This paper discussed an extended model for flexibility analysis of chemical process. Under uncertainty, probability density function is used to describe uncertain parameters instead of hyper-rectangle, and chanceconst...This paper discussed an extended model for flexibility analysis of chemical process. Under uncertainty, probability density function is used to describe uncertain parameters instead of hyper-rectangle, and chanceconstrained programming is a feasible way to deal with the violation of constraints. Because the feasible region of control variables would change along with uncertain parameters, its smallest acceptable size threshold is presented to ensure the controllability condition. By synthesizing the considerations mentioned above, a modified model can describe the flexibility analysis problem more exactly. Then a hybrid algorithm, which integrates stochastic simulation and genetic algorithm, is applied to solve this model and maximize the flexibility region. Both numerical and chemical process examples are presented to demonstrate the effectiveness of the method.展开更多
An extended algorithm of flexibility analysis with a local adjusting method for flexibility region of chemical processes, which is based on the active constraint strategy, is proposed, which fully exploits the flexibi...An extended algorithm of flexibility analysis with a local adjusting method for flexibility region of chemical processes, which is based on the active constraint strategy, is proposed, which fully exploits the flexibility region of the process system operation. The hyperrectangular flexibility region determined by the extended algorithm is larger than that calculated by the previous algorithms. The limitation of the proposed algorithm due to imperfect convexity and its corresponding verification measure are also discussed. Both numerical and actual chemical process examples are presented to demonstrate the effectiveness of the new algorithm.展开更多
The heat exchanger network(HEN)in a syngas-to-methanol process was designed and optimized based on pinch technology under stable operating conditions to balance the energy consumption and economic gain.In actual indus...The heat exchanger network(HEN)in a syngas-to-methanol process was designed and optimized based on pinch technology under stable operating conditions to balance the energy consumption and economic gain.In actual industrial processes,fluctuations in production inevitably affect the stable operation of HENs.A flexibility analysis of the HEN was carried out to minimize such disturbances using the downstream paths method.The results show that two-third of the downstream paths cannot meet flexibility requirements,indicating that the HEN does not have enough flexibility to accommodate the disturbances in actual production.A flexible HEN was then designed with the method of dividing and subsequent merging of streams,which led to 13.89%and 20.82%reductions in energy consumption and total cost,respectively.Owing to the sufficient area margin and additional alternative heat exchangers,the flexible HEN was able to resist interference and maintain production stability and safety,with the total cost increasing by just 4.08%.展开更多
Continuous ibuprofen(a widespread used analgesic drug)manufacturing is full of superiorities and is a fertile field both in industry and academia since it can not only effectively treat rheumatic and other chronic and...Continuous ibuprofen(a widespread used analgesic drug)manufacturing is full of superiorities and is a fertile field both in industry and academia since it can not only effectively treat rheumatic and other chronic and painful diseases,but also shows great potential in dental diseases.As one of central elements of operability analysis,flexibility analysis is in charge of the quantitative assessment of the capability to guarantee the feasible operation in face of variations on uncertain parameters.In this paper,we focus on the flexibility index calculation for the continuous ibuprofen manufacturing process.We update existing state-of-the-art formulations,which traditionally lead to the max-max-max optimization problem,to approach the calculation of the flexibility index with a favorable manner.Advantages regarding the size of the mathematical model and the computational CPU time of the modified method are examined by four cases.In addition to identifying the flexibility index without any consideration of control variables,we also investigate the effects of different combinations of control variables on the flexibility property to reveal the benefits from taking recourse actions into account.Results from systematic investigations are expected to provide a solid basis for the further control system design and optimal operation of continuous ibuprofen manufacturing.展开更多
With the characteristics of diversity, randomness, concurrency and decomposability, tasks in manufacturing field are very complicated, and so manufacturing grid (MG) should have considerable flexibility to deal with t...With the characteristics of diversity, randomness, concurrency and decomposability, tasks in manufacturing field are very complicated, and so manufacturing grid (MG) should have considerable flexibility to deal with this problem. With the definition of node and arc, MG structure is converted into a small-world network. Given construction cost constraint, the problem of shortest task waiting time is transformed into the constrained optimization problem, and a corresponding ?exibility analysis model based on average path length (APL) is proposed, and the premise of arc-length and node-distance are defined. The results of application example show that the analysis model is effiective.展开更多
Objective To investigate the flexibility and mobility of the Bacillus thuringiensis toxin Cry1 Aa. Methods The graph theory-based program Constraint Network Analysis and normal mode-based program NMsim were used to an...Objective To investigate the flexibility and mobility of the Bacillus thuringiensis toxin Cry1 Aa. Methods The graph theory-based program Constraint Network Analysis and normal mode-based program NMsim were used to analyze the global and local flexibility indices as well as the fluctuation of individual residues in detail. Results The decrease in Cry1 Aa network rigidity with the increase of temperature was evident. Two phase transition points in which the Cry1 Aa structure lost rigidity during the thermal simulation were identified. Two rigid clusters were found in domains I and II. Weak spots were found in C-terminal domain III. Several flexible regions were found in all three domains; the largest residue fluctuation was present in the apical loop2 of domain II. Conclusion Although several flexible regions could be found in all the three domains, the most flexible regions were in the apical loops of domain II.展开更多
