In this study, the results of 1-g shaking table tests performed on small-scale flexible cantilever wallmodels retaining composite backfill made of a deformable geofoam inclusion and granular cohesionlessmaterial were ...In this study, the results of 1-g shaking table tests performed on small-scale flexible cantilever wallmodels retaining composite backfill made of a deformable geofoam inclusion and granular cohesionlessmaterial were presented. Two different polystyrene materials were utilized as deformable inclusions.Lateral dynamic earth pressures and wall displacements at different elevations of the retaining wallmodel were monitored during the tests. The earth pressures and displacements of the retaining wallswith deformable inclusions were compared with those of the models without geofoam inclusions.Comparisons indicated that geofoam panels of low stiffness installed against the retaining wall modelaffect displacement and dynamic lateral pressure profile along the wall height. Depending on the inclusioncharacteristics and the wall flexibility, up to 50% reduction in dynamic earth pressures wasobserved. The efficiency of load and displacement reduction decreased as the flexibility ratio of the wallmodel increased. On the other hand, dynamic load reduction efficiency of the deformable inclusionincreased as the amplitude and frequency ratio of the seismic excitation increased. Relative flexibility ofthe deformable layer (the thickness and the elastic stiffness of the polystyrene material) played animportant role in the amount of load reduction. Dynamic earth pressure coefficients were compared withthose calculated with an analytical approach. Pressure coefficients calculated with this method werefound to be in good agreement with the results of the tests performed on the wall model having lowflexibility ratio. It was observed that deformable inclusions reduce residual wall stresses observed at theend of seismic excitation thus contributing to the post-earthquake stability of the retaining wall. Thegraphs presented within this paper regarding the dynamic earth pressure coefficients versus the wallflexibility and inclusion characteristics may serve for the seismic design of full-scale retaining walls withdeformable polystyrene inclusions. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
To strengthen the regulation of controlling shareholders and actual controllers(dual controllers),China's Company Law of 2024 introduces deemed director provisions(DDPs)in articles 180 and 192.Through legal fictio...To strengthen the regulation of controlling shareholders and actual controllers(dual controllers),China's Company Law of 2024 introduces deemed director provisions(DDPs)in articles 180 and 192.Through legal fiction,fiduciary duty and joint liability can be imposed directly on dual controllers without legal directorship,thereby addressing the accountability gaps caused by traditional status-based imputation.However,the DDPs face the implementation challenge due to the openness of key terms like'actually executing company affairs'and'instructing',coupled with the need for a precise review standard by judges when making determinations.It is essential to adopt a flexible system approach in judicial interpretation by the Supreme People's Court.The system comprises three elements:formality,diligence,and reliance,which correspond to the principles of separate legal personality,parity of power and accountability,and equitable protection of interests.Through segmented evaluation and complementary interaction of the elements,this approach will provide judges with a relatively clear framework to avoid arbitrary adjudication and preserve the adaptability of the DDPs to complex business realities.展开更多
Polymer matrix composites(PMC)are extensively been used in many engineering applications.Various natural fibers have emerged as potential replacements to synthetic fibers as reinforcing materials composites owing to t...Polymer matrix composites(PMC)are extensively been used in many engineering applications.Various natural fibers have emerged as potential replacements to synthetic fibers as reinforcing materials composites owing to their fairly better mechanical properties,low cost,environment friendliness and biodegradability.Selection of appropriate constituents of composites for a particular application is a tedious task for a designer/engineer.Impact loading has emerged as the serious threat for the composites used in structural or secondary structural application and demands the usage of appropriate fiber and matrix combination to enhance the energy absorption and mitigate the failure.The objective of the present review is to explore the composite with various fiber and matrix combination used for impact applications,identify the gap in the literature and suggest the potential naturally available fiber and matrix combination of composites for future work in the field of impact loading.The novelty of the present study lies in exploring the combination of naturally available fiber and matrix combination which can help in better energy absorption and mitigate the failure when subjected to impact loading.In addition,the application of multi attributes decision making(MADM)tools is demonstrated for selection of fiber and matrix materials which can serve as a benchmark study for the researchers in future.展开更多
