Anti-tank intelligent mine is a kind of new intelligent anti-tank bomb relying on high precision detector.It can effectively capture and damage targets with wind resistance coefficient and other factors affecting its ...Anti-tank intelligent mine is a kind of new intelligent anti-tank bomb relying on high precision detector.It can effectively capture and damage targets with wind resistance coefficient and other factors affecting its flight characteristics under consideration.This article is based on the three-dimensional model of intelligent mine.To analyze its subsonic and transonic flow fields and the change law of aerodynamic force factor with the growth of the angle of attack,computational fluid dynamics software is used for intelligent mine flow field numerical calculation and the change law of pressure center.The results show that the large drag coefficient is conducive to the stability of scanning.Drastic changes of the flow field near the intelligent mine will disable its scanning movement.The simulation results can provide a reference for scanning stability analysis,overall performance optimization and appearance improvement.展开更多
Recycling rare earth elements(REEs)from waste is necessary for an environmentally sustainable reuse and wastewater management approach.Na-A zeolite was synthesized from coal fly ash(CFA)and applied for Ce^(3+)adsorpti...Recycling rare earth elements(REEs)from waste is necessary for an environmentally sustainable reuse and wastewater management approach.Na-A zeolite was synthesized from coal fly ash(CFA)and applied for Ce^(3+)adsorption.Fourier transform infrared(FTIR)spectra show peaks at 790,500 and 467 cm^(-1),which are bond vibrations of Si-O-Si,Si with Al-O and Si-O-.The surface area is 15.88 m^(2)/g,with a pore size of 2.14 nm.SEM images show a cubic shape,which indicates the formation of zeolite.Field emission and energy disperse spectroscopy(EDS)shows the formation of Si,Al,Na,and O.Na-A zeolite was applied for Ce^(3+)adsorption.The optimum conditions for Ce^(3+)adsorption are 50 ppm concentration,360 min,and pH 6.The maximum adsorption capacity is 176.49 mg/g.Based on the results,it is found that the adsorption of Ce^(3+)by Na-A zeolite is pseudo-second-order.The desorption test using HNO_(3) is more effective than using HCl and H_(2)SO_(4).A desorption efficiency of 97.22%is obtained at 4 cycles.Adsorption test using real sample wastewater demonstrates an adsorption efficiency of 83.35%.展开更多
Teacher–student relationships play a vital role in improving college students’academic performance and the quality of higher education.However,empirical studies with substantial data-driven insights remain limited.T...Teacher–student relationships play a vital role in improving college students’academic performance and the quality of higher education.However,empirical studies with substantial data-driven insights remain limited.To address this gap,this study collected 3278 questionnaires from seven universities across four provinces in China to analyze the key factors affecting college students’academic performance.A machine learning framework,CQFOA-KELM,was developed by enhancing the Fruit Fly Optimization Algorithm(FOA)with Covariance Matrix Adaptation Evolution Strategy(CMAES)and Quadratic Approximation(QA).CQFOA significantly improved population diversity and was validated on the IEEE CEC2017 benchmark functions.The CQFOA-KELM model achieved an accuracy of 98.15%and a sensitivity of 98.53%in predicting college students’academic performance.Additionally,it effectively identified the key factors influencing academic performance through the feature selection process.展开更多
Three types of activators such as sodium hydroxide,calcium oxide and triethanolamine(TEA)are used to establish different activation environments to address the problems associated with the process of activating fly as...Three types of activators such as sodium hydroxide,calcium oxide and triethanolamine(TEA)are used to establish different activation environments to address the problems associated with the process of activating fly ash paste.We conducted mechanical tests and numerical simulations to understand the evolution of microstructure,and used environmental scanning electron microscopy(ESEM)and energy dispersive spectroscopy(EDS)techniques to analyze the microenvironments of the samples.The mechanical properties of fly ash paste under different activation conditions and the changes in the microstructure and composition were investigated.The results revealed that under conditions of low NaOH content(1%-3%),the strength of the sample increased significantly.When the content exceeded 4%,the rate of increase in strength decreased.Based on the results,the optimal NaOH content was identified,which was about 4%.A good activation effect,especially for short-term activation(3-7 d),was achieved using TEA under high doping conditions.The activation effect was poor for long-term strength after 28 days.The CaO content did not significantly affect the degree of activation achieved.The maximum effect was exerted when the content of CaO was 2%.The virtual cement and concrete testing laboratory(VCCTL)was used to simulate the hydration process,and the results revealed that the use of the three types of activators accelerated the formation of Ca(OH)_(2) in the system.The activators also corroded the surface of the fly ash particles,resulting in a pozzolanic reaction.The active substances in fly ash were released efficiently,and hydration was realized.The pores were filled with hydration products,and the microstructure changed to form a new frame of paste filling that helped improve the strength of fly ash paste.展开更多
