This paper investigates the power generation characteristics of solar cells mounted on unmanned aerial vehicles(UAVs)under the coupled influence of flight conditions and the sur-rounding environment.Firstly,the study ...This paper investigates the power generation characteristics of solar cells mounted on unmanned aerial vehicles(UAVs)under the coupled influence of flight conditions and the sur-rounding environment.Firstly,the study reveals that the voltage,current,and power output of the solar cells undergo consistent temporal variations throughout the day,primarily driven by voltage fluctuations,with a peak occurring around noon.Secondly,it is observed that the cells’performance is significantly more influenced by temporal variations in external light intensity than by temperature changes resulting from variations in flight speed.Finally,the study finds that the impact of flight altitude on the cells’performance is slightly more pronounced than the influence of temporal variations in external light intensity.展开更多
The lack of systematic and scientific top-level arrangement in the field of civil aircraft flight test leads to the problems of long duration and high cost.Based on the flight test activity,mathematical models of flig...The lack of systematic and scientific top-level arrangement in the field of civil aircraft flight test leads to the problems of long duration and high cost.Based on the flight test activity,mathematical models of flight test duration and cost are established to set up the framework of flight test process.The top-level arrangement for flight test is optimized by multi-objective algorithm to reduce the duration and cost of flight test.In order to verify the necessity and validity of the mathematical models and the optimization algorithm of top-level arrangement,real flight test data is used to make an example calculation.Results show that the multi-objective optimization results of the top-level flight arrangement are better than the initial arrangement data,which can shorten the duration,reduce the cost,and improve the efficiency of flight test.展开更多
1. Background Driven by ongoing economic expansion and low-altitude aviation development, the global air transportation industry has experienced significant growth in recent decades, resulting in increasing airspace c...1. Background Driven by ongoing economic expansion and low-altitude aviation development, the global air transportation industry has experienced significant growth in recent decades, resulting in increasing airspace complexity, and considerable challenges for Air Traffic Control(ATC). As the fundamental technique of the ATC system, Flight Trajectory Prediction(FTP) forecasts future traffic dynamics to support critical applications(such as conflict detection), and also serves as a cornerstone for future Trajectory-based Operations(TBO).展开更多
Generating dynamically feasible trajectory for fixed-wing Unmanned Aerial Vehicles(UAVs)in dense obstacle environments remains computationally intractable.This paper proposes a Safe Flight Corridor constrained Sequent...Generating dynamically feasible trajectory for fixed-wing Unmanned Aerial Vehicles(UAVs)in dense obstacle environments remains computationally intractable.This paper proposes a Safe Flight Corridor constrained Sequential Convex Programming(SFC-SCP)to improve the computation efficiency and reliability of trajectory generation.SFC-SCP combines the front-end convex polyhedron SFC construction and back-end SCP-based trajectory optimization.A Sparse A^(*)Search(SAS)driven SFC construction method is designed to efficiently generate polyhedron SFC according to the geometric relation among obstacles and collision-free waypoints.Via transforming the nonconvex obstacle-avoidance constraints to linear inequality constraints,SFC can mitigate infeasibility of trajectory planning and reduce computation complexity.Then,SCP casts the nonlinear trajectory optimization subject to SFC into convex programming subproblems to decrease the problem complexity.In addition,a convex optimizer based on interior point method is customized,where the search direction is calculated via successive elimination to further improve efficiency.Simulation experiments on dense obstacle scenarios show that SFC-SCP can generate dynamically feasible safe trajectory rapidly.Comparative studies with state-of-the-art SCP-based methods demonstrate the efficiency and reliability merits of SFC-SCP.Besides,the customized convex optimizer outperforms off-the-shelf optimizers in terms of computation time.展开更多
Airborne area-array whisk-broom imaging systems typically adopt constant-speed scanning schemes.For large-inertia scanning systems,constant-speed scanning requires substantial time to complete the reversal motion,redu...Airborne area-array whisk-broom imaging systems typically adopt constant-speed scanning schemes.For large-inertia scanning systems,constant-speed scanning requires substantial time to complete the reversal motion,reducing the system's adaptability to high-speed reversal scanning and decreasing scanning efficiency.This study proposes a novel sinusoidal variable-speed roll scanning strategy,which reduces abrupt changes in speed and acceleration,minimizing time loss during reversals.Based on the forward image motion compensation strategy in the pitch direction,we establish a line-of-sight(LOS)position calculation model with vertical flight path correction(VFPC),ensuring that the central LOS of the scanned image remains stable on the same horizontal line,facilitating accurate image stitching in whisk-broom imaging.Through theoretical analysis and simulation experiments,the proposed method improves the scanning efficiency by approximately 18.6%at a 90o whiskbroom imaging angle under the same speed height ratio conditions.The new VFPC method enables wide-field,high-resolution imaging,achieving single-line LOS horizontal stability with an accuracy of better than O.4 mrad.The research is of great significance to promote the further development of airborne area-array whisk-broom imaging technology toward wider fields of view,higher speed height ratios,and greater scanning efficiency.展开更多
The ability of queens and males of most ant species to disperse by flight has fundamentally contributed to the group’s evolutionary and ecological success and is a determining factor to take into account for biogeogr...The ability of queens and males of most ant species to disperse by flight has fundamentally contributed to the group’s evolutionary and ecological success and is a determining factor to take into account for biogeographic studies(Wagner and Liebherr 1992;Peeters and Ito 2001;Helms 2018).展开更多
