The finite/fixed-time stabilization and tracking control is currently a hot field in various systems since the faster convergence can be obtained. By contrast to the asymptotic stability,the finite-time stability poss...The finite/fixed-time stabilization and tracking control is currently a hot field in various systems since the faster convergence can be obtained. By contrast to the asymptotic stability,the finite-time stability possesses the better control performance and disturbance rejection property. Different from the finite-time stability, the fixed-time stability has a faster convergence speed and the upper bound of the settling time can be estimated. Moreover, the convergent time does not rely on the initial information.This work aims at presenting an overview of the finite/fixed-time stabilization and tracking control and its applications in engineering systems. Firstly, several fundamental definitions on the finite/fixed-time stability are recalled. Then, the research results on the finite/fixed-time stabilization and tracking control are reviewed in detail and categorized via diverse input signal structures and engineering applications. Finally, some challenging problems needed to be solved are presented.展开更多
The adaptive fixed-time consensus problem for a class of nonlinear multi-agent systems(MASs)with actuator faults is considered in this paper.To approximate the unknown nonlinear functions in MASs,radial basis function...The adaptive fixed-time consensus problem for a class of nonlinear multi-agent systems(MASs)with actuator faults is considered in this paper.To approximate the unknown nonlinear functions in MASs,radial basis function neural networks are used.In addition,the first order sliding mode differentiator is utilized to solve the“explosion of complexity”problem,and a filter error compensation method is proposed to ensure the convergence of filter error in fixed time.With the help of the Nussbaum function,the actuator failure compensation mechanism is constructed.By designing the adaptive fixed-time controller,all signals in MASs are bounded,and the consensus errors between the leader and all followers converge to a small area of origin.Finally,the effectiveness of the proposed control method is verified by simulation examples.展开更多
To achieve the fast convergence and tracking precision of a robotic upper-limb exoskeleton,this paper proposes an observer-based integrated fixed-time control scheme with a backstepping method.Firstly,a typical 5 DoF(...To achieve the fast convergence and tracking precision of a robotic upper-limb exoskeleton,this paper proposes an observer-based integrated fixed-time control scheme with a backstepping method.Firstly,a typical 5 DoF(degrees of freedom)dynamics is constructed by Lagrange equations and processed for control purposes.Secondly,second-order sliding mode controllers(SOSMC)are developed and novel sliding mode surfaces are introduced to ensure the fixed-time convergence of the human-robot system.Both the reaching time and settling time are proved to be bounded with certain values independent of initial system conditions.For the purpose of rejecting the matched and unmatched disturbances,nonlinear fixed-time observers are employed to estimate the exact value of disturbances and compensate the controllers online.Ultimately,the synthesis of controllers and disturbance observers is adopted to achieve the excellent tracking performance and simulations are given to verify the effectiveness of the proposed control strategy.展开更多
High-speed Electromagnetic Suspension(EMS)train is continuously impacted by the irregularity of the track,which worsens the levitation performance of the train.In this paper,a composite control scheme for the EMS is p...High-speed Electromagnetic Suspension(EMS)train is continuously impacted by the irregularity of the track,which worsens the levitation performance of the train.In this paper,a composite control scheme for the EMS is proposed to suppress track irregularities by integrating a Refined Disturbance Observer(RDO)and a Prescribed Performance Fixed-Time Controller(PPFTC).The RDO is designed to estimate precisely the track irregularities and lumped disturbances with uncertainties and exogenous disturbances in the suspension system,and reduce input chattering by applying to the disturbance compensation channel.PPFTC is designed to converge the suspension air gap error to equilibrium point with prescribed performance by completing error conversion,and solve the fast dynamic issue of EMS.And the boundary of overshoot and steady-state is limited in the ranged prescribed.A theoretical analysis is conducted on the stability of the proposed control method.Finally,the effectiveness and reasonability of the proposed composite anti-disturbance control scheme is verified by simulation results.展开更多
This paper considers the practical fixed-time tracking control problem for a state constrained pure-feedback nonlinear system.A new barrier function is first proposed to handle various asymmetric time-varying constrai...This paper considers the practical fixed-time tracking control problem for a state constrained pure-feedback nonlinear system.A new barrier function is first proposed to handle various asymmetric time-varying constraints and unify the cases with and without state constraints.Then a low-cost neural network based adaptive fixed-time controller is constructed by further combining the dynamic surface control,which overcomes the technical problems of overparametrization and singularity in the backstepping procedure.The proposed design guarantees that the tracking error converges to a small neighbourhood of zero in a fixed time while satisfying the state constraints as a priority task without imposing feasibility conditions on the virtual controllers.Simulation results validate the effectiveness of the proposed adaptive fixed-time tracking control strategy.展开更多
