期刊文献+
共找到811篇文章
< 1 2 41 >
每页显示 20 50 100
Modeling of Flapping Wing Aerial Vehicle Using Hybrid Phase-functioned Neural Network Based on Flight Data
1
作者 Zhihao Zhao Zhiling Jiang +1 位作者 Chenyang Zhang Guanghua Song 《Journal of Bionic Engineering》 2025年第3期1126-1142,共17页
Modeling the dynamics of flapping wing aerial vehicle is challenging due to the complexity of aerodynamic effects and mechanical structures.The aim of this work is to develop an accurate dynamics model of flapping win... Modeling the dynamics of flapping wing aerial vehicle is challenging due to the complexity of aerodynamic effects and mechanical structures.The aim of this work is to develop an accurate dynamics model of flapping wing aerial vehicle based on real flight data.We propose a modeling framework that combines rigid body dynamics with a neural network to predict aerodynamic effects.By incorporating the concept of flapping phase,we significantly enhance the network’s ability to analyze transient aerodynamic behavior.We design and utilize a phase-functioned neural network structure for aerodynamic predictions and train the network using real flight data.Evaluation results show that the network can predict aerodynamic effects and demonstrate clear physical significance.We verify that the framework can be used for dynamic propagation and is expected to be utilized for building simulators for flapping wing aerial vehicles. 展开更多
关键词 flapping wing aerial vehicle flapping phase Modeling Neural networks
在线阅读 下载PDF
Bio-inspired passive design of flapping-wing micro air vehicles
2
作者 Xiufeng YANG Mingjing QI 《Chinese Journal of Aeronautics》 2025年第10期360-362,共3页
Flapping-Wing Micro Air Vehicles(FMAVs)are compact and agile,capable of accessing narrow spaces that conventional vehicles struggle to reach,such as ruins,caves,or the interiors of complex structures,making them ideal... Flapping-Wing Micro Air Vehicles(FMAVs)are compact and agile,capable of accessing narrow spaces that conventional vehicles struggle to reach,such as ruins,caves,or the interiors of complex structures,making them ideal tools for reconnaissance and rescue missions.1 However,the operation of FMAVs relies on coordinating multiple forces with different scaling effects,posing challenges to miniaturization design. 展开更多
关键词 coordinating multiple forces reconnaissance rescue missions accessing narrow micro air vehicles conventional vehicles flapping wing miniaturization design passive design
原文传递
Self-Locking Stability Effect Induced by Downwash Flow of the Flapping Wing Rotor
3
作者 Si Chen Lihua Yuan +7 位作者 Jiawei Xiang Yuanyuan He Peng Zhang Yuanhao Cheng Yinjun Pan Shijun Guo Ye Xie Juan Wang 《Journal of Bionic Engineering》 2025年第5期2429-2443,共15页
Throughout the previous studies,none of them are involved in analysing the downwash flow effect on the control surface of the Flapping Wing Rotor(FWR).An overset CFD numerical model is built up and validated to study ... Throughout the previous studies,none of them are involved in analysing the downwash flow effect on the control surface of the Flapping Wing Rotor(FWR).An overset CFD numerical model is built up and validated to study the downwash flow’s effect on the stability of the FWR.After simulation,a cone like self-lock region which acts as the critical condition determining the stability of FWR is found.Only when the flow’s resultant velocity acting on the control surface lies in the stable region,the FWR can keep stable.The size of the cone like self-lock stable region can be enlarged by increasing the maximum feasible deflection angle constrained by mechanical design or enhancing the equivalent downwash flow velocity.Among all the simulated cases,when J=2.67(f=5 Hz,■=5 r/s),the largest average equivalent downwash flow velocities are found.On the other hand,the recovery torque could be enhanced due to the increase of the arm of the lateral force.According to these simulation results,a 43 g FWR model with two control surfaces and two stabilizers is then designed.A series of flight tests is then conducted to help confirm the conclusion of the mechanism research in this work.Overall,this study points out several strategies to increase the flight stability of the FWR and finally realizes the stable climb flight and mild descent flight of the FWR. 展开更多
关键词 flapping wing rotor Downwash flow Self-lock stable region
在线阅读 下载PDF
The effect of phase angle and wing spacing on tandem flapping wings 被引量:15
4
作者 Timothy M. Broering Yong-Sheng Lian 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第6期1557-1571,共15页