Unmanned aerial vehicle light detection and ranging(UAV–LiDAR)is a new method for collecting understory terrain data.The high estimation accuracy of understory terrain is crucial for accurate tree height measurement ...Unmanned aerial vehicle light detection and ranging(UAV–LiDAR)is a new method for collecting understory terrain data.The high estimation accuracy of understory terrain is crucial for accurate tree height measurement and forest resource surveys.The UAV–LiDAR flight altitude and forest canopy cover significantly impact the accuracy of understory terrain estimation.However,since no research examined their combined effects,we aimed to investigate this relationship.This will help optimize UAV–LiDAR flight parameters for understory terrain estimation and forest surveys across various canopy cover.This study analyzed the impacts of three flight altitudes and three canopy cover on the estimation accuracy of understory terrain.The results showed that when canopy cover exceeded a specific value,UAV–LiDAR flight altitudes significantly affected understory terrain estimation.Given a forest canopy cover,the reduction in ground point coverage increased significantly as the flight altitude increased;given a flight altitude,the higher the canopy cover,the more significant the reduction in ground point coverage.In forests with a canopy cover≥0.9,there were substantial differences in the accuracies of understory digital elevation models(DEMs)generated using UAV–LiDAR at different flight altitudes.For forests with a canopy cover<0.9,the mean absolute error(MAE)of understory DEMs from UAV–LiDAR at different flight altitudes was≤0.17 m and the root mean square error(RMSE)was≤0.24 m.However,for forests with a canopy cover≥0.9,the UAV–LiDAR flight altitude significantly affected the accuracy of understory DEMs.At the same flight altitude,the MAE and RMSE of the estimated elevation for forests with a canopy cover≥0.9 were approximately twice those of the estimated elevation for forests with a canopy cover<0.9.In forests with low canopy cover,it is possible to improve data collection efficiency by selecting a higher flight altitude.However,UAV–LiDAR flight altitudes significantly affected understory terrain estimation in forests with high canopy cover,it is essential to adopt terrain-following flight modes,reduce flight altitudes,and maintain a consistent flight altitude during longterm monitoring in high canopy cover forests.展开更多
The service load on high temperature rotating components of aero-engines generally exhibits flight mission characteristics. The general shape of the load spectrum is that Type Ⅲ/Ⅳ cyclic loading and creep loading ar...The service load on high temperature rotating components of aero-engines generally exhibits flight mission characteristics. The general shape of the load spectrum is that Type Ⅲ/Ⅳ cyclic loading and creep loading are superimposed on Type Ⅰ cyclic loading. Meanwhile, the sequence of the Type Ⅲ/Ⅳ cyclic and creep loading varies with mission. This work performed load spectrum test with this characteristic on the Ni-based alloy FGH96. Then a life prediction method was developed based on the Chaboche fatigue damage accumulation model and a modified time fraction model. Creep followed by Fatigue (C-F) test was carried out to reveal the creep-fatigue interaction and calibrate parameters. The results show that most test results fall within the 2-fold deviation band. The sequence of creep-fatigue loading within the load spectrum exhibited a limited effect on life. Finally, simplified methods were developed to improve analysis efficiency, and cases where simplified methods could replace the proposed method were discussed.展开更多
With the rapid development of aviation industry and its increasing impact on the global climate change,the contributions of carbon emissions frominternational flights are attracting more and more attention worldwide.T...With the rapid development of aviation industry and its increasing impact on the global climate change,the contributions of carbon emissions frominternational flights are attracting more and more attention worldwide.This study,taking Macao as the aviation hub,established the cross-border aviation carbon emission evaluation model to explore dynamic carbon emissions and net-zero path of international flights.The aviation hubmainly covers 58 routes and five types of civil aircraft from 12 countries or regions during 2000-2022.The results show that the aviation transportation in Macao emitted about 1.44 million tons CO_(2)eq in 2019,which is high 3.6 times that of 2000.The COVID-19 has led to a rapid decline in aviation carbon emissions in a short period of time,carbon emissions in 2020 decreased by 80%compared to 2019.In terms of cumulative carbon emissions from 2000 to 2019,the A321 and A320 Airbus contribute to 80%of carbon emissions.And the Chinese mainland(37%)and Taiwan(29%)are the main sources of emissions.In 2000-2019,the proportion of carbon emissions from China(including Taiwan and Hong Kong)decrease from 91%to 53%,while the contribution from Southeast Asia(from 5% to 26%),Japan and South Korea(from 2% to 19%)keep the growth trends.In the optimal scenario(B3C3),net zero emissions of cross-border aviation in Macao can be not achieved,and there is still only by removing 0.3 million tons CO_(2)eq.Emission reduction technology and new energy usage are priorities for the aviation emission reduction.展开更多
In view of the deficiencies in aspects such as failure rate requirements and analysis assumptions of advisory circular,this paper investigates the sources of high safety requirements,and the top-down design method for...In view of the deficiencies in aspects such as failure rate requirements and analysis assumptions of advisory circular,this paper investigates the sources of high safety requirements,and the top-down design method for the flight control system life cycle.Correspondingly,measures are proposed,including enhancing the safety target value to 10^(−10)per flight hour and implementing development assurance.In view of the shortcomings of mainstream aircraft flight control systems,such as weak backup capability and complex fault reconfiguration logic,improvements have been made to the system’s operating modes,control channel allocation,and common mode failure mitigation schemes based on the existing flight control architecture.The flight control design trends and philosophies have been analyzed.A flight control system architecture scheme is proposed,which includes three operating modes and multi-level voters/monitors,three main control channels,and a backup system independent of the main control system,which has been confirmed through functional modeling simulations.The proposed method plays an important role in the architecture design of safety-critical flight control system.展开更多