In order to study the characteristics of pure fly ash-based geopolymer concrete(PFGC)conveniently,we used a machine learning method that can quantify the perception of characteristics to predict its compressive streng...In order to study the characteristics of pure fly ash-based geopolymer concrete(PFGC)conveniently,we used a machine learning method that can quantify the perception of characteristics to predict its compressive strength.In this study,505 groups of data were collected,and a new database of compressive strength of PFGC was constructed.In order to establish an accurate prediction model of compressive strength,five different types of machine learning networks were used for comparative analysis.The five machine learning models all showed good compressive strength prediction performance on PFGC.Among them,R2,MSE,RMSE and MAE of decision tree model(DT)are 0.99,1.58,1.25,and 0.25,respectively.While R2,MSE,RMSE and MAE of random forest model(RF)are 0.97,5.17,2.27 and 1.38,respectively.The two models have high prediction accuracy and outstanding generalization ability.In order to enhance the interpretability of model decision-making,we used importance ranking to obtain the perception of machine learning model to 13 variables.These 13 variables include chemical composition of fly ash(SiO_(2)/Al_(2)O_(3),Si/Al),the ratio of alkaline liquid to the binder,curing temperature,curing durations inside oven,fly ash dosage,fine aggregate dosage,coarse aggregate dosage,extra water dosage and sodium hydroxide dosage.Curing temperature,specimen ages and curing durations inside oven have the greatest influence on the prediction results,indicating that curing conditions have more prominent influence on the compressive strength of PFGC than ordinary Portland cement concrete.The importance of curing conditions of PFGC even exceeds that of the concrete mix proportion,due to the low reactivity of pure fly ash.展开更多
In order to adjust some properties of cement grout or concrete,some mineral admixtures are usually added in the preparation.Admixtures can reduce the cement consumption and save the cost,and also adjust the workabilit...In order to adjust some properties of cement grout or concrete,some mineral admixtures are usually added in the preparation.Admixtures can reduce the cement consumption and save the cost,and also adjust the workability of the material,improve the strength and durability of the cement stone,or reduce hydration heat of the composite cement.At present,the content of fly ash or slag is generally less than 50%among the composite cementitious materials that have been studied more,but there is little research on composite cementitious materials with large mineral admixture.In this paper,XRD,SEM,and adiabatic temperature rise tests were used to discuss hydration products and mechanism of composite cement grout with 90%content of fly ash and slag.The results show that the hydration of the composite cement grout is an alkali-activated hydration reaction,and the hydration products are mainly amorphous substances such as hydrated calcium silicate or hydrated calcium aluminate gel.The hydration reaction temperature rise is much lower than that of ordinary cement grout,and the time of the temperature peak is significantly delayed.展开更多
Microwave-curing and mechanical grinding of fly ash have both beenadopted as effective methods for improving the early-age strength of alkali-activated fly ash(AAFA)binders.This study combined these two approaches by ...Microwave-curing and mechanical grinding of fly ash have both beenadopted as effective methods for improving the early-age strength of alkali-activated fly ash(AAFA)binders.This study combined these two approaches by synthesizing AAFA using original,medium-fine,and ultrafine fly ash as precursors,and then specimens were cured with a five-stage temperature-controlled microwave.The compressive strength results indicate that the original AAFA develops the highest strength initially during microwave-curing,reaching 28 MPa at stage 2.Medium-fine AAFA exhibits the highest strength of 60 MPa when cured to stage 4-I,which is 26%higher than the peak strength of original AAFA.It is attributed to the significant rise in their specific surface area,which accelerates the dissolution of Si and Al from the precursor and facilitates the subsequent formation of N-A-S-H gels.Additionally,nanoscale zeolite crystals formed as secondary products fill the tiny gaps between amorphous products,thereby significantly improving their microstructure.In contrast,ultrafine fly ash,primarily composed of fragmented particles,necessitated a substantial amount of water,which adversely affects the absorption efficiency for microwave of AAFA specimens.Thus,ultrafine AAFA specimens consistently exhibit the lowest compressive strength.Specifically,at the end of curing,the compressive strength of these three specimens with microwave-curing is approximately 32%,59%,and 172%higher than that of the steam-cured sample,respectively.These findings demonstrate the compatibility of microwave-curing and fly ash refinement in enhancing the early compressive strength development of AAFA.展开更多
