This paper uses the “Fjortoft theorem” for defining necessary conditions for instability. The point is that it does not apply in the vicinity of the big bang. We apply this theorem to what is called by T. Padmanabha...This paper uses the “Fjortoft theorem” for defining necessary conditions for instability. The point is that it does not apply in the vicinity of the big bang. We apply this theorem to what is called by T. Padmanabhan a thermodynamic potential which would become unstable if conditions for the applications of “Fjortoft’s theorem” hold. In our case, there is no instability, so a different mechanism has to be appealed to. In the case of vacuum nucleation, we argue that conditions exist for the nucleation of particles as of the electroweak regime, due to injecting material from a node point, in spacetime. This regime of early universe creation coexists with the failure of applications of “Fjortoft” theorem in such a way as to give necessary and sufficient conditions for matter creation, in a way similar to the Higgs Boson.展开更多
When initial radius R<sub>initial</sub> →0 if Stoica actually presents Einstein equations in a formalism which remove the big bang singularity pathology, then the reason for Planck length no longer holds....When initial radius R<sub>initial</sub> →0 if Stoica actually presents Einstein equations in a formalism which remove the big bang singularity pathology, then the reason for Planck length no longer holds. We present entanglement entropy in the early universe with a shrinking scale factor, due to Muller and Lousto, and show that there are consequences due to initial entangled S<sub>Entropy</sub> = 0.3r<sup>2</sup><sub>h</sub>/a<sup>2 </sup>for a time dependent horizon radius r<sub>H</sub> = in cosmology, with (flat space conditions) for conformal time. Even if the 3 dimensional spatial length goes to zero, this construction preserves a minimum non-zero L vacuum energy, and in doing so keep the bits, for computational bits cosmological evolution even if Rinitial</sub> →0 . We state that the presence of computational bits is necessary for cosmological evolution to commence.展开更多
When the initial radius of the universe is set in four dimensions and if there is only ONE repeating universe, then the initial radii of the universe is R → 0 or gets very close to zero if we use the Einstein Equatio...When the initial radius of the universe is set in four dimensions and if there is only ONE repeating universe, then the initial radii of the universe is R → 0 or gets very close to zero if we use the Einstein Equations modified by Stoica. The Einstein Equations are reset by Stoical in a formalism which removes in four dimensions, the big bang singularity pathology. So then the reason for Planck length no longer holds. This manuscript assumes a repeating single universe. We present entanglement entropy in the early universe with a shrinking scale factor, due to Muller and Lousto, and show that there are consequences due to initial entangled for a time dependent horizon radius in cosmology, with (flat space conditions) for conformal time. Even if the 3-dimensional spatial length goes to zero. Our new manuscript presentation sets as a starting point a cosmology with a non-zero Λ vacuum energy. The non-zero Λ vacuum energy, initial configuration of the universe permits us to keep in an information theory stand point (information theory), computational bits for our configuration of cosmological expansion. This assemblage of computational bits occurs in cosmological evolution even if in an initial four-dimensional cosmology, we have the initial radii of the universe R → 0. We also find that in the case of a multiverse, such considerations will not hold and that cosmic singularities have a more different characteristic in the multiverse setting than in the single universe repeated over and over again, i.e. using an argument borrowed and modified from Kauffman, the multiverse will not mandate “perfect” singularities. The existence of a multiverse may allow for non zero singularities in lieu with the Kauffman argument cited at the end of the document, plus the lower pre big bang temperatures which may allow for the survival of gravitons just before the onset of the cosmological expansion phase, if a multiverse exists embedding our present universe.展开更多
When initial radius Rinitial 0 if Stoica actually derived Einstein equations in a formalism which remove the big bang singularity pathology, then the reason for Planck length no longer holds. The implications of Rinit...When initial radius Rinitial 0 if Stoica actually derived Einstein equations in a formalism which remove the big bang singularity pathology, then the reason for Planck length no longer holds. The implications of Rinitial 0 are the first part of this manuscript. Then the resolution is alluded to by work from Muller and Lousto, as to implications of entanglement entropy. We present entanglement entropy in the early universe with a steadily shrinking scale factor, due to work from Muller and Lousto, and show that there are consequences due to initial entanged Sentropy=0.3rH2/a2 for a time dependent horizon radius rH in cosmology, with for flat space conditions rH= for conformal time. In the case of a curved, but not flat space version of entropy, we look at vacuum energy as proportional to the inverse of scale factor squared times the inverse of initial entropy, effectively when there is no initial time in line with ~H2/G H≈a-1. The consequences for this initial entropy being entangled are elaborated in this manuscript. No matter how small the length gets, Sentropy if it is entanglement entropy, will not go to zero. The requirement is that the smallest length of time, t, re scaled does not go to zero. Even if the length goes to zero. This preserves a minimum non zero vacuum energy, and in doing so keep the bits, for computational bits cosmological evolution even if Rinitial 0.展开更多
When initial radius if Stoica actually derived Einstein equations in a formalism which removes the big bang singularity pathology, then the reason for Planck length no longer holds. We follow what Ng derived as limit ...When initial radius if Stoica actually derived Einstein equations in a formalism which removes the big bang singularity pathology, then the reason for Planck length no longer holds. We follow what Ng derived as limit calculations as to a space time length factor Without the drop off of the vacuum energy as given by is at least the value of . We review the work by Ng as to quantum foam as to how that affects a general expression as to energy when , with determined at least approximately by arguments he presented in 2008 in the Dark side of the universe conference. Well before certain effects make themselves apparent, in ways which are illustrated in the manuscript. Having at a point singularity would remove expansion by the scale factor, so that the extreme version of Stoica’s treatment in an isolated 4-dimensional universe would be no expansion at all.展开更多
文摘This paper uses the “Fjortoft theorem” for defining necessary conditions for instability. The point is that it does not apply in the vicinity of the big bang. We apply this theorem to what is called by T. Padmanabhan a thermodynamic potential which would become unstable if conditions for the applications of “Fjortoft’s theorem” hold. In our case, there is no instability, so a different mechanism has to be appealed to. In the case of vacuum nucleation, we argue that conditions exist for the nucleation of particles as of the electroweak regime, due to injecting material from a node point, in spacetime. This regime of early universe creation coexists with the failure of applications of “Fjortoft” theorem in such a way as to give necessary and sufficient conditions for matter creation, in a way similar to the Higgs Boson.
