Transition on a flared cone with zero angle of at- tack was studied in our newly established Mach 6 quiet wind tunnel (M6QT) via wall pressure measurement and flow visualization. High-frequency pressure transducers ...Transition on a flared cone with zero angle of at- tack was studied in our newly established Mach 6 quiet wind tunnel (M6QT) via wall pressure measurement and flow visualization. High-frequency pressure transducers were used to measure the second-mode waves' amplitudes and frequencies. Using pulsed schlieren diagnostic and Rayleigh scattering technique, we got a clear evolution of the second-mode disturbances. The second-mode waves exist for a long distance, which means that the second-mode waves grow linearly in a large region. Strong Mach waves are radiated from the edge of the boundary layer. With further development, the second-mode waves reach their maximum magnitude and harmonics of the second-mode instability appear. Then the disturbances grow nonlinearly. The second modes become weak and merge with each other. Finally, the nonlinear interaction of disturbance leads to a relatively quiet zone, which further breaks down, resulting in the transition of the bound- ary layer. Our results show that transition is determined by the second mode. The quiet zone before the final breakdown is observed in flow visualization for the first time. Eventual transition requires the presence of a quiet zone generated by nonlinear interactions.展开更多
This study was designed to compare the impact of post and core systems on resistance to fracture of endodontically treated anterior teeth with flared root canals and to assess their fracture pattern. Sixty central inc...This study was designed to compare the impact of post and core systems on resistance to fracture of endodontically treated anterior teeth with flared root canals and to assess their fracture pattern. Sixty central incisors were cut horizontally 2 mm coronal to the cementoenamel junction(CEJ). After root canal therapy, teeth were assigned into 6 groups(n = 10 each) based on a post system and used as follows: Group C, non-flared root received size #1 glass fiber posts(Control); Group AP, flared root restored with anatomical post; Group RC, flared root restored with size #1 fiber post and cemented with thick layer of resin cement; Group CR, flared root restored with size #1 and reinforced with composite resin; Group CM, cast post-core; Group CP, CAD/CAM polymer-infiltrated ceramic post and core.Following post cementation, core build-up and crown insertion, the specimens were thermo-cycled up to 10,000 cycles(5 C/55 C; 30 seconds dwell time, 6 seconds transition time) and then statically loaded at 1 mm/minute crosshead speed using a universal testing machine. One-way ANOVA and Tukey HSD post hoc test(α= 0.05) were used for data analysis. Group C recorded significantly higher resistance to fracture values [(826.9±39.1) N] followed by group CP [(793.8±55.6) N] while group RC yielded the lowest fracture resistance values [(586.7±51.4) N]. The resistance to fracture of wide root canals can be enhanced by using one-piece CAM/CAM post and core as an alternative to the use of either glass fiber post, relined with composite resin increasing the thickness of luting cement or the use of cast post and core system. However, this was an in vitro investigation and further in vivo studies are necessary.展开更多
The nonlinear radiated waves generated by a structure in forced motion, are simulated numerically based on the potential theory. A fully nonlinear numerical model is developed by using a higher-order boundary element ...The nonlinear radiated waves generated by a structure in forced motion, are simulated numerically based on the potential theory. A fully nonlinear numerical model is developed by using a higher-order boundary element method (HOBEM). In this model, the instantaneous body position and the transient free surface are updated at each time step. A Lagrangian technique is employed as the time marching scheme on the free surface. The mesh regridding and interpolation methods are adopted to deal with the possible numerical instability. Several auxiliary functions are proposed to calculate the wave loads indirectly, instead of directly predicting the temporal derivative of the velocity potential. Numerical experiments are carried out to simulate the heave motions of a submerged sphere in infinite water depth, the heave and pitch motions of a truncated flared cylinder in finite depth. The results are verified against the published numerical results to ensure the effectiveness of the proposed model. Moreover, a series of higher harmonic waves and force components are obtained by the Fourier transformation to investigate the nonlinear effect of oscillation frequency. The difference among fully nonlinear, body-nonlinear and linear results is analyzed. It is found that the nonlinearity due to free surface and body surface has significant influences on the numerical results of the radiated waves and forces.展开更多
The self-induced magnetic field in a pulsed plasma thruster(PPT)with flared electrodes is investigated for a better understanding of the working process and the structural design of the thruster.A two-dimensional mode...The self-induced magnetic field in a pulsed plasma thruster(PPT)with flared electrodes is investigated for a better understanding of the working process and the structural design of the thruster.A two-dimensional model of the magnetic field is built and is validated by comparing the simulated results with the experimental results in literature.The magnetic flux density in the discharge channel during the working process is presented and analyzed regarding the electrode structures.The calculated magnetic field flux density decreases from 0.8 T at the upstream to 0.1 T and below at the downstream in the discharge channel(68 J).The peak of the magnetic flux density over time lags behind the current peak,which provides evidence for the existence of a moving plasma sheet in the discharge process.The magnetic field induced by the current in the extra bending part of the anode enhances the Lorentz force,which acts on the charged particles near the propellant.Finally,the geometric study indicates that the electromagnetic impulse bit does not monotonically increase with the flared angle of the electrodes.Instead,it reaches a maximum at a certain flared angle,which could provide significant suggestions for structural optimization.展开更多
In order to meet the requirements of nondestructive testing of true 3D topography of micro-nano structures,a novel three-dimensional atomic force microscope(3D-AFM)based on flared tip is developed.A high-precision sca...In order to meet the requirements of nondestructive testing of true 3D topography of micro-nano structures,a novel three-dimensional atomic force microscope(3D-AFM)based on flared tip is developed.A high-precision scanning platform is designed to achieve fast servo through moving probe and sample simultaneously,and several combined nanopositioning stages are used to guarantee linearity and orthogonality of displacement.To eliminate the signal deviation caused by AFM-head movement,a traceable optical lever system is designed for cantilever deformation detection.In addition,a method of tailoring the cantilever of commercial probe with flared tip is proposed to reduce the lateral force applied on the tip in measurement.The tailored probe is mounted on the 3D-AFM,and 3D imaging experiments are conducted on different samples by use of adaptive-angle scanning strategy.The results show the roob-mean-square value of the vertical displacement noise(RMS)of the prototype is less than 0.1 nm and the high/width measurement repeatability(peak-to-peak)is less than 2.5 nm.展开更多