Based on the analysis and research of the airworthiness objective of integrated modular avionics system(IMA),and the characteristics of IMA system’s comprehensive and complex cross-linking with other airborne systems...Based on the analysis and research of the airworthiness objective of integrated modular avionics system(IMA),and the characteristics of IMA system’s comprehensive and complex cross-linking with other airborne systems,the extraction strategy of IMA system’s compliance flight test subjects and the selection method of IMA system’s compliance flight test parameters are proposed.The data analysis method based on the abnormal probability matrix of the IMA system is proposed for the first time,and the abnormal state information of the IMA system can be quickly identified.The compliance flight test of the IMA system is completed with limited flight test resources,which achieves the purpose of saving flight test sorties and improving flight test efficiency.This research has been successfully applied to the airworthiness certification flight test of a certain civil transport aircraft in China,and can provide technical support for the subsequent type flight test.展开更多
With the advent of the next-generation Air Traffic Control(ATC)system,there is growing interest in using Artificial Intelligence(AI)techniques to enhance Situation Awareness(SA)for ATC Controllers(ATCOs),i.e.,Intellig...With the advent of the next-generation Air Traffic Control(ATC)system,there is growing interest in using Artificial Intelligence(AI)techniques to enhance Situation Awareness(SA)for ATC Controllers(ATCOs),i.e.,Intelligent SA(ISA).However,the existing AI-based SA approaches often rely on unimodal data and lack a comprehensive description and benchmark of the ISA tasks utilizing multi-modal data for real-time ATC environments.To address this gap,by analyzing the situation awareness procedure of the ATCOs,the ISA task is refined to the processing of the two primary elements,i.e.,spoken instructions and flight trajectories.Subsequently,the ISA is further formulated into Controlling Intent Understanding(CIU)and Flight Trajectory Prediction(FTP)tasks.For the CIU task,an innovative automatic speech recognition and understanding framework is designed to extract the controlling intent from unstructured and continuous ATC communications.For the FTP task,the single-and multi-horizon FTP approaches are investigated to support the high-precision prediction of the situation evolution.A total of 32 unimodal/multi-modal advanced methods with extensive evaluation metrics are introduced to conduct the benchmarks on the real-world multi-modal ATC situation dataset.Experimental results demonstrate the effectiveness of AI-based techniques in enhancing ISA for the ATC environment.展开更多
With the advancement of more electric aircraft(MEA)technology,the application of electro-hydrostatic actuators(EHAs)in aircraft actuation systems has become increasingly prevalent.This paper focuses on the modeling an...With the advancement of more electric aircraft(MEA)technology,the application of electro-hydrostatic actuators(EHAs)in aircraft actuation systems has become increasingly prevalent.This paper focuses on the modeling and mode switching analysis of EHA used in the primary flight control actuation systems of large aircraft,addressing the challenges associated with mode switching.First,we analyze the functional architecture and operational characteristics of multi-mode EHA,and sumarize the operating modes and implementation methods.Based on the EHA system architecture,we then develop a theoretical mathematical model and a simulation model.Using the simulation model,we analyze the performance of the EHA during normal operation.Finally,the performance of the EHA during mode switching under various functional switching scenarios is investigated.The results indicate that the EHA meets the performance requirements in terms of accuracy,bandwidth,and load capacity.Additionally,the hydraulic cylinder operates smoothly during the EHA mode switching,and the response time for switching between different modes is less than the specified threshold.These findings validate the system performance of multi-mode EHA,which helps to improve the reliability of EHA and the safety of aircraft flight control systems.展开更多
Accurate measurement of helicopter rotor motion parameters(flap,lead-lag,torsion,and azimuth angles)is essential for rotor blade design,helicopter dynamics modeling,and flight safety and health monitoring.However,the ...Accurate measurement of helicopter rotor motion parameters(flap,lead-lag,torsion,and azimuth angles)is essential for rotor blade design,helicopter dynamics modeling,and flight safety and health monitoring.However,the existing methods face challenges in testing equipment installation,calibration,and data transmission,resulting in limited reports on real-time in-flight measurements of blade motion parameters.This paper proposes a non-contact optoelectronic method based on two-dimensional position-sensitive detectors for in-flight measurement and a ground calibration system to obtain real-time rotor motion parameters during helicopter flight.The proposed method establishes the time evolution relationship of rotor motion parameters and verifies the performance of the in-flight measurement system regarding measurement resolution and accuracy through the construction of a blade motion posture experimental platform.The proposed method has been applied to the flight measurement of a medium-sized single-rotor helicopter,and the obtained results have been compared with theoretical analysis outcomes.Furthermore,this paper examines the characteristics of blade motion parameters during flight and discusses the challenges and potential solutions for measuring rotor motion parameters during helicopter flight using the proposed method.展开更多
