期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Perspectives on low-Reynolds-number aerodynamics:shape,motion and structure
1
作者 Die Chen Lin Fu +6 位作者 Csaba Hefler Tian Ji Ryusuke Noda Michael Pittman Huihe Qiu Wei Shyy Qing Zhang 《Acta Mechanica Sinica》 2025年第7期81-114,共34页
Some of the most interesting areas in aerospace science and technologies are on either higher,faster,and larger systems or lower,slower,and smaller flying capabilities.In this paper,we present our perspectives on the ... Some of the most interesting areas in aerospace science and technologies are on either higher,faster,and larger systems or lower,slower,and smaller flying capabilities.In this paper,we present our perspectives on the aerodynamics related to small,fixed-wing as well as flapping-wing flight vehicles.From an evolutionary viewpoint,flyers have gone through many iterations,adaptations,and optimizations to balance their biological functions,including flight.In the low-Reynolds-number regime,the aerodynamic characteristics around a solid object differ from those observed at the scale of passenger-airplanes.Consequently,the optimal airfoil and wing shapes vary with vehicle size.As vehicle dimensions vary,non-proportional scaling between surface areas and weight shifts the dominance of physical mechanisms,leading to distinct operational parameters and technical requirements.With smaller flight vehicles,structural flexibility as well as anisotropic material properties become more pronounced,which causes qualitative changes in aerodynamics.The flapping motion of the wings,the interactions between wings,the synergistic characteristics of wing and tail,and the development of soft structures for better agility and flight performance are discussed.Low-Reynolds-number aerodynamics require collaborative innovation to optimize shape,motion,and structure of vehicles in accordance with the scaling laws.Together,progress on these fronts is reshaping the design paradigm of air vehicles and other types of robots with shrinking physical dimensions and more versatile capabilities to meet wider ranges of missions. 展开更多
关键词 Flight evolution and adaptation in nature Low-Reynolds-number airfoil and wing flapping wing aerodynamics Fluid〓〓structure interaction Flexible and soft flyers
原文传递
Kinematic and Aerodynamic Modelling of Bi- and Quad-Wing Flapping Wing Micro-Air-Vehicle 被引量:1
2
作者 Harijono Djojodihardjo Alif Syamim S. Ramli +1 位作者 Surjatin Wiriadidjaja Azmin Shakrine Mohd Rafie 《Advances in Aerospace Science and Technology》 2016年第3期83-101,共19页
A generic approach to model the kinematics and aerodynamics of flapping wing ornithopter has been followed, to model and analyze a flapping bi- and quad-wing ornithopter and to mimic flapping wing biosystems to produc... A generic approach to model the kinematics and aerodynamics of flapping wing ornithopter has been followed, to model and analyze a flapping bi- and quad-wing ornithopter and to mimic flapping wing biosystems to produce lift and thrust for hovering and forward flight. Considerations are given to the motion of a rigid and thin bi-wing and quad-wing ornithopter in flapping and pitching motion with phase lag. Basic Unsteady Aerodynamic Approach incorporating salient features of viscous effect and leading-edge suction are utilized. Parametric study is carried out to reveal the aerodynamic characteristics of flapping bi- and quad-wing ornithopter flight characteristics and for comparative analysis with various selected simple models in the literature, in an effort to develop a flapping bi- and quad-wing ornithopter models. In spite of their simplicity, results obtained for both models are able to reveal the mechanism of lift and thrust, and compare well with other work. 展开更多
关键词 Bi-wing Ornithopter flapping wing aerodynamics flapping wing Ornithopter Micro Air Vehicle Quad-wing Ornithopter
在线阅读 下载PDF
The influence of the wake of a flapping wing on the production of aerodynamic forces 被引量:9
3
作者 Jianghao Wu Mao Sun 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第5期411-418,共8页
The effect of the wake of previous strokes on the aerodynamic forces of a flapping model insect wing is studied using the method of computational fluid dynamics. The wake effect is isolated by comparing the forces and... The effect of the wake of previous strokes on the aerodynamic forces of a flapping model insect wing is studied using the method of computational fluid dynamics. The wake effect is isolated by comparing the forces and flows of the starting stroke (when the wake has not developed) with those of a later stroke (when the wake has developed). The following has been shown. (1) The wake effect may increase or decrease the lift and drag at the beginning of a half-stroke (downstroke or upstroke), depending on the wing kinematics at stroke reversal. The reason for this is that at the beginning of the half-stroke, the wing “impinges” on the spanwise vorticity generated by the wing during stroke reversal and the distribution of the vorticity is sensitive to the wing kinematics at stroke reversal. (2) The wake effect decreases the lift and increases the drag in the rest part of the half-stroke. This is because the wing moves in a downwash field induced by previous half-stroke's starting vortex, tip vortices and attached leading edge vortex (these vortices form a downwash producing vortex ring). (3) The wake effect decreases the mean lift by 6%-18% (depending on wing kinematics at stroke reversal) and slightly increases the mean drag. Therefore, it is detrimental to the aerodynamic performance of the flapping wing. 展开更多
关键词 Insect. flapping. Unsteady aerodynamics.wing/wake interaction. CFD analysis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部