To address the issues of low accuracy,long time consumption,and high cost of the traditional temperature prediction methods for laser directed energy deposition(LDED),a machine learning model combined with numerical s...To address the issues of low accuracy,long time consumption,and high cost of the traditional temperature prediction methods for laser directed energy deposition(LDED),a machine learning model combined with numerical simulation was proposed to predict the temperature during LDED.A finite element(FE)thermal analysis model was established.The model's accuracy was verified through in-situ monitoring experiments,and a basic database for the predictive model was obtained based on FE simulations.Temperature prediction was performed using a generalized regression neural network(GRNN).To reduce dependence on human experience during GRNN parameter tuning and to enhance model prediction performance,an improved adaptive step-size fruit fly optimization algorithm(ASSFOA)was introduced.Finally,the prediction performance of ASSFOA-GRNN model was compared with that of back-propagation neural network model,GRNN model,and fruit fly optimization algorithm(FOA)-GRNN model.The evaluation metrics included the root mean square error(RMSE),mean absolute error(MAE),coefficient of determination(R^(2)),training time,and prediction time.Results show that the ASSFOA-GRNN model exhibits optimal performance regarding RMSE,MAE,and R^(2) indexes.Although its prediction efficiency is slightly lower than that of the FOA-GRNN model,its prediction accuracy is significantly better than that of the other models.This proposed method can be used for temperature prediction in LDED process and also provide a reference for similar methods.展开更多
On September 12,2023,in a reply letter to Jeffrey Greene,Chairman of the Sino-American Aviation Heritage Foundation,and Flying Tigers veterans Harry Moyer and Mel McMullen,President Xi Jinping noted,"In the past,...On September 12,2023,in a reply letter to Jeffrey Greene,Chairman of the Sino-American Aviation Heritage Foundation,and Flying Tigers veterans Harry Moyer and Mel McMullen,President Xi Jinping noted,"In the past,our two peoples fought the Japanese fascists together,and forged a deep friendship that stood the test of blood and fre."展开更多
Municipal solid waste incineration fly ash(MSWI)is considered as one of the hazardous wastes and requires to be well disposed to reduce the contaminant to the environment.Reference to the production of coal fly ash(FA...Municipal solid waste incineration fly ash(MSWI)is considered as one of the hazardous wastes and requires to be well disposed to reduce the contaminant to the environment.Reference to the production of coal fly ash(FA)bricks,MSWI and FA were utilized to prepare autoclaved MSWI-FA block samples.Ultrasonic-assisted hydrothermal synthesis technology was used for production to explore the effect of ultrasonic pre-treatment.Compressive strength,dry density,and water absorption tests were conducted to determine the optimal ultrasonic parameters.Ultrasonic pre-treating mechanisms were investigated by SEM,FT-IR,particle size analysis,and BET.Furthermore,the micro-analyses of block samples were conducted.The heavy metal leaching concentration was studied to assess the environmental safety.The experimental results show that the ultrasonic pre-treating time,water bath temperature,and ultrasonic power of 3 h,30℃,and 840 W are the optimal,under which the compressive strength,dry density,and water absorption were 8.14 MPa,1417.48 kg/m^(3),and 0.38,respectively.It is shown that ultrasound destroys the surface structure of raw materials and smaller FA particles embed into MSWI.The particle size distribution of pre-treated raw materials mixture is wider and total pore volume is decreased by 6.3%.During hydrothermal processing,more Al-substituted tobermorite crystals are generated,which is the main source of higher strength and smaller pore volume of prepared block samples.The solidification/stabilization rates of Cu,Pb,and Zn increased by 30.77%,4.76%,and 35.29%,respectively.This study shows a feasible way to utilize MSWI as raw material for construction.展开更多
More than seventy years before airplanes were invented,a twelve⁃year⁃old girl named Ada Lovelace dreamed of flying.She studied birds and experimented with materials to make wings,even writing a guide called Flyology.B...More than seventy years before airplanes were invented,a twelve⁃year⁃old girl named Ada Lovelace dreamed of flying.She studied birds and experimented with materials to make wings,even writing a guide called Flyology.But her curiosity didnt stop there.展开更多
