With the rise of remote collaboration,the demand for advanced storage and collaboration tools has rapidly increased.However,traditional collaboration tools primarily rely on access control,leaving data stored on cloud...With the rise of remote collaboration,the demand for advanced storage and collaboration tools has rapidly increased.However,traditional collaboration tools primarily rely on access control,leaving data stored on cloud servers vulnerable due to insufficient encryption.This paper introduces a novel mechanism that encrypts data in‘bundle’units,designed to meet the dual requirements of efficiency and security for frequently updated collaborative data.Each bundle includes updated information,allowing only the updated portions to be reencrypted when changes occur.The encryption method proposed in this paper addresses the inefficiencies of traditional encryption modes,such as Cipher Block Chaining(CBC)and Counter(CTR),which require decrypting and re-encrypting the entire dataset whenever updates occur.The proposed method leverages update-specific information embedded within data bundles and metadata that maps the relationship between these bundles and the plaintext data.By utilizing this information,the method accurately identifies the modified portions and applies algorithms to selectively re-encrypt only those sections.This approach significantly enhances the efficiency of data updates while maintaining high performance,particularly in large-scale data environments.To validate this approach,we conducted experiments measuring execution time as both the size of the modified data and the total dataset size varied.Results show that the proposed method significantly outperforms CBC and CTR modes in execution speed,with greater performance gains as data size increases.Additionally,our security evaluation confirms that this method provides robust protection against both passive and active attacks.展开更多
Declaration of Competing Interest statements is updated in the published version of the following articles that appeared in issues of Resources Chemicals and Materials.The appropriate updated Declaration of Competing ...Declaration of Competing Interest statements is updated in the published version of the following articles that appeared in issues of Resources Chemicals and Materials.The appropriate updated Declaration of Competing Interest state-ments,provided by the Authors,are included below.展开更多
As vehicular networks become increasingly pervasive,enhancing connectivity and reliability has emerged as a critical objective.Among the enabling technologies for advanced wireless communication,particularly those tar...As vehicular networks become increasingly pervasive,enhancing connectivity and reliability has emerged as a critical objective.Among the enabling technologies for advanced wireless communication,particularly those targeting low latency and high reliability,time synchronization is critical,especially in vehicular networks.However,due to the inherent mobility of vehicular environments,consistently exchanging synchronization packets with a fixed base station or access point is challenging.This issue is further exacerbated in signal shadowed areas such as urban canyons,tunnels,or large-scale indoor hallswhere other technologies,such as global navigation satellite system(GNSS),are unavailable.One-way synchronization techniques offer a feasible approach under such transient connectivity conditions.One-way schemes still suffer from long convergence times to reach the required synchronization accuracy in these circumstances.In this paper,we propose a WLAN-based multi-stage clock synchronization scheme(WMC)tailored for vehicular networks.The proposed method comprises an initial hard update stage to rapidly achieve synchronization,followed by a high-precision stable stage based on Maximum Likelihood Estimation(MLE).By implementing the scheme directly at the network driver,we address key limitations of hard update mechanisms.Our approach significantly reduces the initial period to collect high-quality samples and offset estimation time to reach sub-50μs accuracy,and subsequently transitions to a refined MLE-based synchronization stage,achieving stable accuracy at approximately 30μs.The windowed moving average stabilized(reaching 90%of the baseline)in approximately 35 s,which corresponds to just 5.1%of the baseline time accuracy.Finally,the impact of synchronization performance on the localization model was validated using the Simulation of Urban Mobility(SUMO).The results demonstrate that more accurate conditions for position estimation can be supported,with an improvement about 38.5%in the mean error.展开更多