Using the new soft X-ray data from the Macao Science Satellite-1,we studied a solar flare that occurred on 22 June 2023.We found that the centroids of the Ca(around 3.9 keV)and Fe(around 6.7 keV)line features exhibit ...Using the new soft X-ray data from the Macao Science Satellite-1,we studied a solar flare that occurred on 22 June 2023.We found that the centroids of the Ca(around 3.9 keV)and Fe(around 6.7 keV)line features exhibit a rapid shift toward higher energy channels during the flare's rising phase,followed by a gradual decrease during the decay phase.Through precise energy calibration,the centroids are determined with high accuracy.Temperature and velocity are then self-consistently derived by comparing the centroids with those calculated from the synthesized line features using the latest CHIANTI atomic database(ver.10.1).The calculated maximum velocity reaches up to 710±60 km s-1,which significantly exceeds the previously reported values.Our results suggest that the entire shift of soft X-ray lines may occur during the process of chromospheric evaporation.展开更多
The in-flight calibration and performance of the Solar Disk Imager(SDI),which is a pivotal instrument of the LyαSolar Telescope onboard the Advanced Space-based Solar Observatory mission,suggested a much lower spatia...The in-flight calibration and performance of the Solar Disk Imager(SDI),which is a pivotal instrument of the LyαSolar Telescope onboard the Advanced Space-based Solar Observatory mission,suggested a much lower spatial resolution than expected.In this paper,we developed the SDI point-spread function(PSF)and Image Bivariate Optimization Algorithm(SPIBOA)to improve the quality of SDI images.The bivariate optimization method smartly combines deep learning with optical system modeling.Despite the lack of information about the real image taken by SDI and the optical system function,this algorithm effectively estimates the PSF of the SDI imaging system directly from a large sample of observational data.We use the estimated PSF to conduct deconvolution correction to observed SDI images,and the resulting images show that the spatial resolution after correction has increased by a factor of more than three with respect to the observed ones.Meanwhile,our method also significantly reduces the inherent noise in the observed SDI images.The SPIBOA has now been successfully integrated into the routine SDI data processing,providing important support for the scientific studies based on the data.The development and application of SPIBOA also paves new ways to identify astronomical telescope systems and enhance observational image quality.Some essential factors and precautions in applying the SPIBOA method are also discussed.展开更多
This paper outlines the scientific goals and observational strategies of the Mini-SiTian Array.Mounted at Xinglong Observatory,the Mini-SiTian Array consists of three 30 cm telescopes and has been in operation since 2...This paper outlines the scientific goals and observational strategies of the Mini-SiTian Array.Mounted at Xinglong Observatory,the Mini-SiTian Array consists of three 30 cm telescopes and has been in operation since 2022.The large field of view,combined with the capability for multi-band photometric observations,enables the Mini-SiTian Array to perform rapid follow-up observations to identify optical counterparts of gravitational waves,capture the early light curves of tidal disruption events and supernovae,and monitor stellar flares,Be star outbursts,and cataclysmic variable stars,although its limiting magnitude is not very deep.By collaborating with the Xinglong2.16 m telescope and leveraging a real-time image processing pipeline,simultaneous photometric and spectroscopic observations could be performed to reveal their underlying physical mechanisms.The observational and research experience provides critical guidance for the implementation of the full-scale SiTian project in the future.展开更多
Strong flares and/or coronal mass ejections(CMEs) could bring us disastrous space weather,destroy crucial technology in space,and cause a large-scale blackout during some extreme cases.They frequently cause geomagneti...Strong flares and/or coronal mass ejections(CMEs) could bring us disastrous space weather,destroy crucial technology in space,and cause a large-scale blackout during some extreme cases.They frequently cause geomagnetic storms,which is a sudden disturbance of the Earth's magnetosphere.It is well accepted that CMEs play a dominant role in causing geomagnetic storms by a direct impact,but it is still not very clear regarding their association with solar flares.The association would be helpful for forecasting geomagnetic storms directly from flares,which are much easier to observe.The Macao Science Satellite-1(MSS-1) mission,with the scientific aim of studying the origin and evolution of the geomagnetic field,is able to accurately measure the vector geomagnetic field.Besides,it measures rapid spectral evolution of the solar X-ray irradiance of solar flares.In this study,we analyzed measurements by MSS-1 during a series of X-class flares in October of 2024,and saw the relationship between the flares and the associated geomagnetic storms.The observations support that the major geomagnetic storms tend to be associated with flares' duration in addition to flare class.We also find that long duration ones have radiated more energy in the extreme ultraviolet waveband.Being equally important,our results show that the magnetic fields measured by MSS-1,especially its external(e_(1)^(0)) coefficient,can well be used for monitoring the geomagnetic disturbance.展开更多
Solar flare prediction is an important subject in the field of space weather.Deep learning technology has greatly promoted the development of this subject.In this study,we propose a novel solar flare forecasting model...Solar flare prediction is an important subject in the field of space weather.Deep learning technology has greatly promoted the development of this subject.In this study,we propose a novel solar flare forecasting model integrating Deep Residual Network(ResNet)and Support Vector Machine(SVM)for both≥C-class(C,M,and X classes)and≥M-class(M and X classes)flares.We collected samples of magnetograms from May 1,2010 to September 13,2018 from Space-weather Helioseismic and Magnetic Imager(HMI)Active Region Patches and then used a cross-validation method to obtain seven independent data sets.We then utilized five metrics to evaluate our fusion model,based on intermediate-output extracted by ResNet and SVM using the Gaussian kernel function.Our results show that the primary metric true skill statistics(TSS)achieves a value of 0.708±0.027 for≥C-class prediction,and of 0.758±0.042 for≥M-class prediction;these values indicate that our approach performs significantly better than those of previous studies.The metrics of our fusion model’s performance on the seven datasets indicate that the model is quite stable and robust,suggesting that fusion models that integrate an excellent baseline network with SVM can achieve improved performance in solar flare prediction.Besides,we also discuss the performance impact of architectural innovation in our fusion model.展开更多