The fexibility of a train's wheelset can have a large effect on vehicle–track dynamic responses in the medium to high frequency range.To investigate the effects of wheelset bending and axial deformation of the wheel...The fexibility of a train's wheelset can have a large effect on vehicle–track dynamic responses in the medium to high frequency range.To investigate the effects of wheelset bending and axial deformation of the wheel web,a specifi coupling of wheel–rail contact with a fexible wheelset is presented and integrated into a conventional vehicle–track dynamic system model.Both conventional and the proposed dynamic system models are used to carry out numerical analyses on the effects of wheelset bending and axial deformation of the wheel web on wheel–rail rolling contact behaviors.Excitations with various irregularities and speeds were considered.The irregularities included measured track irregularity and harmonic irregularities with two different wavelengths.The speeds ranged from 200 to400km/h.The results show that the proposed model can characterize the effects of fexible wheelset deformation on the wheel–rail rolling contact behavior very well.展开更多
In a fusion reactor, the edge localized mode(ELM) coil has a mitigating effect on the ELMs of the plasma. The coil is placed close to the plasma between the vacuum vessel and the blanket to reduce its design power a...In a fusion reactor, the edge localized mode(ELM) coil has a mitigating effect on the ELMs of the plasma. The coil is placed close to the plasma between the vacuum vessel and the blanket to reduce its design power and improve its mitigating ability. The coil works in a high-temperature,high-nuclear-heat and high-magnetic-field environment. Due to the existence of outer superconducting coils, the coil is subjected to an alternating electromagnetic force induced by its own alternating current and the outer magnetic field. The design goal for the ELM coil is to maintain its structural integrity in the multi-physical field. Taking as an example the middle ELM coil(with flexible supports) of ITER(the International Thermonuclear Fusion Reactor), an electromagnetic–thermal–structural coupling analysis is carried out using ANSYS. The results show that the flexible supports help the three-layer casing meet the static and fatigue design requirements. The structural design of the middle ELM coil is reasonable and feasible. The work described in this paper provides the theoretical basis and method for ELM coil design.展开更多
The traditional methods for synthesizing flexible heat exchanger networks(HENs)are not directly applicable to inter-plant HEN challenges,primarily due to the spread of system uncertainty across plants via intermedium ...The traditional methods for synthesizing flexible heat exchanger networks(HENs)are not directly applicable to inter-plant HEN challenges,primarily due to the spread of system uncertainty across plants via intermedium fluid circles.This complicates the synthesis process significantly.To tackle this issue,this study proposes a decomposed stepwise methodology to facilitate the flexible synthesis of the interplant HENs performing indirect heat integration.A decomposition strategy is proposed to divide the overall network into manageable sub-networks by dissecting the intermedium fluid circles.To address the variability in intermedium fluid temperatures,a temperature fluctuation analysis approach is developed and a heuristic rule is introduced to maintain the temperature feasibility of the intermedium fluids.To ensure adequate flexibility and cost-effectiveness of the designed networks,flexibility analysis and network retrofit steps are conducted through model-based optimization techniques.The efficacy of the method is demonstrated through two case studies,showing its potential in achieving the desired operational flexibility for inter-plant HENs.展开更多
The efficiency and accuracy are two most concerned issues in the modeling and simulation of multi-body systems involving contact and impact. This paper proposed a formulation based on the component mode synthesis meth...The efficiency and accuracy are two most concerned issues in the modeling and simulation of multi-body systems involving contact and impact. This paper proposed a formulation based on the component mode synthesis method for planar contact problems of flexible multi-body systems. A flexible body is divided into two parts: a contact zone and an un-contact zone. For the un-contact zone, by using the fixed-interface substructure method as reference, a few low-order modal coordinates are used to replace the nodal coordinates of the nodes, and meanwhile, the nodal coordinates of the local impact region are kept unchanged, therefore the total degrees of freedom (DOFs) are greatly cut down and the computational cost of the simulation is significantly reduced. By using additional constraint method, the impact constraint equations and kinematic constraint equations are derived, and the Lagrange equations of the first kind of flexible multi-body system are obtained. The impact of an elastic beam with a fixed half disk is simulated to verify the efficiency and accuracy of this method.展开更多
文摘This paper discussed an extended model for flexibility analysis of chemical process. Under uncertainty, probability density function is used to describe uncertain parameters instead of hyper-rectangle, and chanceconstrained programming is a feasible way to deal with the violation of constraints. Because the feasible region of control variables would change along with uncertain parameters, its smallest acceptable size threshold is presented to ensure the controllability condition. By synthesizing the considerations mentioned above, a modified model can describe the flexibility analysis problem more exactly. Then a hybrid algorithm, which integrates stochastic simulation and genetic algorithm, is applied to solve this model and maximize the flexibility region. Both numerical and chemical process examples are presented to demonstrate the effectiveness of the method.