With the widespread adoption of hydraulic fracturing technology in oil and gas resource development,improving the accuracy and efficiency of fracturing simulations has become a critical research focus.This paper propo...With the widespread adoption of hydraulic fracturing technology in oil and gas resource development,improving the accuracy and efficiency of fracturing simulations has become a critical research focus.This paper proposes an improved fluid flow algorithm,aiming to enhance the computational efficiency of hydraulic fracturing simulations while ensuring computational accuracy.The algorithm optimizes the aperture law and iteration criteria,focusing on improving the domain volume and crack pressure update strategy,thereby enabling precise capture of dynamic borehole pressure variations during injection tests.The effectiveness of the algorithm is verified through three flow-solid coupling cases.The study also analyzes the effects of borehole size,domain volume,and crack pressure update strategy on fracturing behavior.Furthermore,the performance of the improved algorithm in terms of crack propagation rate,micro-crack formation,and fluid pressure distribution was further evaluated.The results indicate that while large-size boreholes delay crack initiation,the cracks propagate more rapidly once formed.Additionally,the optimized domain volume calculation and crack pressure update strategy significantly shorten the pressure propagation stage,promote crack propagation,and improve computational efficiency.展开更多
Colorectal cancer(CRC)is the most frequently diagnosed malignancy of the digestive system and the second leading cause of cancer-related deaths worldwide(1).In China,CRC ranks as the second most common cancer with inc...Colorectal cancer(CRC)is the most frequently diagnosed malignancy of the digestive system and the second leading cause of cancer-related deaths worldwide(1).In China,CRC ranks as the second most common cancer with incidence and mortality rates continuing to rise(2).The Chinese Society of Clinical Oncology(CSCO)first introduced its guidelines in 2017,and since then,they have been updated annually to incorporate the latest clinical research findings,drug availability,and expert consensus(3-8).This article presents the key updates in the 2025 edition compared to the 2024 version.展开更多
The Chinese Society of Clinical Oncology Non-small Cell Lung Cancer(CSCO NSCLC)guidelines were first published in 2016,ranking among the earliest-released guidelines within the CSCO series.In 2020 the CSCO published s...The Chinese Society of Clinical Oncology Non-small Cell Lung Cancer(CSCO NSCLC)guidelines were first published in 2016,ranking among the earliest-released guidelines within the CSCO series.In 2020 the CSCO published separate guidelines for NSCLC and small cell lung cancer(SCLC)for the first time to improve clinical usability.展开更多
We present a gain adaptive tuning method for fiber Raman amplifier(FRA) using two-stage neural networks(NNs) and double weights updates. After training the connection weights of two-stage NNs separately in training ph...We present a gain adaptive tuning method for fiber Raman amplifier(FRA) using two-stage neural networks(NNs) and double weights updates. After training the connection weights of two-stage NNs separately in training phase, the connection weights of the unified NN are updated again in verification phase according to error between the predicted and target gains to eliminate the inherent error of the NNs. The simulation results show that the mean of root mean square error(RMSE) and maximum error of gains are 0.131 d B and 0.281 d B, respectively. It shows that the method can realize adaptive adjustment function of FRA gain with high accuracy.展开更多
Histopathologic diversity and several distinct histologic subtypes of hepatocellular carcinoma(HCC) are well-recognized. Recent advances in molecular pathology and growing knowledge about the biology associated with d...Histopathologic diversity and several distinct histologic subtypes of hepatocellular carcinoma(HCC) are well-recognized. Recent advances in molecular pathology and growing knowledge about the biology associated with distinct histologic features and immuno-profile in HCC allowed pathologists to update classifications. Improving sub-classification will allow for more clinically relevant diagnoses and may allow for stratification into biologically meaningful subgroups. Therefore, immuno-histochemical and molecular testing are not only diagnostically useful, but also are being incorporated as crucial components in predicting prognosis of the patients with HCC. Possibilities of targeted therapy are being explored in HCC, and it will be important for pathologists to provide any data that may be valuable from a theranostic perspective. Herein, we review and provide updates regarding the pathologic sub-classification of HCC.Pathologic diagnostic approach and the role of biomarkers as prognosticators are reviewed. Further, the histopathology of four particular subtypes of HCC:Steatohepatitic, clear cell, fibrolamellar and scirrhous-and their clinical relevance, and the recent consensus on combined HCC-cholangiocarcinoma is summarized. Finally, emerging novel biomarkers and new approaches to HCC stratification are reviewed.展开更多
