Modeling the dynamics of flapping wing aerial vehicle is challenging due to the complexity of aerodynamic effects and mechanical structures.The aim of this work is to develop an accurate dynamics model of flapping win...Modeling the dynamics of flapping wing aerial vehicle is challenging due to the complexity of aerodynamic effects and mechanical structures.The aim of this work is to develop an accurate dynamics model of flapping wing aerial vehicle based on real flight data.We propose a modeling framework that combines rigid body dynamics with a neural network to predict aerodynamic effects.By incorporating the concept of flapping phase,we significantly enhance the network’s ability to analyze transient aerodynamic behavior.We design and utilize a phase-functioned neural network structure for aerodynamic predictions and train the network using real flight data.Evaluation results show that the network can predict aerodynamic effects and demonstrate clear physical significance.We verify that the framework can be used for dynamic propagation and is expected to be utilized for building simulators for flapping wing aerial vehicles.展开更多
Flapping-Wing Micro Air Vehicles(FMAVs)are compact and agile,capable of accessing narrow spaces that conventional vehicles struggle to reach,such as ruins,caves,or the interiors of complex structures,making them ideal...Flapping-Wing Micro Air Vehicles(FMAVs)are compact and agile,capable of accessing narrow spaces that conventional vehicles struggle to reach,such as ruins,caves,or the interiors of complex structures,making them ideal tools for reconnaissance and rescue missions.1 However,the operation of FMAVs relies on coordinating multiple forces with different scaling effects,posing challenges to miniaturization design.展开更多
Throughout the previous studies,none of them are involved in analysing the downwash flow effect on the control surface of the Flapping Wing Rotor(FWR).An overset CFD numerical model is built up and validated to study ...Throughout the previous studies,none of them are involved in analysing the downwash flow effect on the control surface of the Flapping Wing Rotor(FWR).An overset CFD numerical model is built up and validated to study the downwash flow’s effect on the stability of the FWR.After simulation,a cone like self-lock region which acts as the critical condition determining the stability of FWR is found.Only when the flow’s resultant velocity acting on the control surface lies in the stable region,the FWR can keep stable.The size of the cone like self-lock stable region can be enlarged by increasing the maximum feasible deflection angle constrained by mechanical design or enhancing the equivalent downwash flow velocity.Among all the simulated cases,when J=2.67(f=5 Hz,■=5 r/s),the largest average equivalent downwash flow velocities are found.On the other hand,the recovery torque could be enhanced due to the increase of the arm of the lateral force.According to these simulation results,a 43 g FWR model with two control surfaces and two stabilizers is then designed.A series of flight tests is then conducted to help confirm the conclusion of the mechanism research in this work.Overall,this study points out several strategies to increase the flight stability of the FWR and finally realizes the stable climb flight and mild descent flight of the FWR.展开更多
This paper addresses mechanisms for active flapping and twisting of robotic wings and assesses flying effectiveness as a function of twist angle. Unlike the flapping motion of bird wings, insects generally make a twis...This paper addresses mechanisms for active flapping and twisting of robotic wings and assesses flying effectiveness as a function of twist angle. Unlike the flapping motion of bird wings, insects generally make a twisting motion at the root of their wings while flapping, which makes it possible for them to hover in midair. This work includes the development of a Voice Coil Motor (VCM) because a flapping-wing air vehicle should be assembled with a compact actuator to decrease size and weight. A linkage mechanism is proposed to transform the linear motion of the VCM into the flapping and twisting motions of wings. The assembled flapping-wing air vehicle, whose weight is 2.86 g, produces an average positive vertical force proportional to the twist angle. The force saturates because the twist angle is mechanically limited. This work demonstrates the possibility of developing a flapping-wing air vehicle that can hover in midair using a mechanism that actively twists the roots of wings during flapping.展开更多
This paper establishes and analyzes a high-fidelity nonlinear time-periodic dynamic model and the corresponding state observer for flapping vibration suppression of a novel tailless Flapping Wing Micro Air Vehicle(FWM...This paper establishes and analyzes a high-fidelity nonlinear time-periodic dynamic model and the corresponding state observer for flapping vibration suppression of a novel tailless Flapping Wing Micro Air Vehicle(FWMAV),named NPU-Tinybird.Firstly,a complete modeling of NPU-Tinybird is determined,including the aerodynamic model based on the quasi-steady method,the kinematic and dynamic model about the mechanism of flapping and attitude control,combined with the single rigid body dynamic model.Based on this,a linearized longitudinal pitch dynamic cycle-averaged model is obtained and analyzed through the methods of neural network fitting and system identification,preparing for the design of flapping vibration suppression observer.Flapping vibration is an inherent property of the tailless FWMAV,which arises from the influence of time-periodic aerodynamic forces and moments.It can be captured by attitude and position sensors on the plane,which impairs the flight performance and efficiency of flight controller and actuators.To deal with this problem,a novel state observer for flapping vibration suppression is designed.A robust optimal controller based on the linear quadratic theory is also designed to stabilize the closed-loop system.Simulation results are given to verify the performance of the observer,including the closed loop responses combined with robust optimal controller,the comparison of different parameters of observer and the comparison with several classic methods,such as Kalman filter,H-infinity filter and low-pass filter,which prove that the novel observer owns a fairly good suppression effect on flapping vibration and benefits for the improvement of flight performance and control efficiency.展开更多
