Flash processing(FP)has attracted considerable attention due to its high efficiency,economic advantages,and the extraordinary opportunity if offers to improve the mechanical properties of steel.In this study,we invest...Flash processing(FP)has attracted considerable attention due to its high efficiency,economic advantages,and the extraordinary opportunity if offers to improve the mechanical properties of steel.In this study,we investigated the influences of FP on the recrystallization(REX)behavior and mechanical performance of cold-rolled IF steel.Using a thermomechanical simulator,we performed both single-stage FPs,at heating rates of 200℃/s and 500℃/s,and two-stage FP,with an initial preheating to 400℃ at a rate of 5℃/s and then to peak temperatures at a rate of 200℃/s.In comparison to continuous annealing(CA),single-stage FP can effectively refine the recrystallized grain sizes and produce a similar or even sharperγ(ND(normal direction)//{111})texture component.In particular,the heating rate of 500℃/s led to an increase in the yield strength of about 23.2%and a similar ductility.In contrast,the two-stage FP resulted in a higher REX temperature as well as a certain grain refinement due to the stored strain energy,i.e.,the driving force of REX,which was largely consumed during preheating.Furthermore,both stronger{110}<110>and weakerγtexture components appeared in the two-stage FP and were believed to be responsible for the early necking and deterioration in ductility.展开更多
A mathematical model of the particle heating process in the reaction shaft of flash smelting furnace was established and the calculation was performed.The results indicate that radiation plays a significant role in th...A mathematical model of the particle heating process in the reaction shaft of flash smelting furnace was established and the calculation was performed.The results indicate that radiation plays a significant role in the heat transfer process within the first 0.6 m in the upper part of the reaction shaft,whilst the convection is dominant in the area below 0.6 m for the particle heating.In order to accelerate the particle ignition,it is necessary to enhance the convection,thus to speed up the particle heating.A high-speed preheated oxygen jet technology was then suggested to replace the nature gas combustion in the flash furnace,aiming to create a lateral disturbance in the gaseous phase around the particles,so as to achieve a slip velocity between the two phases and a high convective heat transfer coefficient.Numerical simulation was carried out for the cases with the high-speed oxygen jet and the normal nature gas burners.The results show that with the high-speed jet technology,particles are heated up more rapidly and ignited much earlier,especially within the area of the radial range of R=0.3−0.6 m.As a result,a more efficient smelting process can be achieved under the same operational condition.展开更多
A complex programmable logical device (CPLD) based on conventional embedded Flash memory process with 72 macro cells is studied in the paper. Compared with the Flash cell array technology employed by foreign compani...A complex programmable logical device (CPLD) based on conventional embedded Flash memory process with 72 macro cells is studied in the paper. Compared with the Flash cell array technology employed by foreign companies, this architecture exhibiting insystem reconfiguration and rapid response was manufactured by low cost fabrication process. The device architecture and critical cell design are also analyzed in detail in the paper. The CPLD was designed by full-custom ASIC technology and manufactured by 0.35 pm 3P3M Flash process with 72 macro cells and 5 V voltage supply. The measurement results indicate that the devices are able to operate above the frequency of 66.7 MHz with the pin delay less than 10 ns.展开更多
The Fe silicon nitride synthesized by flashing combustion process was studied to determine the reaction temperature between Fe and silicon nitride, the account of N2 given out in the course of the reaction, and the ch...The Fe silicon nitride synthesized by flashing combustion process was studied to determine the reaction temperature between Fe and silicon nitride, the account of N2 given out in the course of the reaction, and the change of the microstructure during calcination. The results showed that at 1127.2℃ the Fe-silicon nitride self-reacts and releases N2 and under 101.3 kPa the volume of N2 given out in the course of the reaction is 20 times more than that of the starting material. N2 is produced quickly, and completes in several decade seconds. With the producing of N2, the structure of Silicon Nitride around Fe becomes loose and porous, or cracks are formed by the reaction between Fe and silicon nitride. So if it is made use of that Fe-silicon nitride self-producing N2 at the high temperature, the performance of the material on a base of Fe-silicon nitride could be greatly improved.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51861135302 and 51831002)Fundamental Research Funds for the Central Universities,China(No.FRF-TP-18-002C2).
