期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Dynamic flight stability of a hovering model insect:lateral motion 被引量:17
1
作者 Yanlai Zhang Mao Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第2期175-190,共16页
The lateral dynamic flight stability of a hovering model insect (dronefly) was studied using the method of computational fluid dynamics to compute the stability derivatives and the techniques of eigenvalue and eigen... The lateral dynamic flight stability of a hovering model insect (dronefly) was studied using the method of computational fluid dynamics to compute the stability derivatives and the techniques of eigenvalue and eigenvector analysis for solving the equations of motion. The main results are as following. (i) Three natural modes of motion were identified: one unstable slow divergence mode (mode 1), one stable slow oscillatory mode (mode 2), and one stable fast subsidence mode (mode 3). Modes 1 and 2 mainly consist of a rotation about the horizontal longitudinal axis (x-axis) and a side translation; mode 3 mainly consists of a rotation about the x-axis and a rotation about the vertical axis. (ii) Approximate analytical expressions of the eigenvalues are derived, which give physical insight into the genesis of the natural modes of motion. (iii) For the unstable divergence mode, td, the time for initial disturbances to double, is about 9 times the wingbeat period (the longitudinal motion of the model insect was shown to be also unstable and td of the longitudinal unstable mode is about 14 times the wingbeat period). Thus, although the flight is not dynamically stable, the instability does not grow very fast and the insect has enough time to control its wing motion to suppress the disturbances. 展开更多
关键词 INSECT Dynamic flight stability Hovering ·Lateral motion Natural modes of motion
在线阅读 下载PDF
Dynamic flight stability of hovering model insects:theory versus simulation using equations of motion coupled with Navier-Stokes equations 被引量:9
2
作者 Yan-Lai Zhang Mao Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第4期509-520,共12页
In the present paper, the longitudinal dynamic flight stability properties of two model insects are predicted by an approximate theory and computed by numerical sim- ulation. The theory is based on the averaged model ... In the present paper, the longitudinal dynamic flight stability properties of two model insects are predicted by an approximate theory and computed by numerical sim- ulation. The theory is based on the averaged model (which assumes that the frequency of wingbeat is sufficiently higher than that of the body motion, so that the flapping wings' degrees of freedom relative to the body can be dropped and the wings can be replaced by wingbeat-cycle-average forces and moments); the simulation solves the complete equations of motion coupled with the Navier-Stokes equations. Comparison between the theory and the simulation provides a test to the validity of the assumptions in the theory. One of the insects is a model dronefly which has relatively high wingbeat frequency (164 Hz) and the other is a model hawkmoth which has relatively low wingbeat frequency (26 Hz). The results show that the averaged model is valid for the hawkmoth as well as for the dronefly. Since the wingbeat frequency of the hawkmoth is relatively low (the characteristic times of the natural modes of motion of the body divided by wingbeat period are relatively large) compared with many other insects, that the theory based on the averaged model is valid for the hawkmoth means that it could be valid for many insects. 展开更多
关键词 Insect Hovering Dynamic flight stability Averaged model Equations-of-motion Navier-Stokes simulation
在线阅读 下载PDF
A Computational Study on Lateral Flight Stability of the Cranefly in Hover 被引量:1
3
作者 Na Xu Shuaizhi Zhou +1 位作者 Chunchen Zhang Xiaolei Mou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第8期669-685,共17页
The dynamic flight stability of hovering insects includes the longitudinal and lateral motion.Research results have shown that for the majority of hovering insects the same longitudinal natural modes are identified an... The dynamic flight stability of hovering insects includes the longitudinal and lateral motion.Research results have shown that for the majority of hovering insects the same longitudinal natural modes are identified and the hovering flight in longitudinal is unstable.However,in lateral,the modal structure for hovering insects could be different and the stability property of lateral disturbance motion is not as robust as that of longitudinal motion.The cranefly possesses larger aspect ratio and lower Reynolds number,and such differences in morphology and kinematics may make the lateral dynamic stability different.In this paper,the lateral flight stability of the cranefly in hover is investigated by numerical simulation.Firstly,the stability derivatives are acquired by solving the incompressible Navier–Stokes equations.Subsequently,the dynamic stability characteristics are checked by analyzing the eigenvalues and eigenvectors of the linearized system.Computational results indicate that the lateral dynamic modal structure of cranefly is different from most other insects,consisting of three natural modes,and the weakly oscillatory mode illustrates the hovering lateral flight is nearly neutral.This neutral stability is mainly caused by the negative derivative of roll-moment vs.sideslip-velocity,which can be attributed to the weaker‘changingLEV-axial-velocity’effect.These results suggest that insects in nature may exhibit different dynamic stabilities with different morphological and kinematic parameters,which should be considered in the designs of flapping wing air vehicles. 展开更多
关键词 Flapping flight cranefly lateral flight stability natural modes of motion computational fluid dynamics
在线阅读 下载PDF
Dynamic flight stability of a model dronefly in vertical flight 被引量:1
4
作者 Chong Shen Mao Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第6期828-838,共11页
