期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Electrostatic Actuating Bendable Flat Electrode for Micro Electrochemical Machining 被引量:1
1
作者 Ruining Huang Xiaokun Zhu 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2018年第2期133-137,共5页
In micro-electrochemical machining(μECM), material dissolution takes place at very close vicinity of tool electrode due to localization of electric field. Controlling the gap between tool electrode and workpiece is t... In micro-electrochemical machining(μECM), material dissolution takes place at very close vicinity of tool electrode due to localization of electric field. Controlling the gap between tool electrode and workpiece is the key to μECM. Therefore, a new method is proposed to solve a variety of problems in small gap control. In the present context, experiments were carried out with an indigenously developed setup to fabricate cylindrical arrays. During the machining process, the flat electrode bends due to electrostatic force in pulse on-time, which self-adaptively narrows the gap between the electrode and the workpiece. The workpiece material will be removed once the gap meets the processing condition. Therefore, this method has advantages of reducing dependence on high precision machine tools and of avoiding complex servo control. The flat electrode quickly restores to its original condition when it is in pulse off-time, making the gap much larger than that in traditional electrochemical machining(ECM). The large gap benefits debris removing, which improves the machining accuracy. The influence of different experimental parameters on accuracy and efficiency during the machining process has been investigated. It is observed that with the increase in applied voltage or concentration of electrolyte, the material removal rate and the process gap both increase. The detailed analysis of the experimental results is described in this paper. 展开更多
关键词 μECM flat electrode Electrostatic actuation Current density Gap control
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部