This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only b...This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only be obtained by some USVs.In order to achieve semi-encirclement tracking of noncooperative targets under maritime security conditions,a fixed-time tracking control method based on dynamic surface control(DSC)is proposed in this paper.Firstly,a novel TACC architecture with decoupled kinematic control law and decoupled kinetic control law was designed to reduce the complexity of control system design.Secondly,the proposed DSC-based target-guided kinematic control law including tracking points pre-allocation strategy and sigmoid artificial potential functions(SigAPFs)can avoid collisions during tracking process and optimize kinematic control output.Finally,a fixed-time TACC system was proposed to achieve fast convergence of kinematic and kinetics errors.The effectiveness of the proposed TACC approach in improving target tracking safety and reducing control output chattering was verified by simulation comparison results.展开更多
This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of ...This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of FxTS is independent of the initial values and parameters of the CNs,a modified fixed-time(FxT)stability theorem is proposed,where the ST is determined by an arbitrary positive number given in advance.Then,continuous controller and discontinuous controller are designed to realize the modified FxTS target of CNs.In addition,based on the designed controllers,CNs can achieve synchronization at any given time,or even earlier.And control strategies effectively solve the problem of ST related to the parameters of CNs.Finally,an appropriate simulation example is conducted to examine the effectiveness of the designed control strategies.展开更多
This paper presents an entire fixed-time disturbance observer-based global terminal switching sliding mode control of robot manipulators,which has inner and external uncertainties.The entire fixed-time disturbance obs...This paper presents an entire fixed-time disturbance observer-based global terminal switching sliding mode control of robot manipulators,which has inner and external uncertainties.The entire fixed-time disturbance observer-based global terminal switching sliding mode control has the global finite-time reaching characteristic,the property that system convergence time can be prescribed,and the global robustness to uncertainties,with the entire fixed-time disturbance observer that accurately estimates uncertainties after a fixed time,despite the initial state.The joints of the control system can arrive at the prescribed joint angular position at the predefined joint angular speed at the prescribed time.展开更多
This paper presents a fixed-time cooperative gui-dance method with impact angle constraints for multiple flight vehicles (MFV) to address the challenges of intercepting large maneuvering targets with difficulty and lo...This paper presents a fixed-time cooperative gui-dance method with impact angle constraints for multiple flight vehicles (MFV) to address the challenges of intercepting large maneuvering targets with difficulty and low precision. A coopera-tive guidance model is proposed, transforming the cooperative interception problem into a consensus problem based on the remaining flight time of the flight vehicles. First, the impact angle constraint is converted into the line of sight (LOS) angle con-straint, and a new fixed-time convergent non-singular terminal sliding surface is introduced, which resolves the singularity issue of the traditional sliding surfaces. With this approach, LOS angle rate and normal overloads can converge in fixed time, ensuring that the upper bound of the system convergence time is not affected by the initial value of the system. Furthermore, the maneuvering movement of the target is considered as a system disturbance, and an extended state observer is employed to estimate and compensate for it in the guidance law. Lastly, by applying consensus theory and distributed communication topology, the remaining flight time of each flight vehicle is syn-chronized to ensure that they intercept the target simulta-neously with different impact angles. Simulation experiments are conducted to validate the effectiveness of the proposed cooper-ative interception and guidance method.展开更多
This paper investigates the attitude tracking control problem for the cruise mode of a dual-system convertible unmanned aerial vehicle(UAV)in the presence of parameter uncertainties,unmodeled uncertainties and wind di...This paper investigates the attitude tracking control problem for the cruise mode of a dual-system convertible unmanned aerial vehicle(UAV)in the presence of parameter uncertainties,unmodeled uncertainties and wind disturbances.First,a fixed-time disturbance observer(FXDO)based on the bi-limit homogeneity theory is designed to estimate the lumped disturbance of the convertible UAV model.Then,a fixed-time integral sliding mode control(FXISMC)is combined with the FXDO to achieve strong robustness and chattering reduction.Bi-limit homogeneity theory and Lyapunov theory are applied to provide detailed proof of the fixed-time stability.Finally,numerical simulation experimental results verify the robustness of the proposed algorithm to model parameter uncertainties and wind disturbances.In addition,the proposed algorithm is deployed in a open-source UAV autopilot and its effectiveness is further demonstrated by hardware-in-the-loop experimental results.展开更多