In a tandem wing configuration, the hindwing of- ten operates in the wake of the forewing and, hence, its per- formance is affected by the vortices shed by the forewing. Changes in the phase angle between the flapping... In a tandem wing configuration, the hindwing of- ten operates in the wake of the forewing and, hence, its per- formance is affected by the vortices shed by the forewing. Changes in the phase angle between the flapping motions of the fore and the hind wings, as well as the spacing between them, can affect the resulting vortex/wing and vortex/vortex interactions. This study uses 2D numerical simulations to in- vestigate how these changes affect the leading dege vortexes (LEV) generated by the hindwing and the resulting effect on the lift and thrust coefficients as well as the efficiencies. The tandem wing configuration was simulated using an incom- pressible Navier-Stokes solver at a chord-based Reynolds number of 5 000. A harmonic single frequency sinusoidal oscillation consisting of a combined pitch and plunge motion was used for the flapping wing kinematics at a Strouhal num- ber of 0.3. Four different spacings ranging from 0.1 chords to 1 chord were tested at three different phase angles, 0°, 90° and 180°. It was found that changes in the spacing and phase angle affected the timing of the interaction between the vor- tex shed from the forewing and the hindwing. Such an inter- action affects the LEV formation on the hindwing and results in changes in aerodynamic force production and efficiencies of the hindwing. It is also observed that changing the phase angle has a similar effect as changing the spacing. The re- suits further show that at different spacings the peak force generation occurs at different phase angles, as do the peak efficiencies. 展开更多
关键词 Tandem. flapping. Airfoils. Micro air vehicle.Caculational fluid dynamics (CFD) Overlapping grids
在线阅读 下载PDF
The influence of the wake of a flapping wing on the production of aerodynamic forces 被引量:9
5
作者 Jianghao Wu Mao Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第5期411-418,共8页
The effect of the wake of previous strokes on the aerodynamic forces of a flapping model insect wing is studied using the method of computational fluid dynamics. The wake effect is isolated by comparing the forces and... The effect of the wake of previous strokes on the aerodynamic forces of a flapping model insect wing is studied using the method of computational fluid dynamics. The wake effect is isolated by comparing the forces and flows of the starting stroke (when the wake has not developed) with those of a later stroke (when the wake has developed). The following has been shown. (1) The wake effect may increase or decrease the lift and drag at the beginning of a half-stroke (downstroke or upstroke), depending on the wing kinematics at stroke reversal. The reason for this is that at the beginning of the half-stroke, the wing “impinges” on the spanwise vorticity generated by the wing during stroke reversal and the distribution of the vorticity is sensitive to the wing kinematics at stroke reversal. (2) The wake effect decreases the lift and increases the drag in the rest part of the half-stroke. This is because the wing moves in a downwash field induced by previous half-stroke's starting vortex, tip vortices and attached leading edge vortex (these vortices form a downwash producing vortex ring). (3) The wake effect decreases the mean lift by 6%-18% (depending on wing kinematics at stroke reversal) and slightly increases the mean drag. Therefore, it is detrimental to the aerodynamic performance of the flapping wing. 展开更多
关键词 Insect. flapping. Unsteady aerodynamics.Wing/wake interaction. CFD analysis
在线阅读 下载PDF
Flap amputation for severe epithelial ingrowth post-LASIK:a case report
6
作者 Mohamed Hosny Wessam Salem 《International Journal of Ophthalmology(English edition)》 2026年第1期197-198,共2页
Dear Editor,We present this case report which discusses a patient who underwent flap amputation after repeated attempts to resolve persistent and severe epithelial ingrowth following laser-assisted in situ keratomileu... Dear Editor,We present this case report which discusses a patient who underwent flap amputation after repeated attempts to resolve persistent and severe epithelial ingrowth following laser-assisted in situ keratomileusis(LASIK)surgery.Epithelial ingrowth is a known complication of LASIK surgery,typically manageable with minimal measures.However,severe cases may necessitate more aggressive interventions,such as flap amputation[1].LASIK is a widely performed refractive surgery with high success rates and excellent visual outcome[2]. 展开更多