The dynamic flight stability of a model dronefly in hovering and upward flight is studied.The method of computational fluid dynamics is used to compute the stability derivatives and the techniques of eigenvalue and ei... The dynamic flight stability of a model dronefly in hovering and upward flight is studied.The method of computational fluid dynamics is used to compute the stability derivatives and the techniques of eigenvalue and eigenvector used to solve the equations of motion.The major finding is as following.Hovering flight of the model dronefly is unstable because of the existence of an unstable longitudinal and an unstable lateral natural mode of motion.Upward flight of the insect is also unstable,and the instability increases as the upward flight speed increases.Inertial force generated by the upward flight velocity coupled with the disturbance in pitching angular velocity is responsible for the enhancement of the instability. 展开更多
关键词 Insect vertical flight flight stability Natural modes of motion
在线阅读 下载PDF
The Method for Optimum Design of Water Rocket Flight Stability Performance Conditions Using CAE with T Method and Robust Parameter Design 被引量:2
5
作者 Eiji Toma Yoshihiro Ito 《Journal of Applied Mathematics and Physics》 2021年第11期2669-2697,共29页
A water rocket is a rocket system that obtains thrust by injecting water with compressed air of up to about 8 atmospheres. It is usually manufactured using a pressure-resistant PET bottle. The mechanical elements and ... A water rocket is a rocket system that obtains thrust by injecting water with compressed air of up to about 8 atmospheres. It is usually manufactured using a pressure-resistant PET bottle. The mechanical elements and principles contained in the water rocket have much in common with the actual small rocket system, and are suitable as educational and research teaching materials in the field of mechanics. Especially in the field of disaster prevention and mitigation, the use of water rockets is being researched and developed as a rescue tool in the event of a flood or earthquake as a disaster countermeasure. However, since the water rocket is a flying object based on the mechanical principle, it is important to ensure the accuracy and stability of the flight path. In this paper, a mechanical simulator is developed with a numerical calculation program based on the mechanical consideration of water rocket flight performance. In addition, the correlation between the flight distance obtained in the simulation and the estimated flight distance is analyzed by applying a multivariate analysis method and verifying the validity of the flight distance calculated from the result. Based on the verification results, we will apply a statistical optimization method to approach the optimization of flight stability performance conditions for water rockets. 展开更多
关键词 Flying Principle Multivariate Analysis T Method Robust Parameter Design flight stability Energetic SN Ratio
在线阅读 下载PDF
Dynamic flight stability of a bumblebee in forward flight 被引量:8
6
作者 Yan Xiong Mao Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第1期25-36,共12页
The longitudinal dynamic flight stability of a bumblebee in forward flight is studied. The method of computational fluid dynamics is used to compute the aerodynamic derivatives and the techniques of eigenvalue and eig... The longitudinal dynamic flight stability of a bumblebee in forward flight is studied. The method of computational fluid dynamics is used to compute the aerodynamic derivatives and the techniques of eigenvalue and eigenvector analysis are employed for solving the equations of motion. The primary findings are as the following. The forward flight of the bumblebee is not dynamically stable due to the existence of one (or two) unstable or approximately neutrally stable natural modes of motion. At hovering to medium flight speed [flight speed Ue = (0-3.5)m s^-1; advance ratio J = 0-0.44], the flight is weakly unstable or approximately neutrally stable; at high speed (Ue = 4.5 m s^-1; J = 0.57), the flight becomes strongly unstable (initial disturbance double its value in only 3.5 wingbeats). 展开更多
关键词 Bumblebee Dynamic stability Forward flight Navier-Stokes simulation Natural modes of motion
在线阅读 下载PDF
INVESTIGATION OF FLIGHT DYNAMICS OF THRUST VECTORING AIRCRAFT USING EXTENDED CONTINUATION METHODS
7
作者 沈宏良 刘昶 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2002年第2期151-156,共6页
This paper presents the flight dynamical behavior of the thrust vectoring aircraft with extended bifurcation and continuation methods. In contrast to the standard bifurcation and continuation methods, the extended met... This paper presents the flight dynamical behavior of the thrust vectoring aircraft with extended bifurcation and continuation methods. In contrast to the standard bifurcation and continuation methods, the extended methods are capable of calculating the continuation curves of the equilibrium points for the particular type of trimming flight. Therefore, these methods can not only give the performance measures of aircraft, but also determine the stability of trimming points. In this paper, the methods are used to verify the effectiveness of the thrust vectoring control law, to define the flight envelope boundary, to analyze the stability and controllability of trimming flight, and to predict the departures of the instable flight. The result shows that the extended methods provide more flight dynamic information and are useful in preliminary design of the thrust vectoring aircraft. 展开更多
关键词 thrust vectoring control continuation methods flight envelope flight stability
在线阅读 下载PDF
Study of vertically ascending flight of a hawkmoth model 被引量:1
8
作者 Anh Tuan Nguyen Vu Dan Thanh Le +2 位作者 The Hung Tran V.N.Due Van Binh Phung 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2020年第5期1031-1045,I0002,共16页