This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with th...This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipulator systems.Then an adaptive scheme is used and the adaptive FTDO(AFTDO) is developed,so that the priori knowledge of the lumped disturbance is not required.Further,a new non-singular fast terminal sliding mode(NFTSM) surface is designed by using an arctan function,which helps to overcome the singularity problem and enhance the robustness of the system.Based on the estimation of the lumped disturbance by the AFTDO,a fixed-time non-singular fast terminal sliding mode controller(FTNFTSMC)is developed to guarantee the trajectory tracking errors converge to zero within a fixed time.The settling time is independent of the initial state of the system.In addition,the stability of the AFTDO and FTNFTSMC is strictly proved by using Lyapunov method.Finally,the fixed-time NFESM(FTNFTSM) algorithm is validated on a 2-link manipulator and comparisons with other existing sliding mode controllers(SMCs) are performed.The comparative results confirm that the FTNFTSMC has superior control performance.展开更多
This paper investigates the sliding-mode-based fixed-time distributed average tracking (DAT) problem for multiple Euler-Lagrange systems in the presence of external distur-bances. The primary objective is to devise co...This paper investigates the sliding-mode-based fixed-time distributed average tracking (DAT) problem for multiple Euler-Lagrange systems in the presence of external distur-bances. The primary objective is to devise controllers for each agent, enabling them to precisely track the average of multiple time-varying reference signals. By averaging these signals, we can mitigate the influence of errors and uncertainties arising dur-ing measurements, thereby enhancing the robustness and stabi-lity of the system. A distributed fixed-time average estimator is proposed to estimate the average value of global reference sig-nals utilizing local information and communication with neigh-bors. Subsequently, a fixed-time sliding mode controller is intro-duced incorporating a state-dependent sliding mode function coupled with a variable exponent coefficient to achieve dis-tributed average tracking of reference signals, and rigorous ana-lytical methods are employed to substantiate the fixed-time sta-bility. Finally, numerical simulation results are provided to vali-date the effectiveness of the proposed methodology, offering insights into its practical application and robust performance.展开更多
An anti-saturation fault-tolerant adaptive torsional vibration control method with fixed-time prescribed performance for the rolling mill main drive system(RMMDS)was investigated,which is affected by control input sat...An anti-saturation fault-tolerant adaptive torsional vibration control method with fixed-time prescribed performance for the rolling mill main drive system(RMMDS)was investigated,which is affected by control input saturation,actuator faults,sensor measurement errors,and parameter perturbations.First,we gave a continuously differentiable saturation function to approximate the control input saturation characteristic of the RMMDS,translating the saturation characteristic into the matched uncertainty and unknown time-varying gain in the system.Then,an RMMDS mathematical model with unmatched uncertainty and unknown time-varying gain was developed,taking into account the presence of control input saturation,actuator faults,sensor measurement errors,and parameter perturbations.Based on the established mathematical model,an error transformation model of the roll speed tracking was constructed by the equivalent error transformation method.According to the error transformation model,a barrier Lyapunov function and a novel adaptive controller were studied to ensure that the roll speed tracking error always evolves inside a fixed-time asymmetric constraint.Finally,numerical simulations were performed in Matlab/Simulink to verify the effectiveness and superiority of the proposed control method in suppressing the RMMDS torsional vibration.展开更多
This paper proposes a novel fixed-time sliding mode control approach for trajectory-tracking tasks of a mecanum-wheeled omnidirectional mobile robot.First,the idea of two-phase attractors is introduced into the domain...This paper proposes a novel fixed-time sliding mode control approach for trajectory-tracking tasks of a mecanum-wheeled omnidirectional mobile robot.First,the idea of two-phase attractors is introduced into the domain of sliding mode control,and a new fixed-time sliding surface is proposed.Then,according to this sliding surface,a new type of nonsingular fast terminal sliding mode control algorithm is designed for the omnidirectional mobile robot,which can realize a fast fixed-time convergence property.The stability of the control system is proven scrupulously,and a guideline for control-parameter tuning is expounded.Finally,experiments are implemented to test the trajectory-tracking performance of the robot.Experimental results demonstrate the superiority of the proposed sliding surface and the corresponding control scheme in comparison with benchmark controllers.展开更多