The pitching-down flapping is a new type of bionic flapping,which was invented by the author based on previous studies on the aerodynamic mechanisms of fruit fly(pitching-up)flapping.The motivation of this invention i...The pitching-down flapping is a new type of bionic flapping,which was invented by the author based on previous studies on the aerodynamic mechanisms of fruit fly(pitching-up)flapping.The motivation of this invention is to improve the aerodynamic characteristics of flapping Micro Air Vehicles(MAVs).In this paper the pitching-down flapping is briefly introduced.The major works include:(1)Computing the power requirements of pitching-down flapping in three modes(advanced,symmetrical, delayed),which were compared with those of pitching-up flapping;(2)Investigating the effects of translational acceleration time,Δτ_t,and rotational time,Δτ_r,at the end of a stroke,and the angle of attack,α,in the middle of a stroke on the aerodynamic characteristics in symmetrical mode;(3)Investigating the effect of camber on pitching-down flapping.From the above works, conclusions can be drawn that:(1)Compared with the pitching-up flapping,the pitching-down flapping can greatly reduce the time-averaged power requirements;(2)The increase in Δτt and the decrease in Δτ_r can increase both the lift and drag coefficients, but the time-averaged ratio of lift to drag changes a little.And α has significant effect on the aerodynamic characteristics of the pitching-down flapping;(3)The positive camber can effectively increase the lift coefficient and the ratio of lift to drag.展开更多
The dynamic performance and wake structure of flapping plates with different shapes were studied using multi-block lattice Boltzman and immersed boundary method.Two typical regimes relevant to thrust behavior are iden...The dynamic performance and wake structure of flapping plates with different shapes were studied using multi-block lattice Boltzman and immersed boundary method.Two typical regimes relevant to thrust behavior are identified.One is nonlinear relation between the thrust and the area moment of plate for lower area moment region and the other is linear relation for larger area moment region.The tendency of the power variation with the area moment is reasonably similar to the thrust behavior and the efficiency decreases gradually as the area moment increases.As the mechanism of the dynamic properties is associated with the evolution of vortical structures around the plate,the formation and evolution of vortical structures are investigated and the effects of the plate shape,plate area,Strouhal number and Reynolds number on the vortical structures are analyzed.The results obtained in this study provide physical insight into the understanding of the mechanisms relevant to flapping locomotion.展开更多
This paper is based on a previously developed bio-inspired Flapping Wing Aerial Vehicle(FWAV),RoboFalcon,which can fly with a morphing-coupled flapping pattern.In this paper,a simple flapping stroke control system bas...This paper is based on a previously developed bio-inspired Flapping Wing Aerial Vehicle(FWAV),RoboFalcon,which can fly with a morphing-coupled flapping pattern.In this paper,a simple flapping stroke control system based on Hall effect sensors is designed and applied,which is capable of assigning different up-and down-stroke speeds for the RoboFalcon platform to achieve an adjustable downstroke ratio.The aerodynamic and power characteristics of the morphing-coupled flapping pattern and the conventional flapping pattern with varying downstroke ratios are measured through a wind tunnel experiment,and the corresponding aerodynamic models are developed and analyzed by the nonlinear least squares method.The relatively low power consumption of the slow-downstroke mode of this vehicle is verified through outdoor flight tests.The results of wind tunnel experiments and flight tests indicate that increased downstroke duration can improve aerodynamic and power performance for the RoboFalcon platform.展开更多
Bird-like flapping-wing vehicles with a high aspect ratio have the potential to fulfill missions given to micro air vehicles,such as high-altitude reconnaissance,surveillance,rescue,and bird group guidance,due to thei...Bird-like flapping-wing vehicles with a high aspect ratio have the potential to fulfill missions given to micro air vehicles,such as high-altitude reconnaissance,surveillance,rescue,and bird group guidance,due to their good loading and long endurance capacities.Biologists and aeronautical researchers have explored the mystery of avian flight and made efforts to reproduce flapping flight in bioinspired aircraft for decades.However,the cognitive depth from theory to practice is still very limited.The mechanism of generating sufficient lift and thrust during avian flight is still not fully understood.Moving wings with unique biological structures such as feathers make modeling,simulation,experimentation,and analysis much more difficult.This paper reviews the research progress on bird-like flapping wings from flight mechanisms to modeling.Commonly used numerical computing methods are briefly compared.The aeroelastic problems are also highlighted.The results of the investigation show that a leading-edge vortex can be found during avian flight.Its induction and maintenance may have a close relationship with wing configuration,kinematics and deformation.The present models of flapping wings are mainly two-dimensional airfoils or three-dimensional single root-jointed geometric plates,which still exhibit large differences from real bird wings.Aeroelasticity is encouraged to consider the nonignorable effect on aerodynamic performance due to large-scale nonlinear deformation.Introducing appropriate flexibility can improve the peak values and efficiencies of lift and thrust,but the detailed conclusions always have strong background dependence.展开更多