文摘An extended algorithm of flexibility analysis with a local adjusting method for flexibility region of chemical processes, which is based on the active constraint strategy, is proposed, which fully exploits the flexibility region of the process system operation. The hyperrectangular flexibility region determined by the extended algorithm is larger than that calculated by the previous algorithms. The limitation of the proposed algorithm due to imperfect convexity and its corresponding verification measure are also discussed. Both numerical and actual chemical process examples are presented to demonstrate the effectiveness of the new algorithm.
基金This work is financially supported by"the Fundamental Research Funds for the Central Universities"(2020XJHH01)the Yueqi Distinguished Scholar Project of China University of Mining and Technology(Beijing)(2020JCB02).
文摘The heat exchanger network(HEN)in a syngas-to-methanol process was designed and optimized based on pinch technology under stable operating conditions to balance the energy consumption and economic gain.In actual industrial processes,fluctuations in production inevitably affect the stable operation of HENs.A flexibility analysis of the HEN was carried out to minimize such disturbances using the downstream paths method.The results show that two-third of the downstream paths cannot meet flexibility requirements,indicating that the HEN does not have enough flexibility to accommodate the disturbances in actual production.A flexible HEN was then designed with the method of dividing and subsequent merging of streams,which led to 13.89%and 20.82%reductions in energy consumption and total cost,respectively.Owing to the sufficient area margin and additional alternative heat exchangers,the flexible HEN was able to resist interference and maintain production stability and safety,with the total cost increasing by just 4.08%.
基金the financial support from the National Key Research and Development Program of China(2018AAA0101602)。
文摘Continuous ibuprofen(a widespread used analgesic drug)manufacturing is full of superiorities and is a fertile field both in industry and academia since it can not only effectively treat rheumatic and other chronic and painful diseases,but also shows great potential in dental diseases.As one of central elements of operability analysis,flexibility analysis is in charge of the quantitative assessment of the capability to guarantee the feasible operation in face of variations on uncertain parameters.In this paper,we focus on the flexibility index calculation for the continuous ibuprofen manufacturing process.We update existing state-of-the-art formulations,which traditionally lead to the max-max-max optimization problem,to approach the calculation of the flexibility index with a favorable manner.Advantages regarding the size of the mathematical model and the computational CPU time of the modified method are examined by four cases.In addition to identifying the flexibility index without any consideration of control variables,we also investigate the effects of different combinations of control variables on the flexibility property to reveal the benefits from taking recourse actions into account.Results from systematic investigations are expected to provide a solid basis for the further control system design and optimal operation of continuous ibuprofen manufacturing.
基金supported by the National Natural Science Foundation of China (Grant No.50805089)the Science Foundation of Science and Technology Commission of Shanghai Municipality (Grant Nos.08DZ1123402,08DZ1124502)
文摘With the characteristics of diversity, randomness, concurrency and decomposability, tasks in manufacturing field are very complicated, and so manufacturing grid (MG) should have considerable flexibility to deal with this problem. With the definition of node and arc, MG structure is converted into a small-world network. Given construction cost constraint, the problem of shortest task waiting time is transformed into the constrained optimization problem, and a corresponding ?exibility analysis model based on average path length (APL) is proposed, and the premise of arc-length and node-distance are defined. The results of application example show that the analysis model is effiective.
基金supported by grants from the National Natural Science Foundation of China(No.30670052)863 Program of China(No.2006AA02Z187)
文摘Objective To investigate the flexibility and mobility of the Bacillus thuringiensis toxin Cry1 Aa. Methods The graph theory-based program Constraint Network Analysis and normal mode-based program NMsim were used to analyze the global and local flexibility indices as well as the fluctuation of individual residues in detail. Results The decrease in Cry1 Aa network rigidity with the increase of temperature was evident. Two phase transition points in which the Cry1 Aa structure lost rigidity during the thermal simulation were identified. Two rigid clusters were found in domains I and II. Weak spots were found in C-terminal domain III. Several flexible regions were found in all three domains; the largest residue fluctuation was present in the apical loop2 of domain II. Conclusion Although several flexible regions could be found in all the three domains, the most flexible regions were in the apical loops of domain II.