The modular system can change its physical structure by self-assembly and self-disassembly between modules to dynamically adapt to task and environmental requirements. Recognizing the adaptive capability of modular sy...The modular system can change its physical structure by self-assembly and self-disassembly between modules to dynamically adapt to task and environmental requirements. Recognizing the adaptive capability of modular systems, we introduce a modular reconfigurable flight array(MRFA) to pursue a multifunction aircraft fitting for diverse tasks and requirements,and investigate the attitude control and the control allocation problem by using the modular reconfigurable flight array as a platform. First, considering the variable and irregular topological configuration of the modular array, a center-of-mass-independent flight array dynamics model is proposed to allow control allocation under over-actuated situations. Secondly, in order to meet the stable, fast and accurate attitude tracking performance of the MRFA, a fixed-time convergent sliding mode controller with state-dependent variable exponent coefficients is proposed to ensure fast convergence rate both away from and near the system equilibrium point without encountering the singularity. It is shown that the controller also has fixed-time convergent characteristics even in the presence of external disturbances. Finally,simulation results are provided to demonstrate the effectiveness of the proposed modeling and control strategies.展开更多
In this paper, a class of discontinuous neutral-type neural networks (NTNNs) with proportional delays is considered. The targets of the paper are to study the problem of periodic solutions and fixed-time (FXT) stabili...In this paper, a class of discontinuous neutral-type neural networks (NTNNs) with proportional delays is considered. The targets of the paper are to study the problem of periodic solutions and fixed-time (FXT) stabilization of the addressed neural networks. In order to complete the targets, based on set-valued map, differential inclusions theory, coincidence theorem and Hölder inequality technique, some new proportional delay-dependent criteria shown by the inequalities are derived. Based on the fact of the existence of solution, further by applying the FXT stability lemmas and equivalent transformation, the zero solution of closed-loop system achieves FXT stabilization and the corresponding settling-times are estimated. Some previous related works on NTNNs are extended. Finally, one typical example is provided to show the effectiveness of the established results.展开更多
This paper investigates the distributed fixed-time attitude coordinated control problem for multiple spacecraft subject to actuator saturation under the directed topology. First, a distributed fixed-time observer is p...This paper investigates the distributed fixed-time attitude coordinated control problem for multiple spacecraft subject to actuator saturation under the directed topology. First, a distributed fixed-time observer is presented for each follower spacecraft to estimate the leader spacecraft’s states. Compared with the commonly used fixed-time observer, the settling time of the proposed fixed-time observer can be easily adjusted by some free design parameters. Next, a distributed fixed-time control scheme is derived by using the estimates of the leader spacecraft’s states and the adding a power integrator technique. When considering actuator saturation, an auxiliary system is utilized to compensate the saturation. Further, a rigorous theoretical proof is provided to show that the practical fixed-time stability of the closed-loop system is ensured. Finally, simulation results illustrate the benefits and effectiveness of the developed control scheme.展开更多
Focusing on the non-concave trajectory constraint,a sliding-mode-based nonsingular feedback fast fixed-time three-dimensional terminal guidance of rotor unmanned aerial vehicle landing,planetary landing and spacecraft...Focusing on the non-concave trajectory constraint,a sliding-mode-based nonsingular feedback fast fixed-time three-dimensional terminal guidance of rotor unmanned aerial vehicle landing,planetary landing and spacecraft rendezvous and docking terminal phase with external disturbance is investigated in this paper.Firstly,a fixed-time observer based on real-time differentiator is developed to compensate for the external disturbance,whose estimation error can converge to zero after a time independent of the initial state.Then,a sliding surface ensuring fixed-time convergence is presented.This sliding surface can guarantee that the vehicle achieves a non-concave trajectory,which is better for avoiding collision and maintaining the visibility of the landing site or docking port.Next,the nonsingular guidance ensuring the fixed-time convergence of the sliding surface is proposed,which is continuous and chatter free.At last,three numerical simulations of Mars landing are performed to validate the effectiveness and correctness of the designed scheme.展开更多