This paper provides insight into the wing kinematics,the power requirement and the dynamic stability characteristics of a hawkmoth model in vertically ascending flight.The wing kinematics of the hawkmoth model is obta... This paper provides insight into the wing kinematics,the power requirement and the dynamic stability characteristics of a hawkmoth model in vertically ascending flight.The wing kinematics of the hawkmoth model is obtained based on the minimum required power assumption.The optimization process is conducted using genetic and simplex algorithms that are coupled with an artificial neural network to rapidly predict the aerodynamic force and required power.The training data for the neural network are generated from an unsteady vortex-lattice method.Compared to hover,the results in this study show the larger flapping frequency and the smaller rotation amplitude of the hawkmoth wing kinematics in ascending flight.Additionally,more power is required when the ascending speed increases.While conducting a dynamic modal analysis based on a cycle-average approach,the certain effect of the ascending speed on the modal structures of the hawkmoth model was observed. 展开更多
关键词 HAWKMOTH Ascending flapping flight-Genetic algorithm Artificial neural network flight dynamic stability
原文传递
Stabilization control of a bumblebee in hovering and forward flight 被引量:1
9
作者 Yan Xiong Mao Sun Institute of Fluid Mechanics, Beihang University,Beijing 100083, China 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第1期13-21,共9页
Our previous study shows that the hovering and forward flight of a bumblebee do not have inherent stability (passive stability). But the bumblebees are observed to fly stably. Stabilization control must have been ap... Our previous study shows that the hovering and forward flight of a bumblebee do not have inherent stability (passive stability). But the bumblebees are observed to fly stably. Stabilization control must have been applied. In this study, we investigate the longitudinal stabilization control of the bumblebee. The method of computational fluid dynamics is used to compute the control derivatives and the techniques of eigenvalue and eigenvector analysis and modal decomposition are used for solving the equations of motion. Controllability analysis shows that at all flight speeds considered, although inherently unstable, the flight is controllable. By feedbacking the state variables, i.e. vertical and horizontal velocities, pitching rate and pitch angle (which can be measured by the sensory system of the insect), to produce changes in stroke angle and angle of attack of the wings, the flight can be stabilized, explaining why the bumblebees can fly stably even if they are passively unstable. 展开更多
关键词 Insect - Hovering and forward flight - Stabilization control Navier-Stokes simulation Modal analysis
在线阅读 下载PDF
Stabilization control of a hovering model insect:lateral motion 被引量:1
10
作者 Yan-Lai Zhang Mao Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第5期823-832,共10页
Our previous study shows that the lateral disturbance motion of a model drone fly does not have inherent stability (passive stability),because of the existence of an unstable divergence mode.But drone flies are obse... Our previous study shows that the lateral disturbance motion of a model drone fly does not have inherent stability (passive stability),because of the existence of an unstable divergence mode.But drone flies are observed to fly stably.Constantly active control must be applied to stabilize the flight.In this study,we investigate the lateral stabilization control of the model drone fly.The method of computational fluid dynamics is used to compute the lateral control derivatives and the techniques of eigenvalue and eigenvector analysis and modal decomposition are used for solving the equations of motion.Controllability analysis shows that although inherently unstable,the lateral disturbance motion is controllable.By feeding back the state variables (i.e.lateral translation velocity,yaw rate,roll rate and roll angle,which can be measured by the sensory system of the insect) to produce anti-symmetrical changes in stroke amplitude and/or in angle of attack between the left and right wings,the motion can be stabilized,explaining why the drone flies can fly stably even if the flight is passively unstable. 展开更多
关键词 Hovering drone fly Lateral motion flight stability Stabilization control Modal analysis
在线阅读 下载PDF
Aeroservoelastic modeling and analysis of a canard-configured air-breathing hypersonic vehicles 被引量:8
11
作者 Zeng Kaichun Xiang Jinwu Li Daochun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第4期831-840,共10页
Air-breathing hypersonic vehicles (HSVs) are typically characterized by interactions of elasticity, propulsion and rigid-body flight dynamics, which may result in intractable aeroservoelastic problem. When canard is... Air-breathing hypersonic vehicles (HSVs) are typically characterized by interactions of elasticity, propulsion and rigid-body flight dynamics, which may result in intractable aeroservoelastic problem. When canard is added, this problem would be even intensified by the introduction of low-frequency canard pivot mode. This paper concerns how the aeroservoelastic stability of a canard-configured HSV is affected by the pivot stiffnesses of all-moveable horizontal tail (HT) and canard. A wing/pivot system model is developed by considering the pivot torsional flexibility, fuselage vibration, and control input. The governing equations of the aeroservoelastic system are established by combining the equations of rigid-body motion, elastic fuselage model, wing/pivot system models and actuator dynamics. An unsteady aerodynamic model is developed by steady Shock-Expansion theory with an unsteady correction using local piston theory. A baseline controller is given to provide approximate inflight characteristics of rigid-body modes. The vehicle is trimmed for equilibrium state, around which the linearized equations are derived for stability analysis. A comparative study of damping ratios, closed-loop poles and responses are conducted with varying controller gains and pivot stiffnesses. Available bandwidth for control design is discussed and feasible region for pivot stiffnesses of HT and canard is given. 展开更多
关键词 Aeroservoelasticity Canard flight dynamics Hypersonic vehicles Pivot stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部