A generic approach to model the kinematics and aerodynamics of flapping wing ornithopter has been followed, to model and analyze a flapping bi- and quad-wing ornithopter and to mimic flapping wing biosystems to produc...A generic approach to model the kinematics and aerodynamics of flapping wing ornithopter has been followed, to model and analyze a flapping bi- and quad-wing ornithopter and to mimic flapping wing biosystems to produce lift and thrust for hovering and forward flight. Considerations are given to the motion of a rigid and thin bi-wing and quad-wing ornithopter in flapping and pitching motion with phase lag. Basic Unsteady Aerodynamic Approach incorporating salient features of viscous effect and leading-edge suction are utilized. Parametric study is carried out to reveal the aerodynamic characteristics of flapping bi- and quad-wing ornithopter flight characteristics and for comparative analysis with various selected simple models in the literature, in an effort to develop a flapping bi- and quad-wing ornithopter models. In spite of their simplicity, results obtained for both models are able to reveal the mechanism of lift and thrust, and compare well with other work.展开更多
Flapping characteristics of the self-excited flapping motion of submerged vertical turbulent jet in narrow channels are studied theoretically and experimentally.It is found that the water depth is a most important par...Flapping characteristics of the self-excited flapping motion of submerged vertical turbulent jet in narrow channels are studied theoretically and experimentally.It is found that the water depth is a most important parameter to the critical jet exit velocity and the jet flapping frequency.The results indicate that the critical jet exit velocity increases with water depth and the jet flapping frequency is inversely proportional to the water depth.Meanwhile,experimental result also shows that the surface disturbance wave changes the frequency of flapping motion,i.e.the flapping frequency locks-in the disturbing frequency when the disturbing frequency is near and less than the natural flapping frequency.展开更多
A theoretical modeling approach as well as an unsteady analytical method is used to study aerodynamic characteristics of wing flapping with asymmetric stroke-cycles in connection with an oblique stroke plane during in...A theoretical modeling approach as well as an unsteady analytical method is used to study aerodynamic characteristics of wing flapping with asymmetric stroke-cycles in connection with an oblique stroke plane during insect forward flight. It is revealed that the aerodynamic asymmetry between the downstroke and the upstroke due to stroke-asymmetrical flapping is a key to understand the flow physics of generation and modulation of the lift and the thrust. Predicted results for examples of given kinematics validate more specifically some viewpoints that the wing lift is more easily produced when the forward speed is higher and the thrust is harder, and the lift and the thrust are generated mainly during downstroke and upstroke, respectively. The effects of three controlling parameters, i.e. the angles of tilted stroke plane, the different downstroke duration ratios, and the different angles of attack in both down- and up-stroke, are further discussed. It is found that larger oblique angles of stroke planes generate larger thrust but smaller lift; larger downstroke duration ratios lead to larger thrust, while making little change in lift and input aerodynamic power; and again, a small increase of the angle of attack in downstroke or upstroke may cause remarkable changes in aerodynamic performance in the relevant stroke.展开更多
We have examined the aerodynamic effects of corrugation in model wings that closely mimic the wing movements of a forward flight bumblebee using the method of computational fluid dynamics. Various corrugated wing mode...We have examined the aerodynamic effects of corrugation in model wings that closely mimic the wing movements of a forward flight bumblebee using the method of computational fluid dynamics. Various corrugated wing models were tested (care was taken to ensure that the corrugation introduced zero camber). Advance ratio ranging from 0 to 0.57 was considered. The results shown that at all flight speeds considered, the time courses of aerodynamic force of the corrugated wing are very close to those of the flat-plate wing. The cornlgation decreases aerodynamic force slightly. The changes in the mean location of center of pressure in the spanwise and chordwise directions resulting from the corrugation are no more than 3% of the wing chord length. The possible reason for the small aerodynamic effects of wing corrugation is that the wing operates at a large angle of attack and the flow is separated: the large angle of incidence dominates the corrugation in determining the flow around the wing, and for separated flow, the flow is much less sensitive to wing shape variation.展开更多
Aerodynamic force and flow structures of two airfoils in a tandem configuration in flapping motions axe studied, by solving the Navier-Stokes equations in moving overset grids. Three typical phase differences between ...Aerodynamic force and flow structures of two airfoils in a tandem configuration in flapping motions axe studied, by solving the Navier-Stokes equations in moving overset grids. Three typical phase differences between the fore- and aft-airfoil flapping cycles are considered. It is shown that: (1) in the case of no interaction (single airfoil), the time average of the vertical force coefficient over the downstroke is 2.74, which is about 3 times as large as the maximum steady-state lift coefficient of a dragonfly wing; the time average of the horizontal force coefficient is 1.97, which is also large. The reasons for the large force coefficients are the acceleration at the beginning of a stroke, the delayed stall and the 'pitching-up' motion near the end of the stroke. (2) In the cases of two-airfoils, the time-variations of the force and moment coefficients on each airfoil are broadly similar to that of the single airfoil in that the vertical force is mainly produced in downstroke and the horizontal force in upstroke, but very large differences exist due to the interaction. (3) For in-phase stroking, the major differences caused by the interaction are that the vertical force on FA in downstroke is increased and the horizontal force on FA in upstroke decreased. As a result, the magnitude of the resultant force is almost unchanged but it inclines less forward. (4) For counter stroking, the major differences are that the vertical force on AA in downstroke and the horizontal force on FA in upstroke are decreased. As a result, the magnitude of the resultant force is decreased by about 20 percent but its direction is almost unchanged. (5) For 90 degrees -phase-difference stroking, the major differences axe that the vertical force on AA in downstroke and the horizontal force on FA in upstroke axe decreased greatly and the horizontal force on AA in upstroke increased. As a result, the magnitude of the resultant force is decreased by about 28% and it inclines more forward. (6) Among the three cases of phase angles, inphase flapping produces the largest vertical force (also the largest resultant force); the 90 degrees -phase-difference flapping results in the largest horizontal force, but the smallest resultant force.展开更多