Lithium-ion batteries have become the third-generation space batteries and are widely utilized in a series of spacecraft. Remaining Useful Life (RUL) estimation is essential to a spacecraft as the battery is a criti...Lithium-ion batteries have become the third-generation space batteries and are widely utilized in a series of spacecraft. Remaining Useful Life (RUL) estimation is essential to a spacecraft as the battery is a critical part and determines the lifetime and reliability. The Relevance Vector Machine (RVM) is a data-driven algorithm used to estimate a battery's RUL due to its sparse feature and uncertainty management capability. Especially, some of the regressive cases indicate that the RVM can obtain a better short-term prediction performance rather than long-term prediction. As a nonlinear kernel learning algorithm, the coefficient matrix and relevance vectors are fixed once the RVM training is conducted. Moreover, the RVM can be simply influenced by the noise with the training data. Thus, this work proposes an iterative updated approach to improve the long-term prediction performance for a battery's RUL prediction. Firstly, when a new estimator is output by the RVM, the Kalman filter is applied to optimize this estimator with a physical degradation model. Then, this optimized estimator is added into the training set as an on-line sample, the RVM model is re-trained, and the coefficient matrix and relevance vectors can be dynamically adjusted to make next iterative prediction. Experimental results with a commercial battery test data set and a satellite battery data set both indicate that the proposed method can achieve a better performance for RUL estimation.展开更多
Hepatocellular carcinoma(HCC) is one of the commonest malignant tumours in the East. Although the management of HCC in the West is mainly based on the Barcelona Clinic for Liver Cancer staging, it is considered too co...Hepatocellular carcinoma(HCC) is one of the commonest malignant tumours in the East. Although the management of HCC in the West is mainly based on the Barcelona Clinic for Liver Cancer staging, it is considered too conservative by Asian countries where the number of HCC patients is huge. Scientific and clinical advances were made in aspects of diagnosis, staging, and treatment of HCC. HCC is well known to be associated with cirrhosis and the treatment of HCC must take into account the presence and stage of chronic liver disease. The major treatment modalities of HCC include:(1) surgical resection;(2) liver transplantation;(3) local ablation therapy;(4) transarterial locoregional treatment; and(5) systemic treatment. Among these, resection, liver transplantation and ablation therapy for small HCC are considered as curative treatment. Portal vein embolisation and the associating liver partition with portal vein ligation for staged hepatectomy may reduce dropout in patients with marginally resectable disease but the midterm and long-term results are still to be confirmed. Patient selection for the best treatment modality is the key to success of treatment of HCC. The purpose of current review is to provide a description of the current advances in diagnosis, staging, preoperative liver function assessment and treatment options for patients with HCC in the east.展开更多
基金supported by the Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(RS-2024-00399401,Development of Quantum-Safe Infrastructure Migration and Quantum Security Verification Technologies).
文摘With the rise of remote collaboration,the demand for advanced storage and collaboration tools has rapidly increased.However,traditional collaboration tools primarily rely on access control,leaving data stored on cloud servers vulnerable due to insufficient encryption.This paper introduces a novel mechanism that encrypts data in‘bundle’units,designed to meet the dual requirements of efficiency and security for frequently updated collaborative data.Each bundle includes updated information,allowing only the updated portions to be reencrypted when changes occur.The encryption method proposed in this paper addresses the inefficiencies of traditional encryption modes,such as Cipher Block Chaining(CBC)and Counter(CTR),which require decrypting and re-encrypting the entire dataset whenever updates occur.The proposed method leverages update-specific information embedded within data bundles and metadata that maps the relationship between these bundles and the plaintext data.By utilizing this information,the method accurately identifies the modified portions and applies algorithms to selectively re-encrypt only those sections.This approach significantly enhances the efficiency of data updates while maintaining high performance,particularly in large-scale data environments.To validate this approach,we conducted experiments measuring execution time as both the size of the modified data and the total dataset size varied.Results show that the proposed method significantly outperforms CBC and CTR modes in execution speed,with greater performance gains as data size increases.Additionally,our security evaluation confirms that this method provides robust protection against both passive and active attacks.
文摘Declaration of Competing Interest statements is updated in the published version of the following articles that appeared in issues of Resources Chemicals and Materials.The appropriate updated Declaration of Competing Interest state-ments,provided by the Authors,are included below.
基金supported by Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Korea government(MOTIE)(No.20224B10300090)supported by the MSIT(Ministry of Science and ICT),Republic of Korea,under the ITRC(Information Technology Research Center)support program(IITP-2025-RS-2021-II211835)supervised by the IITP(Institute of Information&Communications Technology Planning&Evaluation).
