The reliability of quasi integrable and non-resonant Hamiltonian system under fractional Gaussian noise(fGn)excitation is studied.Noting rather flat fGn power spectral density(PSD)in most part of frequency band,the fG...The reliability of quasi integrable and non-resonant Hamiltonian system under fractional Gaussian noise(fGn)excitation is studied.Noting rather flat fGn power spectral density(PSD)in most part of frequency band,the fGn is innovatively regarded as a wide-band process.Then,the stochastic averaging method for quasi integrable Hamiltonian systems under wide-band noise excitation is applied to reduce 2n-dimensional original system into n-dimensional averaged ltd stochastic differential equations(SDEs).Reliability function and mean first passage time are obtained by solving the associated backward Kolmogorov equation and Pontryagin equation.The validity of the proposed procedure is tested by applying it to an example and comparing the numerical results with those from Monte Carlo simulation.展开更多
基金supported by National Key R&D Program of China(Grant No.2018 YFC0809400)Zhejiang Provincial Natural Science Foundation of China(Grant No.LY16A020001)National Natural Science Foundation of China(Grant No.11802267).
文摘The reliability of quasi integrable and non-resonant Hamiltonian system under fractional Gaussian noise(fGn)excitation is studied.Noting rather flat fGn power spectral density(PSD)in most part of frequency band,the fGn is innovatively regarded as a wide-band process.Then,the stochastic averaging method for quasi integrable Hamiltonian systems under wide-band noise excitation is applied to reduce 2n-dimensional original system into n-dimensional averaged ltd stochastic differential equations(SDEs).Reliability function and mean first passage time are obtained by solving the associated backward Kolmogorov equation and Pontryagin equation.The validity of the proposed procedure is tested by applying it to an example and comparing the numerical results with those from Monte Carlo simulation.