The widespread occurrence of carbapenem-resistant organisms has garnered significant public attention.Arthro-pods,including flies,are important vectors of multidrug-resistant bacteria.In this study,we reported the sim...The widespread occurrence of carbapenem-resistant organisms has garnered significant public attention.Arthro-pods,including flies,are important vectors of multidrug-resistant bacteria.In this study,we reported the simultane-ous carriage of four carbapenem-resistant isolates from different species,namely,Escherichia coli(E.coli),Providencia manganoxydans(P.manganoxydan),Myroides odoratimimus(M.odoratimimus)and Proteus mirabilis(P.mirabilis),from a single fly in China.These isolates were characterized through antimicrobial susceptibility testing,conjuga-tion assays,whole-genome sequencing,and bioinformatics analysis.M.odoratimimus showed intrinsic resistance to carbapenems.The mechanisms of carbapenem resistance in E.coli,P.manganoxydans,and P.mirabilis were due to the production of NDM-5,NDM-1 and NDM-1,respectively.Genetic context of the bla_(NDM) genes in these three isolates varied.The bla_(NDM-5) gene in E.coli was located on an IncHI2/HI2A multidrug-resistant plasmid,which was con-jugatively transferable.The bla_(NDM-1) gene in P.mirabilis resided on the pPM14-NDM_123k-like nonconjugative plasmid.The bla_(NDM-1) gene in P.manganoxydans was found in a nonconjugatively transferable,multidrug-resistant region.The results of this study enhance our understanding of the dissemination of carbapenem-resistant organisms and sug-gest the need for a more comprehensive approach to antibiotic resistance research encompassing humans,animals,and the environment.展开更多
The known species in the genus Clemelis Robineau-Desvoidy,1863 from China are reviewed and one new species from Shanxi,C.xuei sp.nov.,is described and illustrated.Clemelis jingentaoi,Zhang&Hao,2019 is a synonym of...The known species in the genus Clemelis Robineau-Desvoidy,1863 from China are reviewed and one new species from Shanxi,C.xuei sp.nov.,is described and illustrated.Clemelis jingentaoi,Zhang&Hao,2019 is a synonym of Austrophorocera hirsute(Mesnil,1946),syn.nov.A key to the two Chinese species is provided.展开更多
Tephritid fruit flies are considered one of the world’s most notorious pests of horticultural crops, including mango (Mangefera indica L.) in Sierra Leone, causing extensive direct and indirect damage. A survey was c...Tephritid fruit flies are considered one of the world’s most notorious pests of horticultural crops, including mango (Mangefera indica L.) in Sierra Leone, causing extensive direct and indirect damage. A survey was conducted among 60 mango farmers in 7 districts in Sierra Leone between June and August, 2022, to assess their perceptions regarding fruit fly pest status and the current management options adopted for the control of this pest. Semi-structured questions designed in an open and closed-ended fashion were used for the study. The majority (83%) of the farmers were already aware of the fruit fly problem in the country with 62% perceiving it to be very severe. The majority (60%) of farmers, however, demonstrated poor knowledge of identifying fruit fly species, especially Bactrocera dorsalis, Ceratitis capitata, and Ceratitis cosyra. Farmers were more conversant about the direct damage symptoms to host fruits and the economic impact of fruit flies. A total of 32% of growers took no action to control fruit flies on their farms. Sixty-nine percent (69%) of the farmers adopted cultural control measures, like practicing prompt harvesting, collection and disposal of infested fruits, and weeding to maintain better sanitary conditions on their farms. Recommended fruit fly management strategies such as the use of botanicals and resistant varieties were either unknown or inaccessible to growers. A total of 52% applied chemicals that were not recommended for the control of fruit flies without considering their environmental and health risks. It is important to train fruit growers to improve their capabilities for fruit fly management through extension agents that are appropriate for helping them acquire basic knowledge of fruit fly pests and their management.展开更多
The evaporation behaviors are crucial for the flame location estimation in liquid rocketengines.This work,for the first time,experimentally reports the sub-millimeter droplet evaporationcharacteristics of the corrosiv...The evaporation behaviors are crucial for the flame location estimation in liquid rocketengines.This work,for the first time,experimentally reports the sub-millimeter droplet evaporationcharacteristics of the corrosive dinitrogen tetroxide(NTO,one prevailing hypergolic oxidizer)athigh ambient pressure up to 4.5 MPa.An in-house corrosion-resistant droplet generator is usedto generate isolated flying droplets of sub-millimeter size,which are then exposed in a gas environ-ment with temperatures between 1010 K and 1210 K and pressures in the range between 2.0 MPaand 4.5 MPa,provided by an optical rapid compression machine.Parallelly,a theoretical modelconsidering both the droplet ambient convection and the NTO dissociation is developed.Resultsindicate that firstly,the present theoretical model that considers the transient droplet-ambient con-vection as well as the temperature and pressure dependent rate of dissociation shows good agree-ment with the experimentally observed droplet lifetime.In addition,the flying droplets velocityregress gradually due to momentum exchange with the ambient,which is more prominent at higherpressure.The evaporation caused droplet size reduction is consistent with the classical D^(2)-law pre-diction,in the present temperature and pressure range.Finally,higher temperature and pressureaccelerate the evaporation and an empirical correlation for the temperature and pressure dependentevaporation rate constant is proposed,which shows good agreement with experiment and simula-tion results.展开更多
In an era when Chinese-American relations face challenges,an organization is promoting the shared“Flying Tigers”legacy as a reminder of what can be achieved with solidarity.