This paper investigates the heading tracking problem of surface vehicles with unknown model parameters.Based on finite/fixed-time control theories and in the context of command filtered control,two novel adaptive cont...This paper investigates the heading tracking problem of surface vehicles with unknown model parameters.Based on finite/fixed-time control theories and in the context of command filtered control,two novel adaptive control laws are developed by which the vehicle can track the desired heading within settling time with all signals of the closed-loop system are uniformly bounded.The effectiveness and performance of the schemes are demonstrated by simulations and comparison studies.展开更多
This paper studies the fixed-time output-feedback control for a class of linear systems subject to matched uncertainties.To estimate the uncertainties and system states,we design a composite observer which consists of...This paper studies the fixed-time output-feedback control for a class of linear systems subject to matched uncertainties.To estimate the uncertainties and system states,we design a composite observer which consists of a high-order sliding mode observer and a Luenberger observer.Then,a robust output-feedback controller with fixed-time convergence guarantee is constructed.Rigorous theoretical proof shows that with the proposed controller,the system states can converge to zero in fixed-time free of the initial conditions.Finally,simulation comparison with existing algorithms is given.Simulation results verify the effectiveness of the proposed controller in terms of its fixed-time convergence and perfect disturbance rejection.展开更多
基金partially supported by the National Natural Science Foundation of China(62003097,62121004,62033003,62073019)the Local Innovative and Research Teams Project of Guangdong Special Support Program(2019BT02X353)+2 种基金the Key Area Research and Development Program of Guangdong Province(2021B0101410005)the Joint Funds of Guangdong Basic and Applied Basic Research Foundation(2019A1515110505)。
文摘The finite/fixed-time stabilization and tracking control is currently a hot field in various systems since the faster convergence can be obtained. By contrast to the asymptotic stability,the finite-time stability possesses the better control performance and disturbance rejection property. Different from the finite-time stability, the fixed-time stability has a faster convergence speed and the upper bound of the settling time can be estimated. Moreover, the convergent time does not rely on the initial information.This work aims at presenting an overview of the finite/fixed-time stabilization and tracking control and its applications in engineering systems. Firstly, several fundamental definitions on the finite/fixed-time stability are recalled. Then, the research results on the finite/fixed-time stabilization and tracking control are reviewed in detail and categorized via diverse input signal structures and engineering applications. Finally, some challenging problems needed to be solved are presented.
基金the National Natural Science Foundation of China(62003093,62203119,62033003,62121004)the China National Postdoctoral Program(BX20220095,2022M710826)+1 种基金the Natural Science Foundation of Guangdong Province(2022A1515011506)the Guangzhou Science and Technology Planning Project(202102020586)。
文摘The adaptive fixed-time consensus problem for a class of nonlinear multi-agent systems(MASs)with actuator faults is considered in this paper.To approximate the unknown nonlinear functions in MASs,radial basis function neural networks are used.In addition,the first order sliding mode differentiator is utilized to solve the“explosion of complexity”problem,and a filter error compensation method is proposed to ensure the convergence of filter error in fixed time.With the help of the Nussbaum function,the actuator failure compensation mechanism is constructed.By designing the adaptive fixed-time controller,all signals in MASs are bounded,and the consensus errors between the leader and all followers converge to a small area of origin.Finally,the effectiveness of the proposed control method is verified by simulation examples.
基金supported by National Natural Science Foundation of China (Nos. 61703134, 61703135, 61773151, 61503118 and 61871173)Natural Science Foundation of Hebei Province (Nos. F2015202150, F2016202327 and F2018202279)+3 种基金Natural Science Foundation of Tianjin (No. 17JCQNJC04400)the Foundation of Hebei Educational Committee (Nos. QN2015068 and ZD2016071)the Colleges and Universities in Hebei Province Science and Technology Research Youth Fund (No. ZC2016020)the Graduate Innovation Funding Project of Hebei Province (No. CXZZBS2017038)
文摘To achieve the fast convergence and tracking precision of a robotic upper-limb exoskeleton,this paper proposes an observer-based integrated fixed-time control scheme with a backstepping method.Firstly,a typical 5 DoF(degrees of freedom)dynamics is constructed by Lagrange equations and processed for control purposes.Secondly,second-order sliding mode controllers(SOSMC)are developed and novel sliding mode surfaces are introduced to ensure the fixed-time convergence of the human-robot system.Both the reaching time and settling time are proved to be bounded with certain values independent of initial system conditions.For the purpose of rejecting the matched and unmatched disturbances,nonlinear fixed-time observers are employed to estimate the exact value of disturbances and compensate the controllers online.Ultimately,the synthesis of controllers and disturbance observers is adopted to achieve the excellent tracking performance and simulations are given to verify the effectiveness of the proposed control strategy.
