shaped variation curve as the temperature changed from 5 to 40℃.The mechanism of these results can be explained from the perspective of the electric double-layer repulsive force,molecular dynamics,and the polymer flocculation principle,as revealed from the scanning electron microscopy of floc particles.The findings will be beneficial in the design of tailings dewatering processes and save costs in the production of cemented paste backfill.
基金Project(2016YFC0600709)supported by the National Key R&D Program of ChinaProjects(51574013,51774039)supported by the National Natural Science Foundation of ChinaProject(FRF-TP-17-024A1)supported by the Fundamental Research Funds for the Central Universities,China
文摘Deep cone thickener (DCT) is the key equipment in cemented paste backfill (CPB), so it is essential to study the flocculation settling and thickening characteristics of the whole-tailings in DCT. Coupled with population balance model (PBM), computational fluid dynamics (CFD) was used to study the characteristics, namely particle size distribution (PSD) and underflow concentration in DCT. Based on actual production, the effects of rake rotational speed, feed rate and tailings slurry concentration were simulated and analyzed in a certain range. The PSD varied with rake rational speed, feed rate and tailings slurry concentration almost in the same trend, but the influence of feed rate was less than that of rake rational speed and tailings slurry concentration. The underflow concentration increased at first and then declined with rake rational speed and feed rate, but it rose and fell with the tailings slurry concentration. Finally, the optimal key parameters on the flocculation settling and thickening of the whole-tailings in DCT were obtained: rake rotational speed of 17 r/min, feed rate of 3.25 m^3/h and tailings slurry concentration of 20%, giving the reference values to the industrial production in Baishitamu Copper Mine.
基金supported by the National Basic Research Program (973) of Chinathe application of nano-material and nano-technology in detecting and treating water pollutants (No. 2010CB933600)the Science Promotion Program of Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (No. YSW2013B05)
文摘Using chitosan modified soil to flocculate and sediment algal cells has been considered as a promising strategy to combat cyanobacteria blooms in natural waters. However, the flocculation efficiency often varies with algal cells with different zeta potential(ZP) attributed to different growth phases or water conditions. This article investigated the relationship between ZP of Microcystis aeruginosa and its influence to the flocculation efficiency using chitosan modified soil. Results suggested that the optimal removal efficiency was obtained when the ZP was between- 20.7 and- 6.7 m V with a removal efficiency of more than 80% in 30 min and large floc size of 〉 350 μm. When the algal cells were more negatively charged than- 20.7 m V, the effect of chitosan modified soil was depressed(〈 60%) due to the insufficient charge density of chitosan to neutralize and destabilize the algal suspension. When the algal cells were less negative than- 6.7 m V or even positively charged, a small floc size(〈 120 μm) was formed, which may be difficult to sink under natural water conditions. Therefore, manipulation of ZP provided a viable tool to improve the flocculation efficiency of chitosan modified soil and an important guidance for practical engineering of cyanobacteria bloom control.
基金Projects(51474254,51774332,51320105006) supported by the National Natural Science Foundation of ChinaProject(NCET-13-0595) supported by the Program for New Century Excellent Talents in University,ChinaProjects(2017zzts579,2017zzts379) supported by the Fundamental Research Funds for the Central Universities of China
文摘The hydrophobic flocculation flotation of rutile fines in the presence of styryl phosphonic acid(SPA) was investigated by flotation tests, zeta-potential measurement, optical microscope observation, laser-based particle size analysis, adsorption measurements and DLVO theory. The flotation tests indicated that rutile fines could be flocculated by SPA, and pH, shear force(stirring speed) and stirring time played significant roles in flocculation. The isoelectric point(IEP) and zeta-potential in whole range all moved to negative values as SPA was added according to the results from zeta-potential measurement. It was demonstrated that the primary reason for above was chemical adsorption. The laser-based particle size results showed the particle size at a stirring speed of 1800 r/min and 1000 mg/L SPA was the largest in all experiments. Furthermore, using the optical microscope observation and flotation tests, it was important for flotation of rutile fines to produce the flocculant. In the light of above-mentioned facts, floc flotation of rutile fines could be induced in the form of chemical adsorption by SPA to increase particle size. The data calculated from DLVO theory also indicated that chemical adsorption was the main reason for the formation of flocculant.
基金supported by the Key Natural Science Foundation of China (No. 51073077,50938004,50825802)the Research Project of Ministry of Housing and Urban-Rural Development of China (No. 2009-K7-11)+2 种基金the Open Fund from State Key Laboratory of Pollution Control and Resource Reuse of Nanjing University (No.PCRRF11004)the Fundamental Research Funds for the Central Universities (No. 1105020504,1116020510)the Scientific Research Foundation of Graduate School of Nanjing University (No. 2012CL06)
文摘A series of biodegradable amphoteric chitosan-based flocculants (3-chloro-2-hydroxypropyl trimethyl ammonium chloride (CTA) modified carboxymethyl chitosan, denoted as CMC-CTA) with different substitution degrees of CTA were prepared successfully. The content of carboxymethyl groups in each CMC-CTA sample was kept almost constant. The solubility of the various flocculants showed that, higher cationic content of flocculants caused a better solubility. The flocculation experiments using kaolin suspension as synthetic water at the laboratory scale indicated that the substitution degree of CTA was one of the key factors for the flocculation properties. With the increase of cationic content, the flocculants were demonstrated better flocculation performance and lower dosage requirement. Flocculation kinetics model of particles collisions combining zeta potential and turbidity measurements was employed to investigate the effects of the cationic content of the flocculants on the flocculation properties from the viewpoint of flocculation mechanism in detail. Furthermore, flocculation performance using raw water from Zhenjiang part of Yangtze River at the pilot scale showed the similar effects to those at the laboratory scale.
基金Project(2016zzts109)supported by the Innovation Driven Plan of Central South University,ChinaProject(2015CX005)supported by the Innovation driven Program of National Basic Research Program of ChinaProject(B14034)supported by the Program of Introdution Talents of Discipline to Universities,China(111 Project)
文摘Flotation tailings were successfully flocculated in the presence of cationic polyacrylamide and silica gel.The effects of various parameters such as polymer weight,charge density,and pH on the rate of flocculation were also investigated in the current study.The flocculation mechanism of the flocculant on tailings was investigated using zeta potential and Fourier transform infrared(FTIR)measurements.The results obtained reveal that 1)sodium silicate gel,used as a binder for the consolidation of tailings form primary flocs,acts as an anchor and the adsorption of polymer flocculant on these anchors results in the formation of larger flocs and,consequently,enhanced settling rate;2)flocculation in the presence of silica gel and polymer has a faster settling rate than single-polymer flocculation owing to the mechanisms of charge neutralization and bridging as identified using zeta potential and FTIR measurements.A pilot level study was conducted to investigate the influence of processed water on the flotation of scheelite.The results show that the proposed tailing disposal method could improve scheelite recovery by 2%(approximately)and could reduce the daily operation costs of the plant by approximately 108.57 USD.