WEIFANG City of east China’s Shandong Province is located in the central part of the Shandong Peninsula,bordering the Bohai Sea to the north and the Yellow Sea to the south.In springtime,the region sees little rainfa...WEIFANG City of east China’s Shandong Province is located in the central part of the Shandong Peninsula,bordering the Bohai Sea to the north and the Yellow Sea to the south.In springtime,the region sees little rainfall yet many windy days,with a single prevailing wind direction and minimal turbulence-an environmental condition ideal for kite flying.展开更多
Flying insects demonstrate remarkable control over their body movements and orientation,enabling them to perform rapid maneuvers and withstand external disturbances in just a few wing beats.This fast flight stabilizat...Flying insects demonstrate remarkable control over their body movements and orientation,enabling them to perform rapid maneuvers and withstand external disturbances in just a few wing beats.This fast flight stabilization mechanism has captured the interest of biologists and engineers,driving the exploration of flapping-wing flight control systems and their potential applications in bioinspired flying robots.While many control models have been developed within a rigorous mathematical framework using linear feedback systems,such as proportional(P),integral(I),and derivative(D)-based controllers,the exact mechanisms by which insects achieve the fastest stabilization-despite constraints such as passive aerodynamic damping and feedback delay-remain unclear.In this study,we demonstrate that flying insects employ a novel strategy for fast flight stabilization by minimizing the restoration time under external perturbations.We introduce a versatile PD-based control model that solves the closed-loop dynamics of insect flight and optimizes flight stabilization within a mathematical framework.Our findings reveal that passive aerodynamic damping plays a crucial role in stabilizing flight,acting as derivative feedback without delay,whereas feedback delay hinders stabilization.Additionally,we show that minimizing the restoring time leads to the fastest flight stabilization.Hovering flight analyses of fruit flies,honeybees,hawkmoths,and hummingbirds suggest that restoring time minimization through dynamic oscillatory modes rather than closed-loop time constants is a common strategy among small bioflies for effective maneuvering against disturbances.This strategy,which spans a broad range of Reynolds numbers(on the order of 102 to 104),could offer valuable insights for designing flight controllers in bioinspired flying robots.展开更多
基金National Natural Science Foundation of China(No.1157229)Graduate Student Education Innovation Project of Shanxi Province(No.2015SY58)
文摘Anti-tank intelligent mine is a kind of new intelligent anti-tank bomb relying on high precision detector.It can effectively capture and damage targets with wind resistance coefficient and other factors affecting its flight characteristics under consideration.This article is based on the three-dimensional model of intelligent mine.To analyze its subsonic and transonic flow fields and the change law of aerodynamic force factor with the growth of the angle of attack,computational fluid dynamics software is used for intelligent mine flow field numerical calculation and the change law of pressure center.The results show that the large drag coefficient is conducive to the stability of scanning.Drastic changes of the flow field near the intelligent mine will disable its scanning movement.The simulation results can provide a reference for scanning stability analysis,overall performance optimization and appearance improvement.
基金Project supported by Rumah Program 2023 and Net Zero Emission Program(1507/Ⅱ.7/HK.01.00/6/2023)a research facility from the National Research and Innovation Agency of Republic of Indonesia。
文摘Recycling rare earth elements(REEs)from waste is necessary for an environmentally sustainable reuse and wastewater management approach.Na-A zeolite was synthesized from coal fly ash(CFA)and applied for Ce^(3+)adsorption.Fourier transform infrared(FTIR)spectra show peaks at 790,500 and 467 cm^(-1),which are bond vibrations of Si-O-Si,Si with Al-O and Si-O-.The surface area is 15.88 m^(2)/g,with a pore size of 2.14 nm.SEM images show a cubic shape,which indicates the formation of zeolite.Field emission and energy disperse spectroscopy(EDS)shows the formation of Si,Al,Na,and O.Na-A zeolite was applied for Ce^(3+)adsorption.The optimum conditions for Ce^(3+)adsorption are 50 ppm concentration,360 min,and pH 6.The maximum adsorption capacity is 176.49 mg/g.Based on the results,it is found that the adsorption of Ce^(3+)by Na-A zeolite is pseudo-second-order.The desorption test using HNO_(3) is more effective than using HCl and H_(2)SO_(4).A desorption efficiency of 97.22%is obtained at 4 cycles.Adsorption test using real sample wastewater demonstrates an adsorption efficiency of 83.35%.
文摘Teacher–student relationships play a vital role in improving college students’academic performance and the quality of higher education.However,empirical studies with substantial data-driven insights remain limited.To address this gap,this study collected 3278 questionnaires from seven universities across four provinces in China to analyze the key factors affecting college students’academic performance.A machine learning framework,CQFOA-KELM,was developed by enhancing the Fruit Fly Optimization Algorithm(FOA)with Covariance Matrix Adaptation Evolution Strategy(CMAES)and Quadratic Approximation(QA).CQFOA significantly improved population diversity and was validated on the IEEE CEC2017 benchmark functions.The CQFOA-KELM model achieved an accuracy of 98.15%and a sensitivity of 98.53%in predicting college students’academic performance.Additionally,it effectively identified the key factors influencing academic performance through the feature selection process.
基金Supported by Yunnan Major Scientific and Technological Projects(No.202403AA080001)National Natural Science Foundation of China(No.52074137)Yunnan Fundamental Research Projects(No.202201AT070151)。
文摘Three types of activators such as sodium hydroxide,calcium oxide and triethanolamine(TEA)are used to establish different activation environments to address the problems associated with the process of activating fly ash paste.We conducted mechanical tests and numerical simulations to understand the evolution of microstructure,and used environmental scanning electron microscopy(ESEM)and energy dispersive spectroscopy(EDS)techniques to analyze the microenvironments of the samples.The mechanical properties of fly ash paste under different activation conditions and the changes in the microstructure and composition were investigated.The results revealed that under conditions of low NaOH content(1%-3%),the strength of the sample increased significantly.When the content exceeded 4%,the rate of increase in strength decreased.Based on the results,the optimal NaOH content was identified,which was about 4%.A good activation effect,especially for short-term activation(3-7 d),was achieved using TEA under high doping conditions.The activation effect was poor for long-term strength after 28 days.The CaO content did not significantly affect the degree of activation achieved.The maximum effect was exerted when the content of CaO was 2%.The virtual cement and concrete testing laboratory(VCCTL)was used to simulate the hydration process,and the results revealed that the use of the three types of activators accelerated the formation of Ca(OH)_(2) in the system.The activators also corroded the surface of the fly ash particles,resulting in a pozzolanic reaction.The active substances in fly ash were released efficiently,and hydration was realized.The pores were filled with hydration products,and the microstructure changed to form a new frame of paste filling that helped improve the strength of fly ash paste.