UAV shipboard landing poses significant challenges in terms of safety and efficiency,due to the oscillatory ship motion caused by wave interactions and wind gusts,especially in rough sea states.To solve this issue,a f...UAV shipboard landing poses significant challenges in terms of safety and efficiency,due to the oscillatory ship motion caused by wave interactions and wind gusts,especially in rough sea states.To solve this issue,a flight envelope constrained fixed-time control strategy is proposed to achieve a reliable UAV landing on a maneuvering ship.Firstly,a sliding data window autoregressive model is designed to predict the ship's roll and pitch motions,which are accordingly utilized to identify an appropriate quiescent period for safe landing.Subsequently,a barrier-function-based nonsingular terminal sliding mode controller is developed to eliminate the tracking errors within the identified quiescent period,while ensuring the errors remain bounded to satisfy flight envelope constraints.In particular,lumped disturbance components are estimated by integrating a fixed-time disturbance observer and compensated in the controller.The key advantage of the proposed approach is that it well balances the control requirements between precise landing position and safe landing attitude,guaranteeing both steady-state performance and transient behavior of the tracking error.Finally,comparative Gazebo simulations in different sea state scenarios are conducted to verify the satisfactory control performance.展开更多
Flight feathers represent a hallmark innovation of avian evolution.Recent comparative genomic analyses identified a 284 bp avian-specific highly conserved element(ASHCE)located within the eighth intron of the SIM bHLH...Flight feathers represent a hallmark innovation of avian evolution.Recent comparative genomic analyses identified a 284 bp avian-specific highly conserved element(ASHCE)located within the eighth intron of the SIM bHLH transcription factor 1(Sim1)gene,postulated to act as a cis-regulatory element governing flight feather morphogenesis.To investigate its functional significance,genome-edited(GE)primordial germ cell(PGC)lines carrying targeted ASHCE deletions were generated using CRISPR/Cas9-mediated editing,with germline chimeric males subsequently mated with wild-type(WT)hens to obtain GE progeny.The resulting GE chickens harbored 257-260 bp deletions,excising approximately half of the Sim1-ASHCE sequence.Reverse transcription-quantitative real-time polymerase chain reaction(RT-qPCR)analysis showed an average 0.32-fold reduction in Sim1 expression in the forelimbs of GE embryos at day 8(E8)compared to WT counterparts.Despite this,GE chickens developed structurally normal flight and tail feathers.In situ hybridization localized Sim1 expression to the posterior mesenchyme surrounding flight feather buds in E8 WT embryos,but not within the buds themselves.These results suggest that partial deletion of Sim1-ASHCE,despite diminishing Sim1 expression,does not disrupt flight feather formation.The excised region appears to possess enhancer activity toward Sim1 but is dispensable for flight feather development.Complete ablation of the ASHCE will be necessary to fully resolve the regulatory role of Sim1 in avian feather morphogenesis.展开更多
Accurate recognition of flight deck operations for carrier-based aircraft, based on operation trajectories, is critical for optimizing carrier-based aircraft performance. This recognition involves understanding short-...Accurate recognition of flight deck operations for carrier-based aircraft, based on operation trajectories, is critical for optimizing carrier-based aircraft performance. This recognition involves understanding short-term and long-term spatial collaborative relationships among support agents and positions from long spatial–temporal trajectories. While the existing methods excel at recognizing collaborative behaviors from short trajectories, they often struggle with long spatial–temporal trajectories. To address this challenge, this paper introduces a dynamic graph method to enhance flight deck operation recognition. First, spatial–temporal collaborative relationships are modeled as a dynamic graph. Second, a discretized and compressed method is proposed to assign values to the states of this dynamic graph. To extract features that represent diverse collaborative relationships among agents and account for the duration of these relationships, a biased random walk is then conducted. Subsequently, the Swin Transformer is employed to comprehend spatial–temporal collaborative relationships, and a fully connected layer is applied to deck operation recognition. Finally, to address the scarcity of real datasets, a simulation pipeline is introduced to generate deck operations in virtual flight deck scenarios. Experimental results on the simulation dataset demonstrate the superior performance of the proposed method.展开更多
Considering the challenges posed by external disturbances on carrier-based aircraft land-ing control,higher demands are required for the precision and convergence of the carrier landingcontrol system.First,this paper ...Considering the challenges posed by external disturbances on carrier-based aircraft land-ing control,higher demands are required for the precision and convergence of the carrier landingcontrol system.First,this paper proposes an Adaptive Terminal Sliding Combined Super TwistingControl(ATS-STC)method to address the issues of low precision,slow convergence,and poor dis-turbance rejection capability resulting from external disturbances,such as carrier air-wake and deckmotion.By introducing a nonlinear term into the sliding surface and employing an integralapproach,the proposed ATS-STC method can ensure finite-time convergence and mitigate the chat-tering problem.An adaptive law is also utilized to estimate the external disturbances,therebyenhancing the anti-disturbance performance.Then,the stability and convergence time analysis ofthe designed controller are conducted.Based on the proposed method,an Automatic Carrier Land-ing System(ACLS)is developed to perform the carrier landing control task.Furthermore,a multi-dimensional validation is carried out.For the numerical simulation test,the Terminal Sliding ModeControl(TSMC)method and Proportion Integration Differentiation(PID)method are introducedas comparison,the quantitative assessment results show that the tracking error of TSMC and PIDcan reach 1.5 times and 2 times that of the proposed method.Finally,the Hardware-in-the-Loop(HIL)test and real flight test are conducted.All the experimental results demonstrate that the pro-posed control method is more effective and precise.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12464010,52462035)2022 Jiangxi Province High-Level and High-Skilled Leading Talent Training Project Selected(No.63)+1 种基金Jiujiang“Xuncheng Talents”(No.JJXC2023032)Jiujiang Basic Research Program Project(2025).