文摘As vehicular networks become increasingly pervasive,enhancing connectivity and reliability has emerged as a critical objective.Among the enabling technologies for advanced wireless communication,particularly those targeting low latency and high reliability,time synchronization is critical,especially in vehicular networks.However,due to the inherent mobility of vehicular environments,consistently exchanging synchronization packets with a fixed base station or access point is challenging.This issue is further exacerbated in signal shadowed areas such as urban canyons,tunnels,or large-scale indoor hallswhere other technologies,such as global navigation satellite system(GNSS),are unavailable.One-way synchronization techniques offer a feasible approach under such transient connectivity conditions.One-way schemes still suffer from long convergence times to reach the required synchronization accuracy in these circumstances.In this paper,we propose a WLAN-based multi-stage clock synchronization scheme(WMC)tailored for vehicular networks.The proposed method comprises an initial hard update stage to rapidly achieve synchronization,followed by a high-precision stable stage based on Maximum Likelihood Estimation(MLE).By implementing the scheme directly at the network driver,we address key limitations of hard update mechanisms.Our approach significantly reduces the initial period to collect high-quality samples and offset estimation time to reach sub-50μs accuracy,and subsequently transitions to a refined MLE-based synchronization stage,achieving stable accuracy at approximately 30μs.The windowed moving average stabilized(reaching 90%of the baseline)in approximately 35 s,which corresponds to just 5.1%of the baseline time accuracy.Finally,the impact of synchronization performance on the localization model was validated using the Simulation of Urban Mobility(SUMO).The results demonstrate that more accurate conditions for position estimation can be supported,with an improvement about 38.5%in the mean error.
基金supported by the National Natural Science Foundation of China(Nos.52164001,52064006,52004072 and 52364004)the Science and Technology Support Project of Guizhou(Nos.[2020]4Y044,[2021]N404 and[2021]N511)+1 种基金the Guizhou Provincial Science and Technology Foundation(No.GCC[2022]005-1),Talents of Guizhou University(No.201901)the Special Research Funds of Guizhou University(Nos.201903,202011,and 202012).
文摘With the widespread adoption of hydraulic fracturing technology in oil and gas resource development,improving the accuracy and efficiency of fracturing simulations has become a critical research focus.This paper proposes an improved fluid flow algorithm,aiming to enhance the computational efficiency of hydraulic fracturing simulations while ensuring computational accuracy.The algorithm optimizes the aperture law and iteration criteria,focusing on improving the domain volume and crack pressure update strategy,thereby enabling precise capture of dynamic borehole pressure variations during injection tests.The effectiveness of the algorithm is verified through three flow-solid coupling cases.The study also analyzes the effects of borehole size,domain volume,and crack pressure update strategy on fracturing behavior.Furthermore,the performance of the improved algorithm in terms of crack propagation rate,micro-crack formation,and fluid pressure distribution was further evaluated.The results indicate that while large-size boreholes delay crack initiation,the cracks propagate more rapidly once formed.Additionally,the optimized domain volume calculation and crack pressure update strategy significantly shorten the pressure propagation stage,promote crack propagation,and improve computational efficiency.
基金supported by the National Natural Science Foundation of China(No.82373415)Beijing Xisike Clinical Oncology Research Foundation(No.Ytongshu2021/ms-0003)。
文摘Colorectal cancer(CRC)is the most frequently diagnosed malignancy of the digestive system and the second leading cause of cancer-related deaths worldwide(1).In China,CRC ranks as the second most common cancer with incidence and mortality rates continuing to rise(2).The Chinese Society of Clinical Oncology(CSCO)first introduced its guidelines in 2017,and since then,they have been updated annually to incorporate the latest clinical research findings,drug availability,and expert consensus(3-8).This article presents the key updates in the 2025 edition compared to the 2024 version.
文摘The Chinese Society of Clinical Oncology Non-small Cell Lung Cancer(CSCO NSCLC)guidelines were first published in 2016,ranking among the earliest-released guidelines within the CSCO series.In 2020 the CSCO published separate guidelines for NSCLC and small cell lung cancer(SCLC)for the first time to improve clinical usability.