In this study we review the occurrence of different types (A, B, C, M, and X classes) of solar flares during different solar cycle phases from 1996 to 2019 covering the solar cycles 23 and 24. During this period, a to...In this study we review the occurrence of different types (A, B, C, M, and X classes) of solar flares during different solar cycle phases from 1996 to 2019 covering the solar cycles 23 and 24. During this period, a total of 19,126 solar flares were observed regardless the class: 3548 flares in solar cycle 23 (SC23) and 15,668 flares in solar cycle 24 (SC24). Our findings show that the cycle 23 has observed the highest occurrences of M-class and X-class flares, whereas cycle 24 has pointed out a predominance of B-class and C-class flares throughout its different phases. The results indicate that the cycle 23 was magnetically more intense than cycle 24, leading to more powerful solar flares and more frequent geomagnetic storms, capable of generating significant electromagnetic emissions that can affect satellites and GPS signals. The decrease in intense solar flares during cycle 24 compared to cycle 23 reflects an evolution in solar activity patterns over time.展开更多
Objective:To assess the effectiveness of COVID-19 vaccination in patients with rheumatic diseases undergoing biologic(bDMARDs)or targeted-synthetic disease-modifying anti-rheumatic drugs(tsDMARDs).Methods:This cross-s...Objective:To assess the effectiveness of COVID-19 vaccination in patients with rheumatic diseases undergoing biologic(bDMARDs)or targeted-synthetic disease-modifying anti-rheumatic drugs(tsDMARDs).Methods:This cross-sectional study was conducted at ten rheumatology clinics in Turkey between May 1,2021,and October 30,2022.Patients with rheumatic diseases on bDMARD or tsDMARD therapy who received at least two doses of an mRNA or inactivated SARS-CoV-2 vaccine were included.After vaccination,COVID-19 infection rates,adverse events,and rheumatic disease flares were recorded.Data were collected via face-to-face or telephone interviews.Results:A total of 963 participants were included in the final analysis;44%were male,and the median age was 49 years.The most frequently observed rheumatic diseases were ankylosing spondylitis and rheumatoid arthritis,accounting for 37.2%and 32.6%of cases,respectively.Adalimumab(19.2%)and infliximab(17.8%)were the most commonly used bDMARDs.Of the participants,634(65.9%)received an inactivated vaccine(CoronaVac)and 329(34.1%)an mRNA vaccine(BioNTech).A total of 502(52.1%)patients received a booster dose.Following the first,second,and third vaccine doses,adverse event rates were 19.9%,15.9%,and 26.7%,respectively.Forty-two(4.4%)patients experienced a disease flare within six months after their first vaccination dose.COVID-19 infection occurred in 79 participants(8.2%)after two vaccine doses;most cases were symptomatic but did not require hospitalization.The COVID-19 infection rate was lower in participants who received a booster dose than those who did not(3.4%vs.8.2%,P<0.001).Conclusions:Our study indicates that both mRNA and inactivated SARS-CoV-2 vaccines are effective in preventing severe COVID-19 outcomes,with an acceptable rate of adverse events and disease flares among patients with rheumatic diseases on bDMARD or tsDMARD therapy.展开更多
The main scientific payload of Macao Science Satellite-1B is a solar soft X-ray detection unit.To obtain an accurate solar X-ray spectrum,we have designed low-noise,high-throughput electronics.Solar radiation is detec...The main scientific payload of Macao Science Satellite-1B is a solar soft X-ray detection unit.To obtain an accurate solar X-ray spectrum,we have designed low-noise,high-throughput electronics.Solar radiation is detected using a low-leakage silicon drift detector(SDD),which is cooled to-30℃.The SDD output is processed using two parallel shaping amplifiers with peaking times of 315 ns and 65 ns.The amplifiers are designed using two-pole multiple-feedback active low-pass filters optimized to achieve a Bessel response.The differential output of the shaping amplifier generates a bipolar signal.The phase of the differential stage is tuned to ensure zero crossing corresponding to the peak of the shaping amplifier.A high-speed switch is inserted between the shaping amplifier and the peak-hold capacitor,and the peak value is maintained by turning off the switch.Fast and slow peak-hold circuits share a common ADC via time-division multiplexing.Both peak values are sampled for space-background rejection.Traditional pile-up detection methods cannot distinguish pulses that overlap in a fast channel.In this study,the differential of the“fast shaping”is selected,enabling the distinction of events separated by as little as 65ns,which is crucial for solar flare detection.The energy resolution is measured to be 138 eV at 5.90 keV.The centroid drift is less than 3.6 eV between-5℃ and 20℃.Compared with other solar X-ray instruments,this study demonstrates improved energy resolution with a lower peaking time,indicating a higher solar flare detection capability.展开更多
BACKGROUND Hepatitis B virus(HBV)primarily causes hepatic inflammation and has various clinical manifestations.However,extrahepatic reactions,ranging from localized or systemic inflammation,may occur in some cases.Her...BACKGROUND Hepatitis B virus(HBV)primarily causes hepatic inflammation and has various clinical manifestations.However,extrahepatic reactions,ranging from localized or systemic inflammation,may occur in some cases.Here,we report a case of an acute exacerbation of chronic HBV infection with atypical extrahepatic mani-festation confined to the skin and mucosa despite nucleotide analog treatment,which was fully recovered on systemic steroid treatment.CASE SUMMARY A 53-year-old woman visited a clinic due to worsening skin rash and mucosal inflammation.She was receiving antiviral therapy due to a recent acute exacer-bation of chronic HBV infection.While liver function was improving with anti-viral treatment,skin rash and mucosal inflammatory lesions gradually worsened.Thus,blood tests and skin biopsy were performed to determine the cause.Despite a thorough review of serum markers and skin biopsy results,a concrete diagnosis revealing other etiology apart from the acute phase of HBV infection could not be established.The cutaneous lesions were considered a rare immunologic extrahe-patic manifestation of HBV,warranting systemic steroid treatment.Afterward,both skin and mucosal lesions rapidly improved,and the patient was discharged without any sequelae.CONCLUSION Clinicians should recognize mucocutaneous manifestations of chronic HBV,as systemic steroids may yield favorable outcomes.展开更多