The application of biomimetics in the development of unmanned-aerial-vehicles (UAV) has advanced to an exceptionally small scale of nano-aerial-vehicles (NAV), which has surpassed its immediate predecessor of micr...The application of biomimetics in the development of unmanned-aerial-vehicles (UAV) has advanced to an exceptionally small scale of nano-aerial-vehicles (NAV), which has surpassed its immediate predecessor of micro-aerial-vehicles (MAV), leaving a vast range of development possi- bilities that MAVs have to offer. Because of the prompt advancement into the NAV research devel- opment, the true potential and challenges presented by MAV development were never solved, understood, and truly uncovered, especially under the influence of transition and low Reynolds number flow characteristics. This paper reviews a part of previous MAV research developments which are deemed important of notification; kinematics, membranes, and flapping mechanisms ranges from small birds to big insects, which resides within the transition and low Reynolds number regimes. This paper also reviews the possibility of applying a piezoelectric transmission used to pro- duce NAV flapping wing motion and mounted on a MAV, replacing the conventional motorized flapping wing transmission. Findings suggest that limited work has been done for MAVs matching these criteria. The preferred research approach has seen bias towards numerical analysis as compared to experimental analysis.展开更多
A three-wing Flapping Wing Rotor Micro Aerial Vehicle(FWR-MAV)which can perform controlled flight is introduced and an experimental study on this vehicle is presented.A mechanically driven flapping rotary mechanism is...A three-wing Flapping Wing Rotor Micro Aerial Vehicle(FWR-MAV)which can perform controlled flight is introduced and an experimental study on this vehicle is presented.A mechanically driven flapping rotary mechanism is designed to drive the three flapping wings and generate lift,and control mechanisms are designed to control the pose of the FWR-MAV.A flight control board for attitude control with robust onboard attitude estimation and a control algorithm is also developed to perform stable hovering flight and forward flight.A series of flight tests was conducted,with hovering flight and forward flight tests performed to optimize the control parameters and assess the performance of the FWR-MAV.The hovering flight test shows the ability of the FWR-MAV to counteract the moment generated by rotary motion and maintain the attitude of the FWR-MAV in space;the experiment of forward flight shows that the FWR-MAV can track the desired attitude.展开更多
This paper numerically studies the aerodynamic performance of a bird-like bionic flapping wing.The geometry and kinematics are designed based on a seagull wing,in which flapping,folding,swaying,and twisting are consid...This paper numerically studies the aerodynamic performance of a bird-like bionic flapping wing.The geometry and kinematics are designed based on a seagull wing,in which flapping,folding,swaying,and twisting are considered.An in-house unsteady flow solver based on hybrid moving grids.is adopted for unsteady flow simulations.We focus on two main issues in this study,i.e.,the influence of the proportion of down-stroke and the effect of span-wise twisting.Numerical results show that the proportion of downstroke is closely related to the efficiency of the flapping process.The preferable proportion is about 0.7 by using the present geometry and kinematic model,which is very close to the observed data.Another finding is that the drag and the power consumption can be greatly reduced by the proper span-wise twisting.Two cases with different reduced frequencies are simulated and compared with each other.The numerical results show that the power consumption reduces by more than 20%,and the drag coefficient reduces by more than 60% through a proper twisting motion for both cases.The flow mechanism is mainly due to controlling of unsteady flow separation by adjusting the local effective angle of attack.These conclusions will be helpful for the high-performance micro air vehicle (MAV) design.展开更多
The analysis of the passive rotation feature of a micro Flapping Rotary Wing(FRW)applicable for Micro Air Vehicle(MAV) design is presented in this paper. The dynamics of the wing and its influence on aerodynamic p...The analysis of the passive rotation feature of a micro Flapping Rotary Wing(FRW)applicable for Micro Air Vehicle(MAV) design is presented in this paper. The dynamics of the wing and its influence on aerodynamic performance of FRW is studied at low Reynolds number(~10~3).The FRW is modeled as a simplified system of three rigid bodies: a rotary base with two flapping wings. The multibody dynamic theory is employed to derive the motion equations for FRW. A quasi-steady aerodynamic model is utilized for the calculation of the aerodynamic forces and moments. The dynamic motion process and the effects of the kinematics of wings on the dynamic rotational equilibrium of FWR and the aerodynamic performances are studied. The results show that the passive rotation motion of the wings is a continuous dynamic process which converges into an equilibrium rotary velocity due to the interaction between aerodynamic thrust, drag force and wing inertia. This causes a unique dynamic time-lag phenomena of lift generation for FRW, unlike the normal flapping wing flight vehicle driven by its own motor to actively rotate its wings. The analysis also shows that in order to acquire a high positive lift generation with high power efficiency and small dynamic time-lag, a relative high mid-up stroke angle within 7–15° and low mid-down stroke angle within -40° to -35° are necessary. The results provide a quantified guidance for design option of FRW together with the optimal kinematics of motion according to flight performance requirement.展开更多
基金supported by National Natural Science Foundation of China under Grant No.62236007the specialized research projects of Huanjiang Laboratory.