基金supported by the National Basic Research Program of China (Grant 2011CB711103)the National Natural Science Foundation of China (Grants U1134202,U1361117)+2 种基金the Program for Changjiang Scholars and Innovative Research Team in University (IRT1178)the 2014 Doctoral Innovation Funds of Southwest Jiaotong Universitythe Fundamental Research Funds for the Central Universities
文摘The fexibility of a train's wheelset can have a large effect on vehicle–track dynamic responses in the medium to high frequency range.To investigate the effects of wheelset bending and axial deformation of the wheel web,a specifi coupling of wheel–rail contact with a fexible wheelset is presented and integrated into a conventional vehicle–track dynamic system model.Both conventional and the proposed dynamic system models are used to carry out numerical analyses on the effects of wheelset bending and axial deformation of the wheel web on wheel–rail rolling contact behaviors.Excitations with various irregularities and speeds were considered.The irregularities included measured track irregularity and harmonic irregularities with two different wavelengths.The speeds ranged from 200 to400km/h.The results show that the proposed model can characterize the effects of fexible wheelset deformation on the wheel–rail rolling contact behavior very well.
基金the Province Postdoctoral Foundation of Jiangsu(1501164B)the Technical Innovation Nurturing Foundation of Yangzhou University(2015CXJ016)China Postdoctoral Science Foundation(2016M600447)
文摘In a fusion reactor, the edge localized mode(ELM) coil has a mitigating effect on the ELMs of the plasma. The coil is placed close to the plasma between the vacuum vessel and the blanket to reduce its design power and improve its mitigating ability. The coil works in a high-temperature,high-nuclear-heat and high-magnetic-field environment. Due to the existence of outer superconducting coils, the coil is subjected to an alternating electromagnetic force induced by its own alternating current and the outer magnetic field. The design goal for the ELM coil is to maintain its structural integrity in the multi-physical field. Taking as an example the middle ELM coil(with flexible supports) of ITER(the International Thermonuclear Fusion Reactor), an electromagnetic–thermal–structural coupling analysis is carried out using ANSYS. The results show that the flexible supports help the three-layer casing meet the static and fatigue design requirements. The structural design of the middle ELM coil is reasonable and feasible. The work described in this paper provides the theoretical basis and method for ELM coil design.
基金financial support provided by the National Natural Science Foundation of China(22378045,22178045).
文摘The traditional methods for synthesizing flexible heat exchanger networks(HENs)are not directly applicable to inter-plant HEN challenges,primarily due to the spread of system uncertainty across plants via intermedium fluid circles.This complicates the synthesis process significantly.To tackle this issue,this study proposes a decomposed stepwise methodology to facilitate the flexible synthesis of the interplant HENs performing indirect heat integration.A decomposition strategy is proposed to divide the overall network into manageable sub-networks by dissecting the intermedium fluid circles.To address the variability in intermedium fluid temperatures,a temperature fluctuation analysis approach is developed and a heuristic rule is introduced to maintain the temperature feasibility of the intermedium fluids.To ensure adequate flexibility and cost-effectiveness of the designed networks,flexibility analysis and network retrofit steps are conducted through model-based optimization techniques.The efficacy of the method is demonstrated through two case studies,showing its potential in achieving the desired operational flexibility for inter-plant HENs.
基金supported by the National Natural Science Foundation of China (11132007 and 11272203)
文摘The efficiency and accuracy are two most concerned issues in the modeling and simulation of multi-body systems involving contact and impact. This paper proposed a formulation based on the component mode synthesis method for planar contact problems of flexible multi-body systems. A flexible body is divided into two parts: a contact zone and an un-contact zone. For the un-contact zone, by using the fixed-interface substructure method as reference, a few low-order modal coordinates are used to replace the nodal coordinates of the nodes, and meanwhile, the nodal coordinates of the local impact region are kept unchanged, therefore the total degrees of freedom (DOFs) are greatly cut down and the computational cost of the simulation is significantly reduced. By using additional constraint method, the impact constraint equations and kinematic constraint equations are derived, and the Lagrange equations of the first kind of flexible multi-body system are obtained. The impact of an elastic beam with a fixed half disk is simulated to verify the efficiency and accuracy of this method.