文摘Flash processing(FP)has attracted considerable attention due to its high efficiency,economic advantages,and the extraordinary opportunity if offers to improve the mechanical properties of steel.In this study,we investigated the influences of FP on the recrystallization(REX)behavior and mechanical performance of cold-rolled IF steel.Using a thermomechanical simulator,we performed both single-stage FPs,at heating rates of 200℃/s and 500℃/s,and two-stage FP,with an initial preheating to 400℃ at a rate of 5℃/s and then to peak temperatures at a rate of 200℃/s.In comparison to continuous annealing(CA),single-stage FP can effectively refine the recrystallized grain sizes and produce a similar or even sharperγ(ND(normal direction)//{111})texture component.In particular,the heating rate of 500℃/s led to an increase in the yield strength of about 23.2%and a similar ductility.In contrast,the two-stage FP resulted in a higher REX temperature as well as a certain grain refinement due to the stored strain energy,i.e.,the driving force of REX,which was largely consumed during preheating.Furthermore,both stronger{110}<110>and weakerγtexture components appeared in the two-stage FP and were believed to be responsible for the early necking and deterioration in ductility.
基金funded by Jinguan Copper of Tongling Non-ferrous Metals Group Co., Ltd.
文摘A mathematical model of the particle heating process in the reaction shaft of flash smelting furnace was established and the calculation was performed.The results indicate that radiation plays a significant role in the heat transfer process within the first 0.6 m in the upper part of the reaction shaft,whilst the convection is dominant in the area below 0.6 m for the particle heating.In order to accelerate the particle ignition,it is necessary to enhance the convection,thus to speed up the particle heating.A high-speed preheated oxygen jet technology was then suggested to replace the nature gas combustion in the flash furnace,aiming to create a lateral disturbance in the gaseous phase around the particles,so as to achieve a slip velocity between the two phases and a high convective heat transfer coefficient.Numerical simulation was carried out for the cases with the high-speed oxygen jet and the normal nature gas burners.The results show that with the high-speed jet technology,particles are heated up more rapidly and ignited much earlier,especially within the area of the radial range of R=0.3−0.6 m.As a result,a more efficient smelting process can be achieved under the same operational condition.
文摘A complex programmable logical device (CPLD) based on conventional embedded Flash memory process with 72 macro cells is studied in the paper. Compared with the Flash cell array technology employed by foreign companies, this architecture exhibiting insystem reconfiguration and rapid response was manufactured by low cost fabrication process. The device architecture and critical cell design are also analyzed in detail in the paper. The CPLD was designed by full-custom ASIC technology and manufactured by 0.35 pm 3P3M Flash process with 72 macro cells and 5 V voltage supply. The measurement results indicate that the devices are able to operate above the frequency of 66.7 MHz with the pin delay less than 10 ns.
基金financially supported by the National Nature Science Foundation of China (No. 50172007 and No. 50332010)
文摘The Fe silicon nitride synthesized by flashing combustion process was studied to determine the reaction temperature between Fe and silicon nitride, the account of N2 given out in the course of the reaction, and the change of the microstructure during calcination. The results showed that at 1127.2℃ the Fe-silicon nitride self-reacts and releases N2 and under 101.3 kPa the volume of N2 given out in the course of the reaction is 20 times more than that of the starting material. N2 is produced quickly, and completes in several decade seconds. With the producing of N2, the structure of Silicon Nitride around Fe becomes loose and porous, or cracks are formed by the reaction between Fe and silicon nitride. So if it is made use of that Fe-silicon nitride self-producing N2 at the high temperature, the performance of the material on a base of Fe-silicon nitride could be greatly improved.