基金supported by the National Natural Science Foundation of China(Grant 62273029).
文摘High-speed Electromagnetic Suspension(EMS)train is continuously impacted by the irregularity of the track,which worsens the levitation performance of the train.In this paper,a composite control scheme for the EMS is proposed to suppress track irregularities by integrating a Refined Disturbance Observer(RDO)and a Prescribed Performance Fixed-Time Controller(PPFTC).The RDO is designed to estimate precisely the track irregularities and lumped disturbances with uncertainties and exogenous disturbances in the suspension system,and reduce input chattering by applying to the disturbance compensation channel.PPFTC is designed to converge the suspension air gap error to equilibrium point with prescribed performance by completing error conversion,and solve the fast dynamic issue of EMS.And the boundary of overshoot and steady-state is limited in the ranged prescribed.A theoretical analysis is conducted on the stability of the proposed control method.Finally,the effectiveness and reasonability of the proposed composite anti-disturbance control scheme is verified by simulation results.
基金supported in part by Shanghai Rising-Star Program under Grant No.22QA1409400in part by the National Natural Science Foundation of China under Grant Nos.62473287 and 62088101in part by Shanghai Municipal Science and Technology Major Project under Grant No.2021SHZDZX0100。
文摘This paper considers the practical fixed-time tracking control problem for a state constrained pure-feedback nonlinear system.A new barrier function is first proposed to handle various asymmetric time-varying constraints and unify the cases with and without state constraints.Then a low-cost neural network based adaptive fixed-time controller is constructed by further combining the dynamic surface control,which overcomes the technical problems of overparametrization and singularity in the backstepping procedure.The proposed design guarantees that the tracking error converges to a small neighbourhood of zero in a fixed time while satisfying the state constraints as a priority task without imposing feasibility conditions on the virtual controllers.Simulation results validate the effectiveness of the proposed adaptive fixed-time tracking control strategy.
文摘This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only be obtained by some USVs.In order to achieve semi-encirclement tracking of noncooperative targets under maritime security conditions,a fixed-time tracking control method based on dynamic surface control(DSC)is proposed in this paper.Firstly,a novel TACC architecture with decoupled kinematic control law and decoupled kinetic control law was designed to reduce the complexity of control system design.Secondly,the proposed DSC-based target-guided kinematic control law including tracking points pre-allocation strategy and sigmoid artificial potential functions(SigAPFs)can avoid collisions during tracking process and optimize kinematic control output.Finally,a fixed-time TACC system was proposed to achieve fast convergence of kinematic and kinetics errors.The effectiveness of the proposed TACC approach in improving target tracking safety and reducing control output chattering was verified by simulation comparison results.
基金Supported by the National Natural Science Foundation of China(62476082)。
文摘This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of FxTS is independent of the initial values and parameters of the CNs,a modified fixed-time(FxT)stability theorem is proposed,where the ST is determined by an arbitrary positive number given in advance.Then,continuous controller and discontinuous controller are designed to realize the modified FxTS target of CNs.In addition,based on the designed controllers,CNs can achieve synchronization at any given time,or even earlier.And control strategies effectively solve the problem of ST related to the parameters of CNs.Finally,an appropriate simulation example is conducted to examine the effectiveness of the designed control strategies.
文摘This paper presents an entire fixed-time disturbance observer-based global terminal switching sliding mode control of robot manipulators,which has inner and external uncertainties.The entire fixed-time disturbance observer-based global terminal switching sliding mode control has the global finite-time reaching characteristic,the property that system convergence time can be prescribed,and the global robustness to uncertainties,with the entire fixed-time disturbance observer that accurately estimates uncertainties after a fixed time,despite the initial state.The joints of the control system can arrive at the prescribed joint angular position at the predefined joint angular speed at the prescribed time.