关键词 refractive surgery LASIK flap amputation lasik flap amputation laser assisted situ keratomileusis epithelial ingrowth
原文传递
A flow control mechanism in wing flapping with stroke asymmetry during insect forward flight 被引量:18
7
作者 Yongliang Yu Binggang Tong 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第3期218-227,共10页
A theoretical modeling approach as well as an unsteady analytical method is used to study aerodynamic characteristics of wing flapping with asymmetric stroke-cycles in connection with an oblique stroke plane during in... A theoretical modeling approach as well as an unsteady analytical method is used to study aerodynamic characteristics of wing flapping with asymmetric stroke-cycles in connection with an oblique stroke plane during insect forward flight. It is revealed that the aerodynamic asymmetry between the downstroke and the upstroke due to stroke-asymmetrical flapping is a key to understand the flow physics of generation and modulation of the lift and the thrust. Predicted results for examples of given kinematics validate more specifically some viewpoints that the wing lift is more easily produced when the forward speed is higher and the thrust is harder, and the lift and the thrust are generated mainly during downstroke and upstroke, respectively. The effects of three controlling parameters, i.e. the angles of tilted stroke plane, the different downstroke duration ratios, and the different angles of attack in both down- and up-stroke, are further discussed. It is found that larger oblique angles of stroke planes generate larger thrust but smaller lift; larger downstroke duration ratios lead to larger thrust, while making little change in lift and input aerodynamic power; and again, a small increase of the angle of attack in downstroke or upstroke may cause remarkable changes in aerodynamic performance in the relevant stroke. 展开更多
关键词 Insect forward flight Wing flapping Stroke asymmetry Oblique stroke plane Theoretical modeling.
在线阅读 下载PDF
Aerodynamic Effects of Corrugation in Flapping Insect Wings in Forward Flight 被引量:11
8
作者 Xueguang Meng Mao Sun 《Journal of Bionic Engineering》 SCIE EI CSCD 2011年第2期140-150,共11页
We have examined the aerodynamic effects of corrugation in model wings that closely mimic the wing movements of a forward flight bumblebee using the method of computational fluid dynamics. Various corrugated wing mode... We have examined the aerodynamic effects of corrugation in model wings that closely mimic the wing movements of a forward flight bumblebee using the method of computational fluid dynamics. Various corrugated wing models were tested (care was taken to ensure that the corrugation introduced zero camber). Advance ratio ranging from 0 to 0.57 was considered. The results shown that at all flight speeds considered, the time courses of aerodynamic force of the corrugated wing are very close to those of the flat-plate wing. The cornlgation decreases aerodynamic force slightly. The changes in the mean location of center of pressure in the spanwise and chordwise directions resulting from the corrugation are no more than 3% of the wing chord length. The possible reason for the small aerodynamic effects of wing corrugation is that the wing operates at a large angle of attack and the flow is separated: the large angle of incidence dominates the corrugation in determining the flow around the wing, and for separated flow, the flow is much less sensitive to wing shape variation. 展开更多
关键词 INSECT flapping forward flight wing corrugation AERODYNAMICS
在线阅读 下载PDF
AERODYNAMIC FORCE AND FLOW STRUCTURES OF TWO AIRFOILS IN FLAPPING MOTIONS 被引量:13
9
作者 兰世隆 孙茂 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2001年第4期310-331,共22页