文摘This paper investigates the power generation characteristics of solar cells mounted on unmanned aerial vehicles(UAVs)under the coupled influence of flight conditions and the sur-rounding environment.Firstly,the study reveals that the voltage,current,and power output of the solar cells undergo consistent temporal variations throughout the day,primarily driven by voltage fluctuations,with a peak occurring around noon.Secondly,it is observed that the cells’performance is significantly more influenced by temporal variations in external light intensity than by temperature changes resulting from variations in flight speed.Finally,the study finds that the impact of flight altitude on the cells’performance is slightly more pronounced than the influence of temporal variations in external light intensity.
基金supported by the National Natural Science Foundation of China(62073267,61903305)the Fundamental Research Funds for the Central Universities(HXGJXM202214).
文摘The lack of systematic and scientific top-level arrangement in the field of civil aircraft flight test leads to the problems of long duration and high cost.Based on the flight test activity,mathematical models of flight test duration and cost are established to set up the framework of flight test process.The top-level arrangement for flight test is optimized by multi-objective algorithm to reduce the duration and cost of flight test.In order to verify the necessity and validity of the mathematical models and the optimization algorithm of top-level arrangement,real flight test data is used to make an example calculation.Results show that the multi-objective optimization results of the top-level flight arrangement are better than the initial arrangement data,which can shorten the duration,reduce the cost,and improve the efficiency of flight test.
文摘1. Background Driven by ongoing economic expansion and low-altitude aviation development, the global air transportation industry has experienced significant growth in recent decades, resulting in increasing airspace complexity, and considerable challenges for Air Traffic Control(ATC). As the fundamental technique of the ATC system, Flight Trajectory Prediction(FTP) forecasts future traffic dynamics to support critical applications(such as conflict detection), and also serves as a cornerstone for future Trajectory-based Operations(TBO).
基金supported by the National Natural Science Foundation of China(No.62203256)。
文摘Generating dynamically feasible trajectory for fixed-wing Unmanned Aerial Vehicles(UAVs)in dense obstacle environments remains computationally intractable.This paper proposes a Safe Flight Corridor constrained Sequential Convex Programming(SFC-SCP)to improve the computation efficiency and reliability of trajectory generation.SFC-SCP combines the front-end convex polyhedron SFC construction and back-end SCP-based trajectory optimization.A Sparse A^(*)Search(SAS)driven SFC construction method is designed to efficiently generate polyhedron SFC according to the geometric relation among obstacles and collision-free waypoints.Via transforming the nonconvex obstacle-avoidance constraints to linear inequality constraints,SFC can mitigate infeasibility of trajectory planning and reduce computation complexity.Then,SCP casts the nonlinear trajectory optimization subject to SFC into convex programming subproblems to decrease the problem complexity.In addition,a convex optimizer based on interior point method is customized,where the search direction is calculated via successive elimination to further improve efficiency.Simulation experiments on dense obstacle scenarios show that SFC-SCP can generate dynamically feasible safe trajectory rapidly.Comparative studies with state-of-the-art SCP-based methods demonstrate the efficiency and reliability merits of SFC-SCP.Besides,the customized convex optimizer outperforms off-the-shelf optimizers in terms of computation time.
基金Supported by the National Key Research and Development Program(2023YFC3107602)。
文摘Airborne area-array whisk-broom imaging systems typically adopt constant-speed scanning schemes.For large-inertia scanning systems,constant-speed scanning requires substantial time to complete the reversal motion,reducing the system's adaptability to high-speed reversal scanning and decreasing scanning efficiency.This study proposes a novel sinusoidal variable-speed roll scanning strategy,which reduces abrupt changes in speed and acceleration,minimizing time loss during reversals.Based on the forward image motion compensation strategy in the pitch direction,we establish a line-of-sight(LOS)position calculation model with vertical flight path correction(VFPC),ensuring that the central LOS of the scanned image remains stable on the same horizontal line,facilitating accurate image stitching in whisk-broom imaging.Through theoretical analysis and simulation experiments,the proposed method improves the scanning efficiency by approximately 18.6%at a 90o whiskbroom imaging angle under the same speed height ratio conditions.The new VFPC method enables wide-field,high-resolution imaging,achieving single-line LOS horizontal stability with an accuracy of better than O.4 mrad.The research is of great significance to promote the further development of airborne area-array whisk-broom imaging technology toward wider fields of view,higher speed height ratios,and greater scanning efficiency.
基金funded by the“Departments of Excellence”program of the Italian Ministry for University and Research(MIUR,2018-2022 and MUR,2023-2027).
文摘The ability of queens and males of most ant species to disperse by flight has fundamentally contributed to the group’s evolutionary and ecological success and is a determining factor to take into account for biogeographic studies(Wagner and Liebherr 1992;Peeters and Ito 2001;Helms 2018).