文摘Modeling the dynamics of flapping wing aerial vehicle is challenging due to the complexity of aerodynamic effects and mechanical structures.The aim of this work is to develop an accurate dynamics model of flapping wing aerial vehicle based on real flight data.We propose a modeling framework that combines rigid body dynamics with a neural network to predict aerodynamic effects.By incorporating the concept of flapping phase,we significantly enhance the network’s ability to analyze transient aerodynamic behavior.We design and utilize a phase-functioned neural network structure for aerodynamic predictions and train the network using real flight data.Evaluation results show that the network can predict aerodynamic effects and demonstrate clear physical significance.We verify that the framework can be used for dynamic propagation and is expected to be utilized for building simulators for flapping wing aerial vehicles.
基金supported by the Scientific Research Innovation Capability Support Project for Young Faculty,China(No.ZYGXQNJSKYCXNLZCXM-D1)the National Natural Science Foundation of China(No.52272384).
文摘Flapping-Wing Micro Air Vehicles(FMAVs)are compact and agile,capable of accessing narrow spaces that conventional vehicles struggle to reach,such as ruins,caves,or the interiors of complex structures,making them ideal tools for reconnaissance and rescue missions.1 However,the operation of FMAVs relies on coordinating multiple forces with different scaling effects,posing challenges to miniaturization design.
基金supported by the following funding organizations in China:National Natural Science Foundation of China(Grant No.52375116 and Grant No.52105285)the Aeronautical Science Foundation of China(Grant No.ASFC-20230023052001)+3 种基金China Postdoctoral Science Foundation(Grant No.2024M754237)National Key Research and Development Program of China(2024YFB470920001)Science and Technology Plan Project of Wenzhou Municipality(Grant No.ZG2024001)Basic Public Welfare Research Program of Wenzhou(Grant No.G2023046).
文摘Throughout the previous studies,none of them are involved in analysing the downwash flow effect on the control surface of the Flapping Wing Rotor(FWR).An overset CFD numerical model is built up and validated to study the downwash flow’s effect on the stability of the FWR.After simulation,a cone like self-lock region which acts as the critical condition determining the stability of FWR is found.Only when the flow’s resultant velocity acting on the control surface lies in the stable region,the FWR can keep stable.The size of the cone like self-lock stable region can be enlarged by increasing the maximum feasible deflection angle constrained by mechanical design or enhancing the equivalent downwash flow velocity.Among all the simulated cases,when J=2.67(f=5 Hz,■=5 r/s),the largest average equivalent downwash flow velocities are found.On the other hand,the recovery torque could be enhanced due to the increase of the arm of the lateral force.According to these simulation results,a 43 g FWR model with two control surfaces and two stabilizers is then designed.A series of flight tests is then conducted to help confirm the conclusion of the mechanism research in this work.Overall,this study points out several strategies to increase the flight stability of the FWR and finally realizes the stable climb flight and mild descent flight of the FWR.
文摘This paper addresses mechanisms for active flapping and twisting of robotic wings and assesses flying effectiveness as a function of twist angle. Unlike the flapping motion of bird wings, insects generally make a twisting motion at the root of their wings while flapping, which makes it possible for them to hover in midair. This work includes the development of a Voice Coil Motor (VCM) because a flapping-wing air vehicle should be assembled with a compact actuator to decrease size and weight. A linkage mechanism is proposed to transform the linear motion of the VCM into the flapping and twisting motions of wings. The assembled flapping-wing air vehicle, whose weight is 2.86 g, produces an average positive vertical force proportional to the twist angle. The force saturates because the twist angle is mechanically limited. This work demonstrates the possibility of developing a flapping-wing air vehicle that can hover in midair using a mechanism that actively twists the roots of wings during flapping.