Aerodynamic force and flow structures of two airfoils in a tandem configuration in flapping motions axe studied, by solving the Navier-Stokes equations in moving overset grids. Three typical phase differences between ... Aerodynamic force and flow structures of two airfoils in a tandem configuration in flapping motions axe studied, by solving the Navier-Stokes equations in moving overset grids. Three typical phase differences between the fore- and aft-airfoil flapping cycles are considered. It is shown that: (1) in the case of no interaction (single airfoil), the time average of the vertical force coefficient over the downstroke is 2.74, which is about 3 times as large as the maximum steady-state lift coefficient of a dragonfly wing; the time average of the horizontal force coefficient is 1.97, which is also large. The reasons for the large force coefficients are the acceleration at the beginning of a stroke, the delayed stall and the 'pitching-up' motion near the end of the stroke. (2) In the cases of two-airfoils, the time-variations of the force and moment coefficients on each airfoil are broadly similar to that of the single airfoil in that the vertical force is mainly produced in downstroke and the horizontal force in upstroke, but very large differences exist due to the interaction. (3) For in-phase stroking, the major differences caused by the interaction are that the vertical force on FA in downstroke is increased and the horizontal force on FA in upstroke decreased. As a result, the magnitude of the resultant force is almost unchanged but it inclines less forward. (4) For counter stroking, the major differences are that the vertical force on AA in downstroke and the horizontal force on FA in upstroke are decreased. As a result, the magnitude of the resultant force is decreased by about 20 percent but its direction is almost unchanged. (5) For 90 degrees -phase-difference stroking, the major differences axe that the vertical force on AA in downstroke and the horizontal force on FA in upstroke axe decreased greatly and the horizontal force on AA in upstroke increased. As a result, the magnitude of the resultant force is decreased by about 28% and it inclines more forward. (6) Among the three cases of phase angles, inphase flapping produces the largest vertical force (also the largest resultant force); the 90 degrees -phase-difference flapping results in the largest horizontal force, but the smallest resultant force. 展开更多
关键词 dragonfly flight two airfoils flapping motion Navier-Stokes simulation
在线阅读 下载PDF
Flapping wing micro-aerial-vehicle: Kinematics, membranes, and flapping mechanisms of ornithopter and insect flight 被引量:9
10
作者 Mohd Firdaus Bin Abas Azmin Shakrine Bin Mohd Rafie +1 位作者 Hamid Bin Yusoff Kamarul Arifin Bin Ahmad 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第5期1159-1177,共19页
The application of biomimetics in the development of unmanned-aerial-vehicles (UAV) has advanced to an exceptionally small scale of nano-aerial-vehicles (NAV), which has surpassed its immediate predecessor of micr... The application of biomimetics in the development of unmanned-aerial-vehicles (UAV) has advanced to an exceptionally small scale of nano-aerial-vehicles (NAV), which has surpassed its immediate predecessor of micro-aerial-vehicles (MAV), leaving a vast range of development possi- bilities that MAVs have to offer. Because of the prompt advancement into the NAV research devel- opment, the true potential and challenges presented by MAV development were never solved, understood, and truly uncovered, especially under the influence of transition and low Reynolds number flow characteristics. This paper reviews a part of previous MAV research developments which are deemed important of notification; kinematics, membranes, and flapping mechanisms ranges from small birds to big insects, which resides within the transition and low Reynolds number regimes. This paper also reviews the possibility of applying a piezoelectric transmission used to pro- duce NAV flapping wing motion and mounted on a MAV, replacing the conventional motorized flapping wing transmission. Findings suggest that limited work has been done for MAVs matching these criteria. The preferred research approach has seen bias towards numerical analysis as compared to experimental analysis. 展开更多
关键词 flapping wing kinematics INSECT Membrane wing Micro-air-vehicle Ornithopter
原文传递
Development of Air Vehicle with Active Flapping and Twisting of Wing 被引量:9
11
作者 Sangyol Yoon Lac-Hyong Kang Sungho Jo 《Journal of Bionic Engineering》 SCIE EI CSCD 2011年第1期1-9,共9页