基金Funded by the Natural Science Foundation of China(No.52109168)。
文摘In order to study the characteristics of pure fly ash-based geopolymer concrete(PFGC)conveniently,we used a machine learning method that can quantify the perception of characteristics to predict its compressive strength.In this study,505 groups of data were collected,and a new database of compressive strength of PFGC was constructed.In order to establish an accurate prediction model of compressive strength,five different types of machine learning networks were used for comparative analysis.The five machine learning models all showed good compressive strength prediction performance on PFGC.Among them,R2,MSE,RMSE and MAE of decision tree model(DT)are 0.99,1.58,1.25,and 0.25,respectively.While R2,MSE,RMSE and MAE of random forest model(RF)are 0.97,5.17,2.27 and 1.38,respectively.The two models have high prediction accuracy and outstanding generalization ability.In order to enhance the interpretability of model decision-making,we used importance ranking to obtain the perception of machine learning model to 13 variables.These 13 variables include chemical composition of fly ash(SiO_(2)/Al_(2)O_(3),Si/Al),the ratio of alkaline liquid to the binder,curing temperature,curing durations inside oven,fly ash dosage,fine aggregate dosage,coarse aggregate dosage,extra water dosage and sodium hydroxide dosage.Curing temperature,specimen ages and curing durations inside oven have the greatest influence on the prediction results,indicating that curing conditions have more prominent influence on the compressive strength of PFGC than ordinary Portland cement concrete.The importance of curing conditions of PFGC even exceeds that of the concrete mix proportion,due to the low reactivity of pure fly ash.
文摘In order to adjust some properties of cement grout or concrete,some mineral admixtures are usually added in the preparation.Admixtures can reduce the cement consumption and save the cost,and also adjust the workability of the material,improve the strength and durability of the cement stone,or reduce hydration heat of the composite cement.At present,the content of fly ash or slag is generally less than 50%among the composite cementitious materials that have been studied more,but there is little research on composite cementitious materials with large mineral admixture.In this paper,XRD,SEM,and adiabatic temperature rise tests were used to discuss hydration products and mechanism of composite cement grout with 90%content of fly ash and slag.The results show that the hydration of the composite cement grout is an alkali-activated hydration reaction,and the hydration products are mainly amorphous substances such as hydrated calcium silicate or hydrated calcium aluminate gel.The hydration reaction temperature rise is much lower than that of ordinary cement grout,and the time of the temperature peak is significantly delayed.
文摘Microwave-curing and mechanical grinding of fly ash have both beenadopted as effective methods for improving the early-age strength of alkali-activated fly ash(AAFA)binders.This study combined these two approaches by synthesizing AAFA using original,medium-fine,and ultrafine fly ash as precursors,and then specimens were cured with a five-stage temperature-controlled microwave.The compressive strength results indicate that the original AAFA develops the highest strength initially during microwave-curing,reaching 28 MPa at stage 2.Medium-fine AAFA exhibits the highest strength of 60 MPa when cured to stage 4-I,which is 26%higher than the peak strength of original AAFA.It is attributed to the significant rise in their specific surface area,which accelerates the dissolution of Si and Al from the precursor and facilitates the subsequent formation of N-A-S-H gels.Additionally,nanoscale zeolite crystals formed as secondary products fill the tiny gaps between amorphous products,thereby significantly improving their microstructure.In contrast,ultrafine fly ash,primarily composed of fragmented particles,necessitated a substantial amount of water,which adversely affects the absorption efficiency for microwave of AAFA specimens.Thus,ultrafine AAFA specimens consistently exhibit the lowest compressive strength.Specifically,at the end of curing,the compressive strength of these three specimens with microwave-curing is approximately 32%,59%,and 172%higher than that of the steam-cured sample,respectively.These findings demonstrate the compatibility of microwave-curing and fly ash refinement in enhancing the early compressive strength development of AAFA.
基金National Key Research and Development Program of China(2022YFB4602200)。
文摘To address the issues of low accuracy,long time consumption,and high cost of the traditional temperature prediction methods for laser directed energy deposition(LDED),a machine learning model combined with numerical simulation was proposed to predict the temperature during LDED.A finite element(FE)thermal analysis model was established.The model's accuracy was verified through in-situ monitoring experiments,and a basic database for the predictive model was obtained based on FE simulations.Temperature prediction was performed using a generalized regression neural network(GRNN).To reduce dependence on human experience during GRNN parameter tuning and to enhance model prediction performance,an improved adaptive step-size fruit fly optimization algorithm(ASSFOA)was introduced.Finally,the prediction performance of ASSFOA-GRNN model was compared with that of back-propagation neural network model,GRNN model,and fruit fly optimization algorithm(FOA)-GRNN model.The evaluation metrics included the root mean square error(RMSE),mean absolute error(MAE),coefficient of determination(R^(2)),training time,and prediction time.Results show that the ASSFOA-GRNN model exhibits optimal performance regarding RMSE,MAE,and R^(2) indexes.Although its prediction efficiency is slightly lower than that of the FOA-GRNN model,its prediction accuracy is significantly better than that of the other models.This proposed method can be used for temperature prediction in LDED process and also provide a reference for similar methods.