基金supported by the National Natural Science Foundation of China(No.32271876)the Research on Key Technologies of Intelligent Monitoring and Carbon Sink Metering of Forest Resources in Fujian Province(No.2022FKJ03)the Science and Technology Innovation Project of Fujian Agriculture and Forestry University(No.KFB23172A,KFB23173A).
文摘Unmanned aerial vehicle light detection and ranging(UAV–LiDAR)is a new method for collecting understory terrain data.The high estimation accuracy of understory terrain is crucial for accurate tree height measurement and forest resource surveys.The UAV–LiDAR flight altitude and forest canopy cover significantly impact the accuracy of understory terrain estimation.However,since no research examined their combined effects,we aimed to investigate this relationship.This will help optimize UAV–LiDAR flight parameters for understory terrain estimation and forest surveys across various canopy cover.This study analyzed the impacts of three flight altitudes and three canopy cover on the estimation accuracy of understory terrain.The results showed that when canopy cover exceeded a specific value,UAV–LiDAR flight altitudes significantly affected understory terrain estimation.Given a forest canopy cover,the reduction in ground point coverage increased significantly as the flight altitude increased;given a flight altitude,the higher the canopy cover,the more significant the reduction in ground point coverage.In forests with a canopy cover≥0.9,there were substantial differences in the accuracies of understory digital elevation models(DEMs)generated using UAV–LiDAR at different flight altitudes.For forests with a canopy cover<0.9,the mean absolute error(MAE)of understory DEMs from UAV–LiDAR at different flight altitudes was≤0.17 m and the root mean square error(RMSE)was≤0.24 m.However,for forests with a canopy cover≥0.9,the UAV–LiDAR flight altitude significantly affected the accuracy of understory DEMs.At the same flight altitude,the MAE and RMSE of the estimated elevation for forests with a canopy cover≥0.9 were approximately twice those of the estimated elevation for forests with a canopy cover<0.9.In forests with low canopy cover,it is possible to improve data collection efficiency by selecting a higher flight altitude.However,UAV–LiDAR flight altitudes significantly affected understory terrain estimation in forests with high canopy cover,it is essential to adopt terrain-following flight modes,reduce flight altitudes,and maintain a consistent flight altitude during longterm monitoring in high canopy cover forests.
基金supported by the National Science and Technology Major Project of China(No.J2019-IV-0017-0085)the National Natural Science Foundation of China(Nos.12172021,52205177)the Natural Science Foundation of Hunan Province,China(No.2021JJ40741).
文摘The service load on high temperature rotating components of aero-engines generally exhibits flight mission characteristics. The general shape of the load spectrum is that Type Ⅲ/Ⅳ cyclic loading and creep loading are superimposed on Type Ⅰ cyclic loading. Meanwhile, the sequence of the Type Ⅲ/Ⅳ cyclic and creep loading varies with mission. This work performed load spectrum test with this characteristic on the Ni-based alloy FGH96. Then a life prediction method was developed based on the Chaboche fatigue damage accumulation model and a modified time fraction model. Creep followed by Fatigue (C-F) test was carried out to reveal the creep-fatigue interaction and calibrate parameters. The results show that most test results fall within the 2-fold deviation band. The sequence of creep-fatigue loading within the load spectrum exhibited a limited effect on life. Finally, simplified methods were developed to improve analysis efficiency, and cases where simplified methods could replace the proposed method were discussed.
基金supported by the Science and Technology Development Fund,Macao SAR,China(Nos.0033/2022/AFJ and 0011/2023/AMJ)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515012017).
文摘With the rapid development of aviation industry and its increasing impact on the global climate change,the contributions of carbon emissions frominternational flights are attracting more and more attention worldwide.This study,taking Macao as the aviation hub,established the cross-border aviation carbon emission evaluation model to explore dynamic carbon emissions and net-zero path of international flights.The aviation hubmainly covers 58 routes and five types of civil aircraft from 12 countries or regions during 2000-2022.The results show that the aviation transportation in Macao emitted about 1.44 million tons CO_(2)eq in 2019,which is high 3.6 times that of 2000.The COVID-19 has led to a rapid decline in aviation carbon emissions in a short period of time,carbon emissions in 2020 decreased by 80%compared to 2019.In terms of cumulative carbon emissions from 2000 to 2019,the A321 and A320 Airbus contribute to 80%of carbon emissions.And the Chinese mainland(37%)and Taiwan(29%)are the main sources of emissions.In 2000-2019,the proportion of carbon emissions from China(including Taiwan and Hong Kong)decrease from 91%to 53%,while the contribution from Southeast Asia(from 5% to 26%),Japan and South Korea(from 2% to 19%)keep the growth trends.In the optimal scenario(B3C3),net zero emissions of cross-border aviation in Macao can be not achieved,and there is still only by removing 0.3 million tons CO_(2)eq.Emission reduction technology and new energy usage are priorities for the aviation emission reduction.