This paper addresses mechanisms for active flapping and twisting of robotic wings and assesses flying effectiveness as a function of twist angle. Unlike the flapping motion of bird wings, insects generally make a twis... This paper addresses mechanisms for active flapping and twisting of robotic wings and assesses flying effectiveness as a function of twist angle. Unlike the flapping motion of bird wings, insects generally make a twisting motion at the root of their wings while flapping, which makes it possible for them to hover in midair. This work includes the development of a Voice Coil Motor (VCM) because a flapping-wing air vehicle should be assembled with a compact actuator to decrease size and weight. A linkage mechanism is proposed to transform the linear motion of the VCM into the flapping and twisting motions of wings. The assembled flapping-wing air vehicle, whose weight is 2.86 g, produces an average positive vertical force proportional to the twist angle. The force saturates because the twist angle is mechanically limited. This work demonstrates the possibility of developing a flapping-wing air vehicle that can hover in midair using a mechanism that actively twists the roots of wings during flapping. 展开更多
关键词 BIOMIMETIC flapping-wing air vehicle flapping TWISTING voice coil motor linkage mechanism
在线阅读 下载PDF
Design and experimental study of a new flapping wing rotor micro aerial vehicle 被引量:10
12
作者 Xin DONG Daochun LI +1 位作者 Jinwu XIANG Ziyu WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第12期3092-3099,共8页
A three-wing Flapping Wing Rotor Micro Aerial Vehicle(FWR-MAV)which can perform controlled flight is introduced and an experimental study on this vehicle is presented.A mechanically driven flapping rotary mechanism is... A three-wing Flapping Wing Rotor Micro Aerial Vehicle(FWR-MAV)which can perform controlled flight is introduced and an experimental study on this vehicle is presented.A mechanically driven flapping rotary mechanism is designed to drive the three flapping wings and generate lift,and control mechanisms are designed to control the pose of the FWR-MAV.A flight control board for attitude control with robust onboard attitude estimation and a control algorithm is also developed to perform stable hovering flight and forward flight.A series of flight tests was conducted,with hovering flight and forward flight tests performed to optimize the control parameters and assess the performance of the FWR-MAV.The hovering flight test shows the ability of the FWR-MAV to counteract the moment generated by rotary motion and maintain the attitude of the FWR-MAV in space;the experiment of forward flight shows that the FWR-MAV can track the desired attitude. 展开更多
关键词 Attitude estimation flapping wing rotor Flight control Flight tests Micro aerial vehicle(MAV)
原文传递
Numerical investigation on aerodynamic performance of a bionic flapping wing 被引量:5
13
作者 Xinghua CHANG Laiping ZHANG +1 位作者 Rong MA Nianhua WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第11期1625-1646,共22页
This paper numerically studies the aerodynamic performance of a bird-like bionic flapping wing.The geometry and kinematics are designed based on a seagull wing,in which flapping,folding,swaying,and twisting are consid... This paper numerically studies the aerodynamic performance of a bird-like bionic flapping wing.The geometry and kinematics are designed based on a seagull wing,in which flapping,folding,swaying,and twisting are considered.An in-house unsteady flow solver based on hybrid moving grids.is adopted for unsteady flow simulations.We focus on two main issues in this study,i.e.,the influence of the proportion of down-stroke and the effect of span-wise twisting.Numerical results show that the proportion of downstroke is closely related to the efficiency of the flapping process.The preferable proportion is about 0.7 by using the present geometry and kinematic model,which is very close to the observed data.Another finding is that the drag and the power consumption can be greatly reduced by the proper span-wise twisting.Two cases with different reduced frequencies are simulated and compared with each other.The numerical results show that the power consumption reduces by more than 20%,and the drag coefficient reduces by more than 60% through a proper twisting motion for both cases.The flow mechanism is mainly due to controlling of unsteady flow separation by adjusting the local effective angle of attack.These conclusions will be helpful for the high-performance micro air vehicle (MAV) design. 展开更多
关键词 flapping WING bird-like flapping unsteady flow radial basis function (RBF) hybrid dynamic mesh span-wise TWISTING mechanism
在线阅读 下载PDF
Nonlinear dynamics of a flapping rotary wing:Modeling and optimal wing kinematic analysis 被引量:9
14
作者 Qiuqiu WEN Shijun GUO +1 位作者 Hao LI Wei DONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第5期1041-1052,共12页