文摘On September 12,2023,in a reply letter to Jeffrey Greene,Chairman of the Sino-American Aviation Heritage Foundation,and Flying Tigers veterans Harry Moyer and Mel McMullen,President Xi Jinping noted,"In the past,our two peoples fought the Japanese fascists together,and forged a deep friendship that stood the test of blood and fre."
基金Funded by the National Natural Science Foundation of China(No.52178241)the National Key Research and Development Program of China during the Fourteenth Five-Year Plan Period(No.2021YFB3802001)+1 种基金the Shanghai Science and Technology Innovation Action Plan(No.23D21201401)the Key Research and Development of the Shaanxi Province of China(No.2022GY-163)。
文摘Municipal solid waste incineration fly ash(MSWI)is considered as one of the hazardous wastes and requires to be well disposed to reduce the contaminant to the environment.Reference to the production of coal fly ash(FA)bricks,MSWI and FA were utilized to prepare autoclaved MSWI-FA block samples.Ultrasonic-assisted hydrothermal synthesis technology was used for production to explore the effect of ultrasonic pre-treatment.Compressive strength,dry density,and water absorption tests were conducted to determine the optimal ultrasonic parameters.Ultrasonic pre-treating mechanisms were investigated by SEM,FT-IR,particle size analysis,and BET.Furthermore,the micro-analyses of block samples were conducted.The heavy metal leaching concentration was studied to assess the environmental safety.The experimental results show that the ultrasonic pre-treating time,water bath temperature,and ultrasonic power of 3 h,30℃,and 840 W are the optimal,under which the compressive strength,dry density,and water absorption were 8.14 MPa,1417.48 kg/m^(3),and 0.38,respectively.It is shown that ultrasound destroys the surface structure of raw materials and smaller FA particles embed into MSWI.The particle size distribution of pre-treated raw materials mixture is wider and total pore volume is decreased by 6.3%.During hydrothermal processing,more Al-substituted tobermorite crystals are generated,which is the main source of higher strength and smaller pore volume of prepared block samples.The solidification/stabilization rates of Cu,Pb,and Zn increased by 30.77%,4.76%,and 35.29%,respectively.This study shows a feasible way to utilize MSWI as raw material for construction.
文摘More than seventy years before airplanes were invented,a twelve⁃year⁃old girl named Ada Lovelace dreamed of flying.She studied birds and experimented with materials to make wings,even writing a guide called Flyology.But her curiosity didnt stop there.
基金funded by the National Natural Science Foundation of China(Grant No.32300156)the Natural Science Foundation of Jiangsu Province(Grant No.BK20220493).
文摘The widespread occurrence of carbapenem-resistant organisms has garnered significant public attention.Arthro-pods,including flies,are important vectors of multidrug-resistant bacteria.In this study,we reported the simultane-ous carriage of four carbapenem-resistant isolates from different species,namely,Escherichia coli(E.coli),Providencia manganoxydans(P.manganoxydan),Myroides odoratimimus(M.odoratimimus)and Proteus mirabilis(P.mirabilis),from a single fly in China.These isolates were characterized through antimicrobial susceptibility testing,conjuga-tion assays,whole-genome sequencing,and bioinformatics analysis.M.odoratimimus showed intrinsic resistance to carbapenems.The mechanisms of carbapenem resistance in E.coli,P.manganoxydans,and P.mirabilis were due to the production of NDM-5,NDM-1 and NDM-1,respectively.Genetic context of the bla_(NDM) genes in these three isolates varied.The bla_(NDM-5) gene in E.coli was located on an IncHI2/HI2A multidrug-resistant plasmid,which was con-jugatively transferable.The bla_(NDM-1) gene in P.mirabilis resided on the pPM14-NDM_123k-like nonconjugative plasmid.The bla_(NDM-1) gene in P.manganoxydans was found in a nonconjugatively transferable,multidrug-resistant region.The results of this study enhance our understanding of the dissemination of carbapenem-resistant organisms and sug-gest the need for a more comprehensive approach to antibiotic resistance research encompassing humans,animals,and the environment.
基金supported by the Science&Technology Fundamental Resources Investigation Program(2023FY100302)the National Natural Science Foundation of China(32470459+1 种基金31272279)the Natural Science Foundation of Liaoning Province(2022-BS-332).
文摘The known species in the genus Clemelis Robineau-Desvoidy,1863 from China are reviewed and one new species from Shanxi,C.xuei sp.nov.,is described and illustrated.Clemelis jingentaoi,Zhang&Hao,2019 is a synonym of Austrophorocera hirsute(Mesnil,1946),syn.nov.A key to the two Chinese species is provided.