文摘In view of the deficiencies in aspects such as failure rate requirements and analysis assumptions of advisory circular,this paper investigates the sources of high safety requirements,and the top-down design method for the flight control system life cycle.Correspondingly,measures are proposed,including enhancing the safety target value to 10^(−10)per flight hour and implementing development assurance.In view of the shortcomings of mainstream aircraft flight control systems,such as weak backup capability and complex fault reconfiguration logic,improvements have been made to the system’s operating modes,control channel allocation,and common mode failure mitigation schemes based on the existing flight control architecture.The flight control design trends and philosophies have been analyzed.A flight control system architecture scheme is proposed,which includes three operating modes and multi-level voters/monitors,three main control channels,and a backup system independent of the main control system,which has been confirmed through functional modeling simulations.The proposed method plays an important role in the architecture design of safety-critical flight control system.
文摘Based on the analysis and research of the airworthiness objective of integrated modular avionics system(IMA),and the characteristics of IMA system’s comprehensive and complex cross-linking with other airborne systems,the extraction strategy of IMA system’s compliance flight test subjects and the selection method of IMA system’s compliance flight test parameters are proposed.The data analysis method based on the abnormal probability matrix of the IMA system is proposed for the first time,and the abnormal state information of the IMA system can be quickly identified.The compliance flight test of the IMA system is completed with limited flight test resources,which achieves the purpose of saving flight test sorties and improving flight test efficiency.This research has been successfully applied to the airworthiness certification flight test of a certain civil transport aircraft in China,and can provide technical support for the subsequent type flight test.
基金supported by the National Natural Science Foundation of China(Nos.62371323,62401380,U2433217,U2333209,and U20A20161)Natural Science Foundation of Sichuan Province,China(Nos.2025ZNSFSC1476)+2 种基金Sichuan Science and Technology Program,China(Nos.2024YFG0010 and 2024ZDZX0046)the Institutional Research Fund from Sichuan University(Nos.2024SCUQJTX030)the Open Fund of Key Laboratory of Flight Techniques and Flight Safety,CAAC(Nos.GY2024-01A).
文摘With the advent of the next-generation Air Traffic Control(ATC)system,there is growing interest in using Artificial Intelligence(AI)techniques to enhance Situation Awareness(SA)for ATC Controllers(ATCOs),i.e.,Intelligent SA(ISA).However,the existing AI-based SA approaches often rely on unimodal data and lack a comprehensive description and benchmark of the ISA tasks utilizing multi-modal data for real-time ATC environments.To address this gap,by analyzing the situation awareness procedure of the ATCOs,the ISA task is refined to the processing of the two primary elements,i.e.,spoken instructions and flight trajectories.Subsequently,the ISA is further formulated into Controlling Intent Understanding(CIU)and Flight Trajectory Prediction(FTP)tasks.For the CIU task,an innovative automatic speech recognition and understanding framework is designed to extract the controlling intent from unstructured and continuous ATC communications.For the FTP task,the single-and multi-horizon FTP approaches are investigated to support the high-precision prediction of the situation evolution.A total of 32 unimodal/multi-modal advanced methods with extensive evaluation metrics are introduced to conduct the benchmarks on the real-world multi-modal ATC situation dataset.Experimental results demonstrate the effectiveness of AI-based techniques in enhancing ISA for the ATC environment.
基金supported by the Chinese Civil Aircraft Project(No.MJ-2017-S49).
文摘With the advancement of more electric aircraft(MEA)technology,the application of electro-hydrostatic actuators(EHAs)in aircraft actuation systems has become increasingly prevalent.This paper focuses on the modeling and mode switching analysis of EHA used in the primary flight control actuation systems of large aircraft,addressing the challenges associated with mode switching.First,we analyze the functional architecture and operational characteristics of multi-mode EHA,and sumarize the operating modes and implementation methods.Based on the EHA system architecture,we then develop a theoretical mathematical model and a simulation model.Using the simulation model,we analyze the performance of the EHA during normal operation.Finally,the performance of the EHA during mode switching under various functional switching scenarios is investigated.The results indicate that the EHA meets the performance requirements in terms of accuracy,bandwidth,and load capacity.Additionally,the hydraulic cylinder operates smoothly during the EHA mode switching,and the response time for switching between different modes is less than the specified threshold.These findings validate the system performance of multi-mode EHA,which helps to improve the reliability of EHA and the safety of aircraft flight control systems.
基金the funding provided by the National Helicopter Development Project of China。
文摘Accurate measurement of helicopter rotor motion parameters(flap,lead-lag,torsion,and azimuth angles)is essential for rotor blade design,helicopter dynamics modeling,and flight safety and health monitoring.However,the existing methods face challenges in testing equipment installation,calibration,and data transmission,resulting in limited reports on real-time in-flight measurements of blade motion parameters.This paper proposes a non-contact optoelectronic method based on two-dimensional position-sensitive detectors for in-flight measurement and a ground calibration system to obtain real-time rotor motion parameters during helicopter flight.The proposed method establishes the time evolution relationship of rotor motion parameters and verifies the performance of the in-flight measurement system regarding measurement resolution and accuracy through the construction of a blade motion posture experimental platform.The proposed method has been applied to the flight measurement of a medium-sized single-rotor helicopter,and the obtained results have been compared with theoretical analysis outcomes.Furthermore,this paper examines the characteristics of blade motion parameters during flight and discusses the challenges and potential solutions for measuring rotor motion parameters during helicopter flight using the proposed method.