The caption of Figure 5 should be:Wind/WAVES type II burst starting around 14 MHz(∼12:05 UT,2017 September 6)and continuing down to∼100 kHz(09:00 UT,2017 September 7).The end time is marked by the short vertical lin...The caption of Figure 5 should be:Wind/WAVES type II burst starting around 14 MHz(∼12:05 UT,2017 September 6)and continuing down to∼100 kHz(09:00 UT,2017 September 7).The end time is marked by the short vertical line with its length indicating the bandwidth(70-130 kHz).The horizontal error bars signify the end time uncertainty.The vertical dashed line marks the SGRE end(06:28 UT,September 7);the horizontal dashed line represents the gamma-ray background.The shock arrival time at 1 au is labeled“SH”(Gopalswamy et al.2018).展开更多
The detection of stellar flares is crucial to understanding dynamic processes at the stellar surface and their potential impact on surrounding exoplanetary systems.Extensive time series data acquired by the Transiting...The detection of stellar flares is crucial to understanding dynamic processes at the stellar surface and their potential impact on surrounding exoplanetary systems.Extensive time series data acquired by the Transiting Exoplanet Survey Satellite(TESS)offer valuable opportunities for large-scale flare studies.A variety of methods is currently employed for flare detection,with machine learning(ML)approaches demonstrating strong potential for automated classification tasks,particularly for the analysis of astronomical time series.This review provides an overview of the methods used to detect stellar flares in TESS data and evaluates their performance and effectiveness.It includes our assessment of both traditional detection techniques and more recent methods,such as ML algorithms,highlighting their strengths and limitations.By addressing current challenges and identifying promising approaches,this manuscript aims to support further studies and promote the development of stellar flare research.展开更多
Solar flares are violent solar outbursts which have a great influence on the space environment surrounding Earth,potentially causing disruption of the ionosphere and interference with the geomagnetic field,thus causin...Solar flares are violent solar outbursts which have a great influence on the space environment surrounding Earth,potentially causing disruption of the ionosphere and interference with the geomagnetic field,thus causing magnetic storms.Consequently,it is very important to accurately predict the time period of solar flares.This paper proposes a flare prediction model,based on physical images of active solar regions.We employ X-ray flux curves recorded directly by the Geostationary Operational Environmental Satellite,used as input data for the model,allowing us to largely avoid the influence of accidental errors,effectively improving the model prediction efficiency.A model based on the X-ray flux curve can predict whether there will be a flare event within 24 hours.The reverse can also be verified by the peak of the X-ray flux curve to see if a flare has occurred within the past 24 hours.The True Positive Rate and False Positive Rate of the prediction model,based on physical images of active regions are 0.6070 and 0.2410 respectively,and the accuracy and True Skill Statistics are 0.7590 and 0.5556.Our model can effectively improve prediction efficiency compared with models based on the physical parameters of active regions or magnetic field records,providing a simple method for solar flare prediction.展开更多
Craniometaphyseal dysplasia(CMD),a rare craniotubular disorder,occurs in an autosomal dominant(AD)or autosomal recessive(AR)form.CMD is characterized by hyperostosis of craniofacial bones and metaphyseal flaring of lo...Craniometaphyseal dysplasia(CMD),a rare craniotubular disorder,occurs in an autosomal dominant(AD)or autosomal recessive(AR)form.CMD is characterized by hyperostosis of craniofacial bones and metaphyseal flaring of long bones.Many patients with CMD suffer from neurological symptoms.The pathogenesis of CMD is not fully understood.展开更多
For the ASO-S/HXI payload, the accuracy of the flare reconstruction is reliant on important factors such as the alignment of the dual grating and the precise measurement of observation orientation. To guarantee optima...For the ASO-S/HXI payload, the accuracy of the flare reconstruction is reliant on important factors such as the alignment of the dual grating and the precise measurement of observation orientation. To guarantee optimal functionality of the instrument throughout its life cycle, the Solar Aspect System (SAS) is imperative to ensure that measurements are accurate and reliable. This is achieved by capturing the target motion and utilizing a physical model-based inversion algorithm. However, the SAS optical system’s inversion model is a typical ill-posed inverse problem due to its optical parameters, which results in small target sampling errors triggering unacceptable shifts in the solution. To enhance inversion accuracy and make it more robust against observation errors, we suggest dividing the inversion operation into two stages based on the SAS spot motion model. First, the as-rigid-aspossible (ARAP) transformation algorithm calculates the relative rotations and an intermediate variable between the substrates. Second, we solve an inversion linear equation for the relative translation of the substrates, the offset of the optical axes, and the observation orientation. To address the ill-posed challenge, the Tikhonov method grounded on the discrepancy criterion and the maximum a posteriori (MAP) method founded on the Bayesian framework are utilized. The simulation results exhibit that the ARAP method achieves a solution with a rotational error of roughly±3 5 (1/2-quantile);both regularization techniques are successful in enhancing the stability of the solution, the variance of error in the MAP method is even smaller—it achieves a translational error of approximately±18μm (1/2-quantile) in comparison to the Tikhonov method’s error of around±24μm (1/2-quantile). Furthermore, the SAS practical application data indicates the method’s usability in this study. Lastly, this paper discusses the intrinsic interconnections between the regularization methods.展开更多
文摘Transition on a flared cone with zero angle of at- tack was studied in our newly established Mach 6 quiet wind tunnel (M6QT) via wall pressure measurement and flow visualization. High-frequency pressure transducers were used to measure the second-mode waves' amplitudes and frequencies. Using pulsed schlieren diagnostic and Rayleigh scattering technique, we got a clear evolution of the second-mode disturbances. The second-mode waves exist for a long distance, which means that the second-mode waves grow linearly in a large region. Strong Mach waves are radiated from the edge of the boundary layer. With further development, the second-mode waves reach their maximum magnitude and harmonics of the second-mode instability appear. Then the disturbances grow nonlinearly. The second modes become weak and merge with each other. Finally, the nonlinear interaction of disturbance leads to a relatively quiet zone, which further breaks down, resulting in the transition of the bound- ary layer. Our results show that transition is determined by the second mode. The quiet zone before the final breakdown is observed in flow visualization for the first time. Eventual transition requires the presence of a quiet zone generated by nonlinear interactions.