The analysis of the passive rotation feature of a micro Flapping Rotary Wing(FRW)applicable for Micro Air Vehicle(MAV) design is presented in this paper. The dynamics of the wing and its influence on aerodynamic p... The analysis of the passive rotation feature of a micro Flapping Rotary Wing(FRW)applicable for Micro Air Vehicle(MAV) design is presented in this paper. The dynamics of the wing and its influence on aerodynamic performance of FRW is studied at low Reynolds number(~10~3).The FRW is modeled as a simplified system of three rigid bodies: a rotary base with two flapping wings. The multibody dynamic theory is employed to derive the motion equations for FRW. A quasi-steady aerodynamic model is utilized for the calculation of the aerodynamic forces and moments. The dynamic motion process and the effects of the kinematics of wings on the dynamic rotational equilibrium of FWR and the aerodynamic performances are studied. The results show that the passive rotation motion of the wings is a continuous dynamic process which converges into an equilibrium rotary velocity due to the interaction between aerodynamic thrust, drag force and wing inertia. This causes a unique dynamic time-lag phenomena of lift generation for FRW, unlike the normal flapping wing flight vehicle driven by its own motor to actively rotate its wings. The analysis also shows that in order to acquire a high positive lift generation with high power efficiency and small dynamic time-lag, a relative high mid-up stroke angle within 7–15° and low mid-down stroke angle within -40° to -35° are necessary. The results provide a quantified guidance for design option of FRW together with the optimal kinematics of motion according to flight performance requirement. 展开更多
关键词 Dynamic model Dynamic time-lag flapping rotary wing Kinematics of wings Passive rotation Strike angle
原文传递
A simulation-based study on longitudinal gust response of flexible flapping wings 被引量:5
15
作者 Toshiyuki Nakata Ryusuke Noda +1 位作者 Shinobu Kumagai Hao Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第6期1048-1060,共13页
Winged animals such as insects are capable of flying and surviving in an unsteady and unpredictable aerial environment.They generate and control aerodynamic forces by flapping their flexible wings.While the dynamic sh... Winged animals such as insects are capable of flying and surviving in an unsteady and unpredictable aerial environment.They generate and control aerodynamic forces by flapping their flexible wings.While the dynamic shape changes of their flapping wings are known to enhance the efficiency of their flight,they can also affect the stability of a flapping wing flyer under unpredictable disturbances by responding to the sudden changes of aerodynamic forces on the wing.In order to test the hypothesis,the gust response of flexible flapping wings is investigated numerically with a specific focus on the passive maintenance of aerodynamic forces by the wing flexibility.The computational model is based on a dynamic flight simulator that can incorporate the realistic morphology,the kinematics,the structural dynamics,the aerodynamics and the fluid-structure interactions of a hovering hawkmoth.The longitudinal gusts are imposed against the tethered model of a hovering hawkmoth with flexible flapping wings.It is found that the aerodynamic forces on the flapping wings are affected by the gust,because of the increase or decrease in relative wingtip velocity or kinematic angle of attack.The passive shape change of flexible wings can,however,reduce the changes in the magnitude and direction of aerodynamic forces by the gusts from various directions,except for the downward gust.Such adaptive response of the flexible structure to stabilise the attitude can be classified into the mechanical feedback,which works passively with minimal delay,and is of great importance to the design of bio-inspired flapping wings for micro-air vehicles. 展开更多
关键词 INSECT FLIGHT flapping WING FLEXIBLE WING GUST response Fluid-structure interaction Mechanical feedback
暂未订购
Aerodynamic performance enhancement forflapping airfoils by co-flow jet 被引量:7
16
作者 Tao WU Bifeng SONG +2 位作者 Wenping SONG Wenqing YANG Zhonghua HAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第10期2535-2554,共20页