基金financial support of the projects from National Key Research and Development Program of China(No.2017YFB1300102)National Natural Science Foundation of China(Nos.11872314 and U1613227)Youth Program of Natural Science Basic Research Plan in Shaanxi Province of China(No.2019JQ-394)。
文摘This paper establishes and analyzes a high-fidelity nonlinear time-periodic dynamic model and the corresponding state observer for flapping vibration suppression of a novel tailless Flapping Wing Micro Air Vehicle(FWMAV),named NPU-Tinybird.Firstly,a complete modeling of NPU-Tinybird is determined,including the aerodynamic model based on the quasi-steady method,the kinematic and dynamic model about the mechanism of flapping and attitude control,combined with the single rigid body dynamic model.Based on this,a linearized longitudinal pitch dynamic cycle-averaged model is obtained and analyzed through the methods of neural network fitting and system identification,preparing for the design of flapping vibration suppression observer.Flapping vibration is an inherent property of the tailless FWMAV,which arises from the influence of time-periodic aerodynamic forces and moments.It can be captured by attitude and position sensors on the plane,which impairs the flight performance and efficiency of flight controller and actuators.To deal with this problem,a novel state observer for flapping vibration suppression is designed.A robust optimal controller based on the linear quadratic theory is also designed to stabilize the closed-loop system.Simulation results are given to verify the performance of the observer,including the closed loop responses combined with robust optimal controller,the comparison of different parameters of observer and the comparison with several classic methods,such as Kalman filter,H-infinity filter and low-pass filter,which prove that the novel observer owns a fairly good suppression effect on flapping vibration and benefits for the improvement of flight performance and control efficiency.
文摘The pitching-down flapping is a new type of bionic flapping,which was invented by the author based on previous studies on the aerodynamic mechanisms of fruit fly(pitching-up)flapping.The motivation of this invention is to improve the aerodynamic characteristics of flapping Micro Air Vehicles(MAVs).In this paper the pitching-down flapping is briefly introduced.The major works include:(1)Computing the power requirements of pitching-down flapping in three modes(advanced,symmetrical, delayed),which were compared with those of pitching-up flapping;(2)Investigating the effects of translational acceleration time,Δτ_t,and rotational time,Δτ_r,at the end of a stroke,and the angle of attack,α,in the middle of a stroke on the aerodynamic characteristics in symmetrical mode;(3)Investigating the effect of camber on pitching-down flapping.From the above works, conclusions can be drawn that:(1)Compared with the pitching-up flapping,the pitching-down flapping can greatly reduce the time-averaged power requirements;(2)The increase in Δτt and the decrease in Δτ_r can increase both the lift and drag coefficients, but the time-averaged ratio of lift to drag changes a little.And α has significant effect on the aerodynamic characteristics of the pitching-down flapping;(3)The positive camber can effectively increase the lift coefficient and the ratio of lift to drag.
基金supported by the National Natural Science Foundation of China(11372304 and 11132010)the 111 Project(B07033)
文摘The dynamic performance and wake structure of flapping plates with different shapes were studied using multi-block lattice Boltzman and immersed boundary method.Two typical regimes relevant to thrust behavior are identified.One is nonlinear relation between the thrust and the area moment of plate for lower area moment region and the other is linear relation for larger area moment region.The tendency of the power variation with the area moment is reasonably similar to the thrust behavior and the efficiency decreases gradually as the area moment increases.As the mechanism of the dynamic properties is associated with the evolution of vortical structures around the plate,the formation and evolution of vortical structures are investigated and the effects of the plate shape,plate area,Strouhal number and Reynolds number on the vortical structures are analyzed.The results obtained in this study provide physical insight into the understanding of the mechanisms relevant to flapping locomotion.
基金supported by National Natural Science Foundation of China under Grants No.52175277 and 12272318,and ND Basic Research Funds under Grants G2022WDwas supported in part by the Basic Research Program of Shenzhen under GrantJCYJ20190806142816524.
文摘This paper is based on a previously developed bio-inspired Flapping Wing Aerial Vehicle(FWAV),RoboFalcon,which can fly with a morphing-coupled flapping pattern.In this paper,a simple flapping stroke control system based on Hall effect sensors is designed and applied,which is capable of assigning different up-and down-stroke speeds for the RoboFalcon platform to achieve an adjustable downstroke ratio.The aerodynamic and power characteristics of the morphing-coupled flapping pattern and the conventional flapping pattern with varying downstroke ratios are measured through a wind tunnel experiment,and the corresponding aerodynamic models are developed and analyzed by the nonlinear least squares method.The relatively low power consumption of the slow-downstroke mode of this vehicle is verified through outdoor flight tests.The results of wind tunnel experiments and flight tests indicate that increased downstroke duration can improve aerodynamic and power performance for the RoboFalcon platform.
文摘Bird-like flapping-wing vehicles with a high aspect ratio have the potential to fulfill missions given to micro air vehicles,such as high-altitude reconnaissance,surveillance,rescue,and bird group guidance,due to their good loading and long endurance capacities.Biologists and aeronautical researchers have explored the mystery of avian flight and made efforts to reproduce flapping flight in bioinspired aircraft for decades.However,the cognitive depth from theory to practice is still very limited.The mechanism of generating sufficient lift and thrust during avian flight is still not fully understood.Moving wings with unique biological structures such as feathers make modeling,simulation,experimentation,and analysis much more difficult.This paper reviews the research progress on bird-like flapping wings from flight mechanisms to modeling.Commonly used numerical computing methods are briefly compared.The aeroelastic problems are also highlighted.The results of the investigation show that a leading-edge vortex can be found during avian flight.Its induction and maintenance may have a close relationship with wing configuration,kinematics and deformation.The present models of flapping wings are mainly two-dimensional airfoils or three-dimensional single root-jointed geometric plates,which still exhibit large differences from real bird wings.Aeroelasticity is encouraged to consider the nonignorable effect on aerodynamic performance due to large-scale nonlinear deformation.Introducing appropriate flexibility can improve the peak values and efficiencies of lift and thrust,but the detailed conclusions always have strong background dependence.