文摘In this study, the results of 1-g shaking table tests performed on small-scale flexible cantilever wallmodels retaining composite backfill made of a deformable geofoam inclusion and granular cohesionlessmaterial were presented. Two different polystyrene materials were utilized as deformable inclusions.Lateral dynamic earth pressures and wall displacements at different elevations of the retaining wallmodel were monitored during the tests. The earth pressures and displacements of the retaining wallswith deformable inclusions were compared with those of the models without geofoam inclusions.Comparisons indicated that geofoam panels of low stiffness installed against the retaining wall modelaffect displacement and dynamic lateral pressure profile along the wall height. Depending on the inclusioncharacteristics and the wall flexibility, up to 50% reduction in dynamic earth pressures wasobserved. The efficiency of load and displacement reduction decreased as the flexibility ratio of the wallmodel increased. On the other hand, dynamic load reduction efficiency of the deformable inclusionincreased as the amplitude and frequency ratio of the seismic excitation increased. Relative flexibility ofthe deformable layer (the thickness and the elastic stiffness of the polystyrene material) played animportant role in the amount of load reduction. Dynamic earth pressure coefficients were compared withthose calculated with an analytical approach. Pressure coefficients calculated with this method werefound to be in good agreement with the results of the tests performed on the wall model having lowflexibility ratio. It was observed that deformable inclusions reduce residual wall stresses observed at theend of seismic excitation thus contributing to the post-earthquake stability of the retaining wall. Thegraphs presented within this paper regarding the dynamic earth pressure coefficients versus the wallflexibility and inclusion characteristics may serve for the seismic design of full-scale retaining walls withdeformable polystyrene inclusions. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金supported by the National Social Science Fund of China(21AFX019)。
文摘To strengthen the regulation of controlling shareholders and actual controllers(dual controllers),China's Company Law of 2024 introduces deemed director provisions(DDPs)in articles 180 and 192.Through legal fiction,fiduciary duty and joint liability can be imposed directly on dual controllers without legal directorship,thereby addressing the accountability gaps caused by traditional status-based imputation.However,the DDPs face the implementation challenge due to the openness of key terms like'actually executing company affairs'and'instructing',coupled with the need for a precise review standard by judges when making determinations.It is essential to adopt a flexible system approach in judicial interpretation by the Supreme People's Court.The system comprises three elements:formality,diligence,and reliance,which correspond to the principles of separate legal personality,parity of power and accountability,and equitable protection of interests.Through segmented evaluation and complementary interaction of the elements,this approach will provide judges with a relatively clear framework to avoid arbitrary adjudication and preserve the adaptability of the DDPs to complex business realities.
文摘Polymer matrix composites(PMC)are extensively been used in many engineering applications.Various natural fibers have emerged as potential replacements to synthetic fibers as reinforcing materials composites owing to their fairly better mechanical properties,low cost,environment friendliness and biodegradability.Selection of appropriate constituents of composites for a particular application is a tedious task for a designer/engineer.Impact loading has emerged as the serious threat for the composites used in structural or secondary structural application and demands the usage of appropriate fiber and matrix combination to enhance the energy absorption and mitigate the failure.The objective of the present review is to explore the composite with various fiber and matrix combination used for impact applications,identify the gap in the literature and suggest the potential naturally available fiber and matrix combination of composites for future work in the field of impact loading.The novelty of the present study lies in exploring the combination of naturally available fiber and matrix combination which can help in better energy absorption and mitigate the failure when subjected to impact loading.In addition,the application of multi attributes decision making(MADM)tools is demonstrated for selection of fiber and matrix materials which can serve as a benchmark study for the researchers in future.