文摘This study was designed to compare the impact of post and core systems on resistance to fracture of endodontically treated anterior teeth with flared root canals and to assess their fracture pattern. Sixty central incisors were cut horizontally 2 mm coronal to the cementoenamel junction(CEJ). After root canal therapy, teeth were assigned into 6 groups(n = 10 each) based on a post system and used as follows: Group C, non-flared root received size #1 glass fiber posts(Control); Group AP, flared root restored with anatomical post; Group RC, flared root restored with size #1 fiber post and cemented with thick layer of resin cement; Group CR, flared root restored with size #1 and reinforced with composite resin; Group CM, cast post-core; Group CP, CAD/CAM polymer-infiltrated ceramic post and core.Following post cementation, core build-up and crown insertion, the specimens were thermo-cycled up to 10,000 cycles(5 C/55 C; 30 seconds dwell time, 6 seconds transition time) and then statically loaded at 1 mm/minute crosshead speed using a universal testing machine. One-way ANOVA and Tukey HSD post hoc test(α= 0.05) were used for data analysis. Group C recorded significantly higher resistance to fracture values [(826.9±39.1) N] followed by group CP [(793.8±55.6) N] while group RC yielded the lowest fracture resistance values [(586.7±51.4) N]. The resistance to fracture of wide root canals can be enhanced by using one-piece CAM/CAM post and core as an alternative to the use of either glass fiber post, relined with composite resin increasing the thickness of luting cement or the use of cast post and core system. However, this was an in vitro investigation and further in vivo studies are necessary.
基金supported by the National Natural Science Foundation of China(51222902,51221961,and 51379032)the Program for New Century Excellent Talents in University(NCET-130076)+2 种基金The Fundamental Research Fund for the Central University(HEUCF140103)The Open Fund of State Key Laboratory of Coastal and Offshore Engineering(LP1407)the Lloyd’s Register Foundation (LRF) through the Joint Centre Involving University College London,Shanghai Jiaotong University and Harbin Engineering University
文摘The nonlinear radiated waves generated by a structure in forced motion, are simulated numerically based on the potential theory. A fully nonlinear numerical model is developed by using a higher-order boundary element method (HOBEM). In this model, the instantaneous body position and the transient free surface are updated at each time step. A Lagrangian technique is employed as the time marching scheme on the free surface. The mesh regridding and interpolation methods are adopted to deal with the possible numerical instability. Several auxiliary functions are proposed to calculate the wave loads indirectly, instead of directly predicting the temporal derivative of the velocity potential. Numerical experiments are carried out to simulate the heave motions of a submerged sphere in infinite water depth, the heave and pitch motions of a truncated flared cylinder in finite depth. The results are verified against the published numerical results to ensure the effectiveness of the proposed model. Moreover, a series of higher harmonic waves and force components are obtained by the Fourier transformation to investigate the nonlinear effect of oscillation frequency. The difference among fully nonlinear, body-nonlinear and linear results is analyzed. It is found that the nonlinearity due to free surface and body surface has significant influences on the numerical results of the radiated waves and forces.
基金National Natural Science Foundation of China(No.11602016).
文摘The self-induced magnetic field in a pulsed plasma thruster(PPT)with flared electrodes is investigated for a better understanding of the working process and the structural design of the thruster.A two-dimensional model of the magnetic field is built and is validated by comparing the simulated results with the experimental results in literature.The magnetic flux density in the discharge channel during the working process is presented and analyzed regarding the electrode structures.The calculated magnetic field flux density decreases from 0.8 T at the upstream to 0.1 T and below at the downstream in the discharge channel(68 J).The peak of the magnetic flux density over time lags behind the current peak,which provides evidence for the existence of a moving plasma sheet in the discharge process.The magnetic field induced by the current in the extra bending part of the anode enhances the Lorentz force,which acts on the charged particles near the propellant.Finally,the geometric study indicates that the electromagnetic impulse bit does not monotonically increase with the flared angle of the electrodes.Instead,it reaches a maximum at a certain flared angle,which could provide significant suggestions for structural optimization.