文摘Tephritid fruit flies are considered one of the world’s most notorious pests of horticultural crops, including mango (Mangefera indica L.) in Sierra Leone, causing extensive direct and indirect damage. A survey was conducted among 60 mango farmers in 7 districts in Sierra Leone between June and August, 2022, to assess their perceptions regarding fruit fly pest status and the current management options adopted for the control of this pest. Semi-structured questions designed in an open and closed-ended fashion were used for the study. The majority (83%) of the farmers were already aware of the fruit fly problem in the country with 62% perceiving it to be very severe. The majority (60%) of farmers, however, demonstrated poor knowledge of identifying fruit fly species, especially Bactrocera dorsalis, Ceratitis capitata, and Ceratitis cosyra. Farmers were more conversant about the direct damage symptoms to host fruits and the economic impact of fruit flies. A total of 32% of growers took no action to control fruit flies on their farms. Sixty-nine percent (69%) of the farmers adopted cultural control measures, like practicing prompt harvesting, collection and disposal of infested fruits, and weeding to maintain better sanitary conditions on their farms. Recommended fruit fly management strategies such as the use of botanicals and resistant varieties were either unknown or inaccessible to growers. A total of 52% applied chemicals that were not recommended for the control of fruit flies without considering their environmental and health risks. It is important to train fruit growers to improve their capabilities for fruit fly management through extension agents that are appropriate for helping them acquire basic knowledge of fruit fly pests and their management.
基金supported by the Natural Science Foundation of China(No.52236001)The support from Research Grants Council of Hong Kong,China(No.CityU 15218820)was also appreciated。
文摘The evaporation behaviors are crucial for the flame location estimation in liquid rocketengines.This work,for the first time,experimentally reports the sub-millimeter droplet evaporationcharacteristics of the corrosive dinitrogen tetroxide(NTO,one prevailing hypergolic oxidizer)athigh ambient pressure up to 4.5 MPa.An in-house corrosion-resistant droplet generator is usedto generate isolated flying droplets of sub-millimeter size,which are then exposed in a gas environ-ment with temperatures between 1010 K and 1210 K and pressures in the range between 2.0 MPaand 4.5 MPa,provided by an optical rapid compression machine.Parallelly,a theoretical modelconsidering both the droplet ambient convection and the NTO dissociation is developed.Resultsindicate that firstly,the present theoretical model that considers the transient droplet-ambient con-vection as well as the temperature and pressure dependent rate of dissociation shows good agree-ment with the experimentally observed droplet lifetime.In addition,the flying droplets velocityregress gradually due to momentum exchange with the ambient,which is more prominent at higherpressure.The evaporation caused droplet size reduction is consistent with the classical D^(2)-law pre-diction,in the present temperature and pressure range.Finally,higher temperature and pressureaccelerate the evaporation and an empirical correlation for the temperature and pressure dependentevaporation rate constant is proposed,which shows good agreement with experiment and simula-tion results.
文摘In an era when Chinese-American relations face challenges,an organization is promoting the shared“Flying Tigers”legacy as a reminder of what can be achieved with solidarity.
文摘WEIFANG City of east China’s Shandong Province is located in the central part of the Shandong Peninsula,bordering the Bohai Sea to the north and the Yellow Sea to the south.In springtime,the region sees little rainfall yet many windy days,with a single prevailing wind direction and minimal turbulence-an environmental condition ideal for kite flying.
基金supported by the Japan Society for the Promotion of Science, Grants-in-Aid for Scientific Research (Grant Nos. 19H02060 , 23H01373 , and 23K26068)the Excellent International Student Scholarship provided by Chiba University
文摘Flying insects demonstrate remarkable control over their body movements and orientation,enabling them to perform rapid maneuvers and withstand external disturbances in just a few wing beats.This fast flight stabilization mechanism has captured the interest of biologists and engineers,driving the exploration of flapping-wing flight control systems and their potential applications in bioinspired flying robots.While many control models have been developed within a rigorous mathematical framework using linear feedback systems,such as proportional(P),integral(I),and derivative(D)-based controllers,the exact mechanisms by which insects achieve the fastest stabilization-despite constraints such as passive aerodynamic damping and feedback delay-remain unclear.In this study,we demonstrate that flying insects employ a novel strategy for fast flight stabilization by minimizing the restoration time under external perturbations.We introduce a versatile PD-based control model that solves the closed-loop dynamics of insect flight and optimizes flight stabilization within a mathematical framework.Our findings reveal that passive aerodynamic damping plays a crucial role in stabilizing flight,acting as derivative feedback without delay,whereas feedback delay hinders stabilization.Additionally,we show that minimizing the restoring time leads to the fastest flight stabilization.Hovering flight analyses of fruit flies,honeybees,hawkmoths,and hummingbirds suggest that restoring time minimization through dynamic oscillatory modes rather than closed-loop time constants is a common strategy among small bioflies for effective maneuvering against disturbances.This strategy,which spans a broad range of Reynolds numbers(on the order of 102 to 104),could offer valuable insights for designing flight controllers in bioinspired flying robots.