Introducing active flow control into the design of flapping wing is an effective way to enhance its aerodynamic performance.In this paper,a novel active flow control technology called Co-Flow Jet(CFJ)is applied to fla... Introducing active flow control into the design of flapping wing is an effective way to enhance its aerodynamic performance.In this paper,a novel active flow control technology called Co-Flow Jet(CFJ)is applied to flapping airfoils.The effect of CFJ on aerodynamic performance of flapping airfoils at low Reynolds number is numerically investigated using Unsteady Reynolds Averaged Navier-Stokes(URANS)simulation with Spalart-Allmaras(SA)turbulence model.Numerical methods are validated by a NACA6415-based CFJ airfoil case and a S809 pitching airfoil case.Then NACA6415 baseline airfoil and NACA6415-based CFJ airfoil with jet-off and jet-on are simulated in flapping motion,with Reynolds number 70,000 and reduced frequency 0.2.As a result,CFJ airfoils with jet-on generally have better lift and thrust characteristics than baseline airfoils and jet-off airfoil when Cμgreater than 0.04,which results from the CFJ effect of reducing flow separation by injecting high-energy fluid into boundary layer.Besides,typical kinematic and geometric parameters,including the reduced frequency and the positions of the suction and injection slot,are systematically studied to figure out their influence on aerodynamic performance of the CFJ airfoil.And a variable Cμjet control strategy is proposed to further improve effective propulsive efficiency.Compared with using constant Cμ,an increase of effective propulsive efficiency by22.6%has been achieved by using prescribed variable CμNACA6415-based CFJ airfoil at frequency 0.2.This study may provide some guidance to performance enhancement for Flapping wing Micro Air Vehicles(FMAV). 展开更多
关键词 Aerodynamic performance Co-flow jet flapping airfoils Flow control Propulsive efficiency
原文传递
Self-propulsion of flapping bodies in viscous fluids: Recent advances and perspectives 被引量:6
17
作者 Shizhao Wang Guowei He Xing Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第6期980-990,共11页
Flapping-powered propulsion is used by many animals to locomote through air or water. Here we review recent experimental and numerical studies on self-propelled mechanical systems powered by a flapping motion. These s... Flapping-powered propulsion is used by many animals to locomote through air or water. Here we review recent experimental and numerical studies on self-propelled mechanical systems powered by a flapping motion. These studies improve our understanding of the mutual interaction between actively flapping bodies and surrounding fluids. The results obtained in these works provide not only new insights into biolocomotion but also useful information for the biomimetic design of artificial flyers and swimmers. 展开更多
关键词 flapping motion SELF-PROPULSION Symmetry breaking Passive flexibility Flow-mediated interaction
在线阅读 下载PDF
A Review of Research on the Mechanical Design of Hoverable Flapping Wing Micro-Air Vehicles 被引量:6
18
作者 Shengjie Xiao Kai Hu +2 位作者 Binxiao Huang Huichao Deng Xilun Ding 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第6期1235-1254,共20页
Most insects and hummingbirds can generate lift during both upstroke and downstroke with a nearly horizontal flapping stroke plane,and perform precise hovering flight.Further,most birds can utilize tails and muscles i... Most insects and hummingbirds can generate lift during both upstroke and downstroke with a nearly horizontal flapping stroke plane,and perform precise hovering flight.Further,most birds can utilize tails and muscles in wings to actively control the flight performance,while insects control their flight with muscles based on wing root along with wing’s passive deformation.Based on the above flight principles of birds and insects,Flapping Wing Micro Air Vehicles(FWMAVs)are classified as either bird-inspired or insect-inspired FWMAVs.In this review,the research achievements on mechanisms of insect-inspired,hoverable FWMAVs over the last ten years(2011-2020)are provided.We also provide the definition,function,research status and development prospect of hoverable FWMAVs.Then discuss it from three aspects:bio-inspiration,motor-driving mechanisms and intelligent actuator-driving mechanisms.Following this,research groups involved in insect-inspired,hoverable FWMAV research and their major achievements are summarized and classified in tables.Problems,trends and challenges about the mechanism are compiled and presented.Finally,this paper presents conclusions about research on mechanical structure,and the future is discussed to enable further research interests. 展开更多
关键词 Hoverable flapping wing Insect-inspired Mechanical design Motor drive Intelligent actuator
在线阅读 下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部