基金National Key Research and Development Pragram of China(No.2016YFF0200602)National Natural Science Foundation of China(No.61973233)。
文摘In order to meet the requirements of nondestructive testing of true 3D topography of micro-nano structures,a novel three-dimensional atomic force microscope(3D-AFM)based on flared tip is developed.A high-precision scanning platform is designed to achieve fast servo through moving probe and sample simultaneously,and several combined nanopositioning stages are used to guarantee linearity and orthogonality of displacement.To eliminate the signal deviation caused by AFM-head movement,a traceable optical lever system is designed for cantilever deformation detection.In addition,a method of tailoring the cantilever of commercial probe with flared tip is proposed to reduce the lateral force applied on the tip in measurement.The tailored probe is mounted on the 3D-AFM,and 3D imaging experiments are conducted on different samples by use of adaptive-angle scanning strategy.The results show the roob-mean-square value of the vertical displacement noise(RMS)of the prototype is less than 0.1 nm and the high/width measurement repeatability(peak-to-peak)is less than 2.5 nm.
文摘Using the new soft X-ray data from the Macao Science Satellite-1,we studied a solar flare that occurred on 22 June 2023.We found that the centroids of the Ca(around 3.9 keV)and Fe(around 6.7 keV)line features exhibit a rapid shift toward higher energy channels during the flare's rising phase,followed by a gradual decrease during the decay phase.Through precise energy calibration,the centroids are determined with high accuracy.Temperature and velocity are then self-consistently derived by comparing the centroids with those calculated from the synthesized line features using the latest CHIANTI atomic database(ver.10.1).The calculated maximum velocity reaches up to 710±60 km s-1,which significantly exceeds the previously reported values.Our results suggest that the entire shift of soft X-ray lines may occur during the process of chromospheric evaporation.
基金supported by the National Natural Science Foundation of China(NSFC)under grant No.12233012,the Strategic Priority Research Program of the Chinese Academy of Sciences,grant No.XDB0560102the National Key R&D Program of China 2022YFF0503003(2022YFF0503000)。
文摘The in-flight calibration and performance of the Solar Disk Imager(SDI),which is a pivotal instrument of the LyαSolar Telescope onboard the Advanced Space-based Solar Observatory mission,suggested a much lower spatial resolution than expected.In this paper,we developed the SDI point-spread function(PSF)and Image Bivariate Optimization Algorithm(SPIBOA)to improve the quality of SDI images.The bivariate optimization method smartly combines deep learning with optical system modeling.Despite the lack of information about the real image taken by SDI and the optical system function,this algorithm effectively estimates the PSF of the SDI imaging system directly from a large sample of observational data.We use the estimated PSF to conduct deconvolution correction to observed SDI images,and the resulting images show that the spatial resolution after correction has increased by a factor of more than three with respect to the observed ones.Meanwhile,our method also significantly reduces the inherent noise in the observed SDI images.The SPIBOA has now been successfully integrated into the routine SDI data processing,providing important support for the scientific studies based on the data.The development and application of SPIBOA also paves new ways to identify astronomical telescope systems and enhance observational image quality.Some essential factors and precautions in applying the SPIBOA method are also discussed.
基金supported by the National Key Basic R&D Program of China via 2023YFA1608303the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0550103)+3 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(grant Nos.XDB0550000,XDB0550100 and XDB0550102)supported from the Strategic Pioneer Program of the Astronomy Large-Scale Scientific Facility,Chinese Academy of Sciences and the Science and Education Integration Funding of University of Chinese Academy of Sciencessupported by the National Natural Science Foundation of China(NSFCgrant Nos.12090040,12090041,12090041,12422303,12261141690,and 12403022)。
文摘This paper outlines the scientific goals and observational strategies of the Mini-SiTian Array.Mounted at Xinglong Observatory,the Mini-SiTian Array consists of three 30 cm telescopes and has been in operation since 2022.The large field of view,combined with the capability for multi-band photometric observations,enables the Mini-SiTian Array to perform rapid follow-up observations to identify optical counterparts of gravitational waves,capture the early light curves of tidal disruption events and supernovae,and monitor stellar flares,Be star outbursts,and cataclysmic variable stars,although its limiting magnitude is not very deep.By collaborating with the Xinglong2.16 m telescope and leveraging a real-time image processing pipeline,simultaneous photometric and spectroscopic observations could be performed to reveal their underlying physical mechanisms.The observational and research experience provides critical guidance for the implementation of the full-scale SiTian project in the future.
基金funded by NSFC under grants 12250014, 42250101 and 12403068supported by youth funding of Jiangsu province BK20241707+1 种基金supported by the Macao FoundationXinjiang Uygur Autonomous Region for the support through “Tianchi Talent” special expert project。
文摘Strong flares and/or coronal mass ejections(CMEs) could bring us disastrous space weather,destroy crucial technology in space,and cause a large-scale blackout during some extreme cases.They frequently cause geomagnetic storms,which is a sudden disturbance of the Earth's magnetosphere.It is well accepted that CMEs play a dominant role in causing geomagnetic storms by a direct impact,but it is still not very clear regarding their association with solar flares.The association would be helpful for forecasting geomagnetic storms directly from flares,which are much easier to observe.The Macao Science Satellite-1(MSS-1) mission,with the scientific aim of studying the origin and evolution of the geomagnetic field,is able to accurately measure the vector geomagnetic field.Besides,it measures rapid spectral evolution of the solar X-ray irradiance of solar flares.In this study,we analyzed measurements by MSS-1 during a series of X-class flares in October of 2024,and saw the relationship between the flares and the associated geomagnetic storms.The observations support that the major geomagnetic storms tend to be associated with flares' duration in addition to flare class.We also find that long duration ones have radiated more energy in the extreme ultraviolet waveband.Being equally important,our results show that the magnetic fields measured by MSS-1,especially its external(e_(1)^(0)) coefficient,can well be used for monitoring the geomagnetic disturbance.