基金supported by the Natural Science Research Project of Colleges and Universities in Anhui Province (No.KJ2021A0479)the Science Research Program of Anhui University of Finance and Economics (No.ACKYC22082)。
文摘We present a gain adaptive tuning method for fiber Raman amplifier(FRA) using two-stage neural networks(NNs) and double weights updates. After training the connection weights of two-stage NNs separately in training phase, the connection weights of the unified NN are updated again in verification phase according to error between the predicted and target gains to eliminate the inherent error of the NNs. The simulation results show that the mean of root mean square error(RMSE) and maximum error of gains are 0.131 d B and 0.281 d B, respectively. It shows that the method can realize adaptive adjustment function of FRA gain with high accuracy.
文摘Histopathologic diversity and several distinct histologic subtypes of hepatocellular carcinoma(HCC) are well-recognized. Recent advances in molecular pathology and growing knowledge about the biology associated with distinct histologic features and immuno-profile in HCC allowed pathologists to update classifications. Improving sub-classification will allow for more clinically relevant diagnoses and may allow for stratification into biologically meaningful subgroups. Therefore, immuno-histochemical and molecular testing are not only diagnostically useful, but also are being incorporated as crucial components in predicting prognosis of the patients with HCC. Possibilities of targeted therapy are being explored in HCC, and it will be important for pathologists to provide any data that may be valuable from a theranostic perspective. Herein, we review and provide updates regarding the pathologic sub-classification of HCC.Pathologic diagnostic approach and the role of biomarkers as prognosticators are reviewed. Further, the histopathology of four particular subtypes of HCC:Steatohepatitic, clear cell, fibrolamellar and scirrhous-and their clinical relevance, and the recent consensus on combined HCC-cholangiocarcinoma is summarized. Finally, emerging novel biomarkers and new approaches to HCC stratification are reviewed.
基金co-supported in part by the National Natural Science Foundation of China (Nos. 61301205 and 61571160)the Natural Scientific Research Innovation Foundation at Harbin Institute of Technology (No. HIT.NSRIF.2014017)
文摘Lithium-ion batteries have become the third-generation space batteries and are widely utilized in a series of spacecraft. Remaining Useful Life (RUL) estimation is essential to a spacecraft as the battery is a critical part and determines the lifetime and reliability. The Relevance Vector Machine (RVM) is a data-driven algorithm used to estimate a battery's RUL due to its sparse feature and uncertainty management capability. Especially, some of the regressive cases indicate that the RVM can obtain a better short-term prediction performance rather than long-term prediction. As a nonlinear kernel learning algorithm, the coefficient matrix and relevance vectors are fixed once the RVM training is conducted. Moreover, the RVM can be simply influenced by the noise with the training data. Thus, this work proposes an iterative updated approach to improve the long-term prediction performance for a battery's RUL prediction. Firstly, when a new estimator is output by the RVM, the Kalman filter is applied to optimize this estimator with a physical degradation model. Then, this optimized estimator is added into the training set as an on-line sample, the RVM model is re-trained, and the coefficient matrix and relevance vectors can be dynamically adjusted to make next iterative prediction. Experimental results with a commercial battery test data set and a satellite battery data set both indicate that the proposed method can achieve a better performance for RUL estimation.
文摘Hepatocellular carcinoma(HCC) is one of the commonest malignant tumours in the East. Although the management of HCC in the West is mainly based on the Barcelona Clinic for Liver Cancer staging, it is considered too conservative by Asian countries where the number of HCC patients is huge. Scientific and clinical advances were made in aspects of diagnosis, staging, and treatment of HCC. HCC is well known to be associated with cirrhosis and the treatment of HCC must take into account the presence and stage of chronic liver disease. The major treatment modalities of HCC include:(1) surgical resection;(2) liver transplantation;(3) local ablation therapy;(4) transarterial locoregional treatment; and(5) systemic treatment. Among these, resection, liver transplantation and ablation therapy for small HCC are considered as curative treatment. Portal vein embolisation and the associating liver partition with portal vein ligation for staged hepatectomy may reduce dropout in patients with marginally resectable disease but the midterm and long-term results are still to be confirmed. Patient selection for the best treatment modality is the key to success of treatment of HCC. The purpose of current review is to provide a description of the current advances in diagnosis, staging, preoperative liver function assessment and treatment options for patients with HCC in the east.