Introduces a new monitoring method in FMS explicated in some detail by means of the MSF(Monitoring System of FMS)under development by the au- thors.In order to push FMS technology forword,enhance machining flexibility...Introduces a new monitoring method in FMS explicated in some detail by means of the MSF(Monitoring System of FMS)under development by the au- thors.In order to push FMS technology forword,enhance machining flexibility and the flexibility of human operaters and equipment in a FMS,the authors have made some breakthroughs in traditional ways of single item,unit monitoring and self-han- dling,and suggested the idea of integrated inspection and put the MSF into more practicability.The working status of FMS can be monitored on the CRT of a micro- computer of the MSF,system troubles will be shown with icons,by the flash of the system characteristic symbol or by alarming,and so on.This explores a new way for FMS inspection in a wholly integrated manner.展开更多
With the rapid development of human artificial intelligence and the inevitably expanding markets, the past two decades have witnessed an urgent demand for the flexible and wearable devices, especially the flexible str...With the rapid development of human artificial intelligence and the inevitably expanding markets, the past two decades have witnessed an urgent demand for the flexible and wearable devices, especially the flexible strain sensors. Flexible strain sensors, incorporated the merits of stretchability, high sensitivity and skin-mountable,are emerging as an extremely charming domain in virtue of their promising applications in artificial intelligent realms, human-machine systems and health-care devices. In this review, we concentrate on the transduction mechanisms, building blocks of flexible physical sensors, subsequently property optimization in terms of device structures and sensing materials in the direction of practical applications. Perspectives on the existing challenges are also highlighted in the end.展开更多
文摘Introduces a new monitoring method in FMS explicated in some detail by means of the MSF(Monitoring System of FMS)under development by the au- thors.In order to push FMS technology forword,enhance machining flexibility and the flexibility of human operaters and equipment in a FMS,the authors have made some breakthroughs in traditional ways of single item,unit monitoring and self-han- dling,and suggested the idea of integrated inspection and put the MSF into more practicability.The working status of FMS can be monitored on the CRT of a micro- computer of the MSF,system troubles will be shown with icons,by the flash of the system characteristic symbol or by alarming,and so on.This explores a new way for FMS inspection in a wholly integrated manner.
基金supported by the NNSF of China(Nos.61525402,61604071)the Key University Science Research Project of Jiangsu Province(No.15KJA430006)the Natural Science Foundation of Jiangsu Province(No.BK20161012)
文摘With the rapid development of human artificial intelligence and the inevitably expanding markets, the past two decades have witnessed an urgent demand for the flexible and wearable devices, especially the flexible strain sensors. Flexible strain sensors, incorporated the merits of stretchability, high sensitivity and skin-mountable,are emerging as an extremely charming domain in virtue of their promising applications in artificial intelligent realms, human-machine systems and health-care devices. In this review, we concentrate on the transduction mechanisms, building blocks of flexible physical sensors, subsequently property optimization in terms of device structures and sensing materials in the direction of practical applications. Perspectives on the existing challenges are also highlighted in the end.