基金supported by the National Key R&D Program of China (Grant No.2022YFF0503700)the National Natural Science Foundation of China (42074196, 41925018)
文摘Solar flare prediction is an important subject in the field of space weather.Deep learning technology has greatly promoted the development of this subject.In this study,we propose a novel solar flare forecasting model integrating Deep Residual Network(ResNet)and Support Vector Machine(SVM)for both≥C-class(C,M,and X classes)and≥M-class(M and X classes)flares.We collected samples of magnetograms from May 1,2010 to September 13,2018 from Space-weather Helioseismic and Magnetic Imager(HMI)Active Region Patches and then used a cross-validation method to obtain seven independent data sets.We then utilized five metrics to evaluate our fusion model,based on intermediate-output extracted by ResNet and SVM using the Gaussian kernel function.Our results show that the primary metric true skill statistics(TSS)achieves a value of 0.708±0.027 for≥C-class prediction,and of 0.758±0.042 for≥M-class prediction;these values indicate that our approach performs significantly better than those of previous studies.The metrics of our fusion model’s performance on the seven datasets indicate that the model is quite stable and robust,suggesting that fusion models that integrate an excellent baseline network with SVM can achieve improved performance in solar flare prediction.Besides,we also discuss the performance impact of architectural innovation in our fusion model.
文摘In this study we review the occurrence of different types (A, B, C, M, and X classes) of solar flares during different solar cycle phases from 1996 to 2019 covering the solar cycles 23 and 24. During this period, a total of 19,126 solar flares were observed regardless the class: 3548 flares in solar cycle 23 (SC23) and 15,668 flares in solar cycle 24 (SC24). Our findings show that the cycle 23 has observed the highest occurrences of M-class and X-class flares, whereas cycle 24 has pointed out a predominance of B-class and C-class flares throughout its different phases. The results indicate that the cycle 23 was magnetically more intense than cycle 24, leading to more powerful solar flares and more frequent geomagnetic storms, capable of generating significant electromagnetic emissions that can affect satellites and GPS signals. The decrease in intense solar flares during cycle 24 compared to cycle 23 reflects an evolution in solar activity patterns over time.
文摘Objective:To assess the effectiveness of COVID-19 vaccination in patients with rheumatic diseases undergoing biologic(bDMARDs)or targeted-synthetic disease-modifying anti-rheumatic drugs(tsDMARDs).Methods:This cross-sectional study was conducted at ten rheumatology clinics in Turkey between May 1,2021,and October 30,2022.Patients with rheumatic diseases on bDMARD or tsDMARD therapy who received at least two doses of an mRNA or inactivated SARS-CoV-2 vaccine were included.After vaccination,COVID-19 infection rates,adverse events,and rheumatic disease flares were recorded.Data were collected via face-to-face or telephone interviews.Results:A total of 963 participants were included in the final analysis;44%were male,and the median age was 49 years.The most frequently observed rheumatic diseases were ankylosing spondylitis and rheumatoid arthritis,accounting for 37.2%and 32.6%of cases,respectively.Adalimumab(19.2%)and infliximab(17.8%)were the most commonly used bDMARDs.Of the participants,634(65.9%)received an inactivated vaccine(CoronaVac)and 329(34.1%)an mRNA vaccine(BioNTech).A total of 502(52.1%)patients received a booster dose.Following the first,second,and third vaccine doses,adverse event rates were 19.9%,15.9%,and 26.7%,respectively.Forty-two(4.4%)patients experienced a disease flare within six months after their first vaccination dose.COVID-19 infection occurred in 79 participants(8.2%)after two vaccine doses;most cases were symptomatic but did not require hospitalization.The COVID-19 infection rate was lower in participants who received a booster dose than those who did not(3.4%vs.8.2%,P<0.001).Conclusions:Our study indicates that both mRNA and inactivated SARS-CoV-2 vaccines are effective in preventing severe COVID-19 outcomes,with an acceptable rate of adverse events and disease flares among patients with rheumatic diseases on bDMARD or tsDMARD therapy.
基金supported by the National Natural Science Foundation of China(No.12035020)National Key Scientific Instrument and Equipment Development Projects of China(No.42327802).
文摘The main scientific payload of Macao Science Satellite-1B is a solar soft X-ray detection unit.To obtain an accurate solar X-ray spectrum,we have designed low-noise,high-throughput electronics.Solar radiation is detected using a low-leakage silicon drift detector(SDD),which is cooled to-30℃.The SDD output is processed using two parallel shaping amplifiers with peaking times of 315 ns and 65 ns.The amplifiers are designed using two-pole multiple-feedback active low-pass filters optimized to achieve a Bessel response.The differential output of the shaping amplifier generates a bipolar signal.The phase of the differential stage is tuned to ensure zero crossing corresponding to the peak of the shaping amplifier.A high-speed switch is inserted between the shaping amplifier and the peak-hold capacitor,and the peak value is maintained by turning off the switch.Fast and slow peak-hold circuits share a common ADC via time-division multiplexing.Both peak values are sampled for space-background rejection.Traditional pile-up detection methods cannot distinguish pulses that overlap in a fast channel.In this study,the differential of the“fast shaping”is selected,enabling the distinction of events separated by as little as 65ns,which is crucial for solar flare detection.The energy resolution is measured to be 138 eV at 5.90 keV.The centroid drift is less than 3.6 eV between-5℃ and 20℃.Compared with other solar X-ray instruments,this study demonstrates improved energy resolution with a lower peaking time,indicating a higher solar flare detection capability.
基金Supported by Chonnam National University Hospital Biomedical Research Institute,No.BCRE23215.