文摘A generic approach to model the kinematics and aerodynamics of flapping wing ornithopter has been followed, to model and analyze a flapping bi- and quad-wing ornithopter and to mimic flapping wing biosystems to produce lift and thrust for hovering and forward flight. Considerations are given to the motion of a rigid and thin bi-wing and quad-wing ornithopter in flapping and pitching motion with phase lag. Basic Unsteady Aerodynamic Approach incorporating salient features of viscous effect and leading-edge suction are utilized. Parametric study is carried out to reveal the aerodynamic characteristics of flapping bi- and quad-wing ornithopter flight characteristics and for comparative analysis with various selected simple models in the literature, in an effort to develop a flapping bi- and quad-wing ornithopter models. In spite of their simplicity, results obtained for both models are able to reveal the mechanism of lift and thrust, and compare well with other work.
基金Supported by the National Natural Science Foundation of China(10472046)
文摘Flapping characteristics of the self-excited flapping motion of submerged vertical turbulent jet in narrow channels are studied theoretically and experimentally.It is found that the water depth is a most important parameter to the critical jet exit velocity and the jet flapping frequency.The results indicate that the critical jet exit velocity increases with water depth and the jet flapping frequency is inversely proportional to the water depth.Meanwhile,experimental result also shows that the surface disturbance wave changes the frequency of flapping motion,i.e.the flapping frequency locks-in the disturbing frequency when the disturbing frequency is near and less than the natural flapping frequency.
基金The project supported by the National Natural Science Foundation of China(10072066,90305009) the Chinese Academy of Sciences(KJCX-SW-L04,KJCX2-SW-L2)
文摘A theoretical modeling approach as well as an unsteady analytical method is used to study aerodynamic characteristics of wing flapping with asymmetric stroke-cycles in connection with an oblique stroke plane during insect forward flight. It is revealed that the aerodynamic asymmetry between the downstroke and the upstroke due to stroke-asymmetrical flapping is a key to understand the flow physics of generation and modulation of the lift and the thrust. Predicted results for examples of given kinematics validate more specifically some viewpoints that the wing lift is more easily produced when the forward speed is higher and the thrust is harder, and the lift and the thrust are generated mainly during downstroke and upstroke, respectively. The effects of three controlling parameters, i.e. the angles of tilted stroke plane, the different downstroke duration ratios, and the different angles of attack in both down- and up-stroke, are further discussed. It is found that larger oblique angles of stroke planes generate larger thrust but smaller lift; larger downstroke duration ratios lead to larger thrust, while making little change in lift and input aerodynamic power; and again, a small increase of the angle of attack in downstroke or upstroke may cause remarkable changes in aerodynamic performance in the relevant stroke.
基金Acknowledgement This research was supported by the National Natural Science Foundation of China (Grant No. 10732030) and the 111 Project (B07009).
文摘We have examined the aerodynamic effects of corrugation in model wings that closely mimic the wing movements of a forward flight bumblebee using the method of computational fluid dynamics. Various corrugated wing models were tested (care was taken to ensure that the corrugation introduced zero camber). Advance ratio ranging from 0 to 0.57 was considered. The results shown that at all flight speeds considered, the time courses of aerodynamic force of the corrugated wing are very close to those of the flat-plate wing. The cornlgation decreases aerodynamic force slightly. The changes in the mean location of center of pressure in the spanwise and chordwise directions resulting from the corrugation are no more than 3% of the wing chord length. The possible reason for the small aerodynamic effects of wing corrugation is that the wing operates at a large angle of attack and the flow is separated: the large angle of incidence dominates the corrugation in determining the flow around the wing, and for separated flow, the flow is much less sensitive to wing shape variation.
文摘Aerodynamic force and flow structures of two airfoils in a tandem configuration in flapping motions axe studied, by solving the Navier-Stokes equations in moving overset grids. Three typical phase differences between the fore- and aft-airfoil flapping cycles are considered. It is shown that: (1) in the case of no interaction (single airfoil), the time average of the vertical force coefficient over the downstroke is 2.74, which is about 3 times as large as the maximum steady-state lift coefficient of a dragonfly wing; the time average of the horizontal force coefficient is 1.97, which is also large. The reasons for the large force coefficients are the acceleration at the beginning of a stroke, the delayed stall and the 'pitching-up' motion near the end of the stroke. (2) In the cases of two-airfoils, the time-variations of the force and moment coefficients on each airfoil are broadly similar to that of the single airfoil in that the vertical force is mainly produced in downstroke and the horizontal force in upstroke, but very large differences exist due to the interaction. (3) For in-phase stroking, the major differences caused by the interaction are that the vertical force on FA in downstroke is increased and the horizontal force on FA in upstroke decreased. As a result, the magnitude of the resultant force is almost unchanged but it inclines less forward. (4) For counter stroking, the major differences are that the vertical force on AA in downstroke and the horizontal force on FA in upstroke are decreased. As a result, the magnitude of the resultant force is decreased by about 20 percent but its direction is almost unchanged. (5) For 90 degrees -phase-difference stroking, the major differences axe that the vertical force on AA in downstroke and the horizontal force on FA in upstroke axe decreased greatly and the horizontal force on AA in upstroke increased. As a result, the magnitude of the resultant force is decreased by about 28% and it inclines more forward. (6) Among the three cases of phase angles, inphase flapping produces the largest vertical force (also the largest resultant force); the 90 degrees -phase-difference flapping results in the largest horizontal force, but the smallest resultant force.