文摘When initial radius R<sub>initial</sub> →0 if Stoica actually presents Einstein equations in a formalism which remove the big bang singularity pathology, then the reason for Planck length no longer holds. We present entanglement entropy in the early universe with a shrinking scale factor, due to Muller and Lousto, and show that there are consequences due to initial entangled S<sub>Entropy</sub> = 0.3r<sup>2</sup><sub>h</sub>/a<sup>2 </sup>for a time dependent horizon radius r<sub>H</sub> = in cosmology, with (flat space conditions) for conformal time. Even if the 3 dimensional spatial length goes to zero, this construction preserves a minimum non-zero L vacuum energy, and in doing so keep the bits, for computational bits cosmological evolution even if Rinitial</sub> →0 . We state that the presence of computational bits is necessary for cosmological evolution to commence.
文摘When the initial radius of the universe is set in four dimensions and if there is only ONE repeating universe, then the initial radii of the universe is R → 0 or gets very close to zero if we use the Einstein Equations modified by Stoica. The Einstein Equations are reset by Stoical in a formalism which removes in four dimensions, the big bang singularity pathology. So then the reason for Planck length no longer holds. This manuscript assumes a repeating single universe. We present entanglement entropy in the early universe with a shrinking scale factor, due to Muller and Lousto, and show that there are consequences due to initial entangled for a time dependent horizon radius in cosmology, with (flat space conditions) for conformal time. Even if the 3-dimensional spatial length goes to zero. Our new manuscript presentation sets as a starting point a cosmology with a non-zero Λ vacuum energy. The non-zero Λ vacuum energy, initial configuration of the universe permits us to keep in an information theory stand point (information theory), computational bits for our configuration of cosmological expansion. This assemblage of computational bits occurs in cosmological evolution even if in an initial four-dimensional cosmology, we have the initial radii of the universe R → 0. We also find that in the case of a multiverse, such considerations will not hold and that cosmic singularities have a more different characteristic in the multiverse setting than in the single universe repeated over and over again, i.e. using an argument borrowed and modified from Kauffman, the multiverse will not mandate “perfect” singularities. The existence of a multiverse may allow for non zero singularities in lieu with the Kauffman argument cited at the end of the document, plus the lower pre big bang temperatures which may allow for the survival of gravitons just before the onset of the cosmological expansion phase, if a multiverse exists embedding our present universe.
文摘When initial radius Rinitial 0 if Stoica actually derived Einstein equations in a formalism which remove the big bang singularity pathology, then the reason for Planck length no longer holds. The implications of Rinitial 0 are the first part of this manuscript. Then the resolution is alluded to by work from Muller and Lousto, as to implications of entanglement entropy. We present entanglement entropy in the early universe with a steadily shrinking scale factor, due to work from Muller and Lousto, and show that there are consequences due to initial entanged Sentropy=0.3rH2/a2 for a time dependent horizon radius rH in cosmology, with for flat space conditions rH= for conformal time. In the case of a curved, but not flat space version of entropy, we look at vacuum energy as proportional to the inverse of scale factor squared times the inverse of initial entropy, effectively when there is no initial time in line with ~H2/G H≈a-1. The consequences for this initial entropy being entangled are elaborated in this manuscript. No matter how small the length gets, Sentropy if it is entanglement entropy, will not go to zero. The requirement is that the smallest length of time, t, re scaled does not go to zero. Even if the length goes to zero. This preserves a minimum non zero vacuum energy, and in doing so keep the bits, for computational bits cosmological evolution even if Rinitial 0.
文摘When initial radius if Stoica actually derived Einstein equations in a formalism which removes the big bang singularity pathology, then the reason for Planck length no longer holds. We follow what Ng derived as limit calculations as to a space time length factor Without the drop off of the vacuum energy as given by is at least the value of . We review the work by Ng as to quantum foam as to how that affects a general expression as to energy when , with determined at least approximately by arguments he presented in 2008 in the Dark side of the universe conference. Well before certain effects make themselves apparent, in ways which are illustrated in the manuscript. Having at a point singularity would remove expansion by the scale factor, so that the extreme version of Stoica’s treatment in an isolated 4-dimensional universe would be no expansion at all.