文摘UAV shipboard landing poses significant challenges in terms of safety and efficiency,due to the oscillatory ship motion caused by wave interactions and wind gusts,especially in rough sea states.To solve this issue,a flight envelope constrained fixed-time control strategy is proposed to achieve a reliable UAV landing on a maneuvering ship.Firstly,a sliding data window autoregressive model is designed to predict the ship's roll and pitch motions,which are accordingly utilized to identify an appropriate quiescent period for safe landing.Subsequently,a barrier-function-based nonsingular terminal sliding mode controller is developed to eliminate the tracking errors within the identified quiescent period,while ensuring the errors remain bounded to satisfy flight envelope constraints.In particular,lumped disturbance components are estimated by integrating a fixed-time disturbance observer and compensated in the controller.The key advantage of the proposed approach is that it well balances the control requirements between precise landing position and safe landing attitude,guaranteeing both steady-state performance and transient behavior of the tracking error.Finally,comparative Gazebo simulations in different sea state scenarios are conducted to verify the satisfactory control performance.
基金supported by the Ministry of Agriculture and Rural Affairs of the People's Republic of China(125A0607)Department of Science and Technology of Yunnan Province(XDYC-KJLJ-2022-0004)。
文摘Flight feathers represent a hallmark innovation of avian evolution.Recent comparative genomic analyses identified a 284 bp avian-specific highly conserved element(ASHCE)located within the eighth intron of the SIM bHLH transcription factor 1(Sim1)gene,postulated to act as a cis-regulatory element governing flight feather morphogenesis.To investigate its functional significance,genome-edited(GE)primordial germ cell(PGC)lines carrying targeted ASHCE deletions were generated using CRISPR/Cas9-mediated editing,with germline chimeric males subsequently mated with wild-type(WT)hens to obtain GE progeny.The resulting GE chickens harbored 257-260 bp deletions,excising approximately half of the Sim1-ASHCE sequence.Reverse transcription-quantitative real-time polymerase chain reaction(RT-qPCR)analysis showed an average 0.32-fold reduction in Sim1 expression in the forelimbs of GE embryos at day 8(E8)compared to WT counterparts.Despite this,GE chickens developed structurally normal flight and tail feathers.In situ hybridization localized Sim1 expression to the posterior mesenchyme surrounding flight feather buds in E8 WT embryos,but not within the buds themselves.These results suggest that partial deletion of Sim1-ASHCE,despite diminishing Sim1 expression,does not disrupt flight feather formation.The excised region appears to possess enhancer activity toward Sim1 but is dispensable for flight feather development.Complete ablation of the ASHCE will be necessary to fully resolve the regulatory role of Sim1 in avian feather morphogenesis.
基金co-supported by the National Key Research and Development Program of China(No. 2021YFB3301504)the National Natural Science Foundation of China (Nos. 62072415, 62036010, 42301526, 62372416 and 62472389)the National Natural Science Foundation of Henan Province, China (No. 242300421215)
文摘Accurate recognition of flight deck operations for carrier-based aircraft, based on operation trajectories, is critical for optimizing carrier-based aircraft performance. This recognition involves understanding short-term and long-term spatial collaborative relationships among support agents and positions from long spatial–temporal trajectories. While the existing methods excel at recognizing collaborative behaviors from short trajectories, they often struggle with long spatial–temporal trajectories. To address this challenge, this paper introduces a dynamic graph method to enhance flight deck operation recognition. First, spatial–temporal collaborative relationships are modeled as a dynamic graph. Second, a discretized and compressed method is proposed to assign values to the states of this dynamic graph. To extract features that represent diverse collaborative relationships among agents and account for the duration of these relationships, a biased random walk is then conducted. Subsequently, the Swin Transformer is employed to comprehend spatial–temporal collaborative relationships, and a fully connected layer is applied to deck operation recognition. Finally, to address the scarcity of real datasets, a simulation pipeline is introduced to generate deck operations in virtual flight deck scenarios. Experimental results on the simulation dataset demonstrate the superior performance of the proposed method.
基金supported by the National Natural Science Foundation of China(No.T2288101)the National Key Research and Development Project,China(No.2020YFC1512500)the Academic Excellence Foundation of Beijing University of Aeronautics and Astronautics(BUAA)。
文摘Considering the challenges posed by external disturbances on carrier-based aircraft land-ing control,higher demands are required for the precision and convergence of the carrier landingcontrol system.First,this paper proposes an Adaptive Terminal Sliding Combined Super TwistingControl(ATS-STC)method to address the issues of low precision,slow convergence,and poor dis-turbance rejection capability resulting from external disturbances,such as carrier air-wake and deckmotion.By introducing a nonlinear term into the sliding surface and employing an integralapproach,the proposed ATS-STC method can ensure finite-time convergence and mitigate the chat-tering problem.An adaptive law is also utilized to estimate the external disturbances,therebyenhancing the anti-disturbance performance.Then,the stability and convergence time analysis ofthe designed controller are conducted.Based on the proposed method,an Automatic Carrier Land-ing System(ACLS)is developed to perform the carrier landing control task.Furthermore,a multi-dimensional validation is carried out.For the numerical simulation test,the Terminal Sliding ModeControl(TSMC)method and Proportion Integration Differentiation(PID)method are introducedas comparison,the quantitative assessment results show that the tracking error of TSMC and PIDcan reach 1.5 times and 2 times that of the proposed method.Finally,the Hardware-in-the-Loop(HIL)test and real flight test are conducted.All the experimental results demonstrate that the pro-posed control method is more effective and precise.