文摘BACKGROUND Hepatitis B virus(HBV)primarily causes hepatic inflammation and has various clinical manifestations.However,extrahepatic reactions,ranging from localized or systemic inflammation,may occur in some cases.Here,we report a case of an acute exacerbation of chronic HBV infection with atypical extrahepatic mani-festation confined to the skin and mucosa despite nucleotide analog treatment,which was fully recovered on systemic steroid treatment.CASE SUMMARY A 53-year-old woman visited a clinic due to worsening skin rash and mucosal inflammation.She was receiving antiviral therapy due to a recent acute exacer-bation of chronic HBV infection.While liver function was improving with anti-viral treatment,skin rash and mucosal inflammatory lesions gradually worsened.Thus,blood tests and skin biopsy were performed to determine the cause.Despite a thorough review of serum markers and skin biopsy results,a concrete diagnosis revealing other etiology apart from the acute phase of HBV infection could not be established.The cutaneous lesions were considered a rare immunologic extrahe-patic manifestation of HBV,warranting systemic steroid treatment.Afterward,both skin and mucosal lesions rapidly improved,and the patient was discharged without any sequelae.CONCLUSION Clinicians should recognize mucocutaneous manifestations of chronic HBV,as systemic steroids may yield favorable outcomes.
文摘The caption of Figure 5 should be:Wind/WAVES type II burst starting around 14 MHz(∼12:05 UT,2017 September 6)and continuing down to∼100 kHz(09:00 UT,2017 September 7).The end time is marked by the short vertical line with its length indicating the bandwidth(70-130 kHz).The horizontal error bars signify the end time uncertainty.The vertical dashed line marks the SGRE end(06:28 UT,September 7);the horizontal dashed line represents the gamma-ray background.The shock arrival time at 1 au is labeled“SH”(Gopalswamy et al.2018).
基金supported by the National Natural Science Foundation of China(12473104 and U2031144).
文摘The detection of stellar flares is crucial to understanding dynamic processes at the stellar surface and their potential impact on surrounding exoplanetary systems.Extensive time series data acquired by the Transiting Exoplanet Survey Satellite(TESS)offer valuable opportunities for large-scale flare studies.A variety of methods is currently employed for flare detection,with machine learning(ML)approaches demonstrating strong potential for automated classification tasks,particularly for the analysis of astronomical time series.This review provides an overview of the methods used to detect stellar flares in TESS data and evaluates their performance and effectiveness.It includes our assessment of both traditional detection techniques and more recent methods,such as ML algorithms,highlighting their strengths and limitations.By addressing current challenges and identifying promising approaches,this manuscript aims to support further studies and promote the development of stellar flare research.
基金partially supported by the National Key R&D Program of China (2022YFE0133700)the National Natural Science Foundation of China(12273007)+4 种基金the Guizhou Provincial Excellent Young Science and Technology Talent Program (YQK[2023]006)the National SKA Program of China (2020SKA0110300)the National Natural Science Foundation of China(11963003)the Guizhou Provincial Basic Research Program (Natural Science)(ZK[2022]143)the Cultivation project of Guizhou University ([2020]76).
文摘Solar flares are violent solar outbursts which have a great influence on the space environment surrounding Earth,potentially causing disruption of the ionosphere and interference with the geomagnetic field,thus causing magnetic storms.Consequently,it is very important to accurately predict the time period of solar flares.This paper proposes a flare prediction model,based on physical images of active solar regions.We employ X-ray flux curves recorded directly by the Geostationary Operational Environmental Satellite,used as input data for the model,allowing us to largely avoid the influence of accidental errors,effectively improving the model prediction efficiency.A model based on the X-ray flux curve can predict whether there will be a flare event within 24 hours.The reverse can also be verified by the peak of the X-ray flux curve to see if a flare has occurred within the past 24 hours.The True Positive Rate and False Positive Rate of the prediction model,based on physical images of active regions are 0.6070 and 0.2410 respectively,and the accuracy and True Skill Statistics are 0.7590 and 0.5556.Our model can effectively improve prediction efficiency compared with models based on the physical parameters of active regions or magnetic field records,providing a simple method for solar flare prediction.
基金supported by NIH/NIDCR grant R01DE025664 to IPC.
文摘Craniometaphyseal dysplasia(CMD),a rare craniotubular disorder,occurs in an autosomal dominant(AD)or autosomal recessive(AR)form.CMD is characterized by hyperostosis of craniofacial bones and metaphyseal flaring of long bones.Many patients with CMD suffer from neurological symptoms.The pathogenesis of CMD is not fully understood.
基金the Strategic Priority Research Program on Space Science of the Chinese Academy of Sciences,the grant No.XDA15320104,with additional contributions from the Purple Mountain Observatory(PMO)of the Chinese Academy of Sciences and the National Space Science Center(NSSC).
文摘For the ASO-S/HXI payload, the accuracy of the flare reconstruction is reliant on important factors such as the alignment of the dual grating and the precise measurement of observation orientation. To guarantee optimal functionality of the instrument throughout its life cycle, the Solar Aspect System (SAS) is imperative to ensure that measurements are accurate and reliable. This is achieved by capturing the target motion and utilizing a physical model-based inversion algorithm. However, the SAS optical system’s inversion model is a typical ill-posed inverse problem due to its optical parameters, which results in small target sampling errors triggering unacceptable shifts in the solution. To enhance inversion accuracy and make it more robust against observation errors, we suggest dividing the inversion operation into two stages based on the SAS spot motion model. First, the as-rigid-aspossible (ARAP) transformation algorithm calculates the relative rotations and an intermediate variable between the substrates. Second, we solve an inversion linear equation for the relative translation of the substrates, the offset of the optical axes, and the observation orientation. To address the ill-posed challenge, the Tikhonov method grounded on the discrepancy criterion and the maximum a posteriori (MAP) method founded on the Bayesian framework are utilized. The simulation results exhibit that the ARAP method achieves a solution with a rotational error of roughly±3 5 (1/2-quantile);both regularization techniques are successful in enhancing the stability of the solution, the variance of error in the MAP method is even smaller—it achieves a translational error of approximately±18μm (1/2-quantile) in comparison to the Tikhonov method’s error of around±24μm (1/2-quantile). Furthermore, the SAS practical application data indicates the method’s usability in this study. Lastly, this paper discusses the intrinsic interconnections between the regularization methods.