文摘The application of biomimetics in the development of unmanned-aerial-vehicles (UAV) has advanced to an exceptionally small scale of nano-aerial-vehicles (NAV), which has surpassed its immediate predecessor of micro-aerial-vehicles (MAV), leaving a vast range of development possi- bilities that MAVs have to offer. Because of the prompt advancement into the NAV research devel- opment, the true potential and challenges presented by MAV development were never solved, understood, and truly uncovered, especially under the influence of transition and low Reynolds number flow characteristics. This paper reviews a part of previous MAV research developments which are deemed important of notification; kinematics, membranes, and flapping mechanisms ranges from small birds to big insects, which resides within the transition and low Reynolds number regimes. This paper also reviews the possibility of applying a piezoelectric transmission used to pro- duce NAV flapping wing motion and mounted on a MAV, replacing the conventional motorized flapping wing transmission. Findings suggest that limited work has been done for MAVs matching these criteria. The preferred research approach has seen bias towards numerical analysis as compared to experimental analysis.
基金supported by the National Natural Science Foundation of China(No.:11572023)。
文摘A three-wing Flapping Wing Rotor Micro Aerial Vehicle(FWR-MAV)which can perform controlled flight is introduced and an experimental study on this vehicle is presented.A mechanically driven flapping rotary mechanism is designed to drive the three flapping wings and generate lift,and control mechanisms are designed to control the pose of the FWR-MAV.A flight control board for attitude control with robust onboard attitude estimation and a control algorithm is also developed to perform stable hovering flight and forward flight.A series of flight tests was conducted,with hovering flight and forward flight tests performed to optimize the control parameters and assess the performance of the FWR-MAV.The hovering flight test shows the ability of the FWR-MAV to counteract the moment generated by rotary motion and maintain the attitude of the FWR-MAV in space;the experiment of forward flight shows that the FWR-MAV can track the desired attitude.
基金Project supported by the National Key Research and Development Program(No.2016YFB0200700)the National Natural Science Foundation of China(Nos.11532016 and 11672324)
文摘This paper numerically studies the aerodynamic performance of a bird-like bionic flapping wing.The geometry and kinematics are designed based on a seagull wing,in which flapping,folding,swaying,and twisting are considered.An in-house unsteady flow solver based on hybrid moving grids.is adopted for unsteady flow simulations.We focus on two main issues in this study,i.e.,the influence of the proportion of down-stroke and the effect of span-wise twisting.Numerical results show that the proportion of downstroke is closely related to the efficiency of the flapping process.The preferable proportion is about 0.7 by using the present geometry and kinematic model,which is very close to the observed data.Another finding is that the drag and the power consumption can be greatly reduced by the proper span-wise twisting.Two cases with different reduced frequencies are simulated and compared with each other.The numerical results show that the power consumption reduces by more than 20%,and the drag coefficient reduces by more than 60% through a proper twisting motion for both cases.The flow mechanism is mainly due to controlling of unsteady flow separation by adjusting the local effective angle of attack.These conclusions will be helpful for the high-performance micro air vehicle (MAV) design.
文摘The analysis of the passive rotation feature of a micro Flapping Rotary Wing(FRW)applicable for Micro Air Vehicle(MAV) design is presented in this paper. The dynamics of the wing and its influence on aerodynamic performance of FRW is studied at low Reynolds number(~10~3).The FRW is modeled as a simplified system of three rigid bodies: a rotary base with two flapping wings. The multibody dynamic theory is employed to derive the motion equations for FRW. A quasi-steady aerodynamic model is utilized for the calculation of the aerodynamic forces and moments. The dynamic motion process and the effects of the kinematics of wings on the dynamic rotational equilibrium of FWR and the aerodynamic performances are studied. The results show that the passive rotation motion of the wings is a continuous dynamic process which converges into an equilibrium rotary velocity due to the interaction between aerodynamic thrust, drag force and wing inertia. This causes a unique dynamic time-lag phenomena of lift generation for FRW, unlike the normal flapping wing flight vehicle driven by its own motor to actively rotate its wings. The analysis also shows that in order to acquire a high positive lift generation with high power efficiency and small dynamic time-lag, a relative high mid-up stroke angle within 7–15° and low mid-down stroke angle within -40° to -35° are necessary. The results provide a quantified guidance for design option of FRW together with the optimal kinematics of motion according to flight performance requirement.