基金supported by the National Natural Science Foundation of China(61903099)the Natural Science Foundation of Heilongjiang Province(LH2020F025)+2 种基金the Project of Science and Technology Research Program of Chongqing Education Commission of China(KJZD-K20200470)the Postdoctoral Science Foundation of China(2021M690812)the Postdoctoral Science Fund of Heilongjiang Province(LBH-Z21048).
文摘This paper presents a fixed-time cooperative gui-dance method with impact angle constraints for multiple flight vehicles (MFV) to address the challenges of intercepting large maneuvering targets with difficulty and low precision. A coopera-tive guidance model is proposed, transforming the cooperative interception problem into a consensus problem based on the remaining flight time of the flight vehicles. First, the impact angle constraint is converted into the line of sight (LOS) angle con-straint, and a new fixed-time convergent non-singular terminal sliding surface is introduced, which resolves the singularity issue of the traditional sliding surfaces. With this approach, LOS angle rate and normal overloads can converge in fixed time, ensuring that the upper bound of the system convergence time is not affected by the initial value of the system. Furthermore, the maneuvering movement of the target is considered as a system disturbance, and an extended state observer is employed to estimate and compensate for it in the guidance law. Lastly, by applying consensus theory and distributed communication topology, the remaining flight time of each flight vehicle is syn-chronized to ensure that they intercept the target simulta-neously with different impact angles. Simulation experiments are conducted to validate the effectiveness of the proposed cooper-ative interception and guidance method.
基金supported by National Natural Science Foundation of China (Grant Nos.52072309 and 62303379)Beijing Institute of Spacecraft System Engineering Research Project (Grant NO.JSZL2020203B004)+1 种基金Natural Science Foundation of Shaanxi Province,Chinese (Grant NOs.2023-JC-QN-0003 and 2023-JC-QN-0665)Industry-University-Research Innovation Fund of Ministry of Education for Chinese Universities (Grant NO.2022IT189)。
文摘This paper investigates the attitude tracking control problem for the cruise mode of a dual-system convertible unmanned aerial vehicle(UAV)in the presence of parameter uncertainties,unmodeled uncertainties and wind disturbances.First,a fixed-time disturbance observer(FXDO)based on the bi-limit homogeneity theory is designed to estimate the lumped disturbance of the convertible UAV model.Then,a fixed-time integral sliding mode control(FXISMC)is combined with the FXDO to achieve strong robustness and chattering reduction.Bi-limit homogeneity theory and Lyapunov theory are applied to provide detailed proof of the fixed-time stability.Finally,numerical simulation experimental results verify the robustness of the proposed algorithm to model parameter uncertainties and wind disturbances.In addition,the proposed algorithm is deployed in a open-source UAV autopilot and its effectiveness is further demonstrated by hardware-in-the-loop experimental results.
基金partially supported by the National Natural Science Foundation of China (62322315,61873237)Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars(LR22F030003)+2 种基金the National Key Rearch and Development Funding(2018YFB1403702)the Key Rearch and Development Programs of Zhejiang Province (2023C01224)Major Project of Science and Technology Innovation in Ningbo City (2019B1003)。
文摘This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipulator systems.Then an adaptive scheme is used and the adaptive FTDO(AFTDO) is developed,so that the priori knowledge of the lumped disturbance is not required.Further,a new non-singular fast terminal sliding mode(NFTSM) surface is designed by using an arctan function,which helps to overcome the singularity problem and enhance the robustness of the system.Based on the estimation of the lumped disturbance by the AFTDO,a fixed-time non-singular fast terminal sliding mode controller(FTNFTSMC)is developed to guarantee the trajectory tracking errors converge to zero within a fixed time.The settling time is independent of the initial state of the system.In addition,the stability of the AFTDO and FTNFTSMC is strictly proved by using Lyapunov method.Finally,the fixed-time NFESM(FTNFTSM) algorithm is validated on a 2-link manipulator and comparisons with other existing sliding mode controllers(SMCs) are performed.The comparative results confirm that the FTNFTSMC has superior control performance.
基金supported by the National Natural Science Foundation of China(61673130).
文摘This paper investigates the sliding-mode-based fixed-time distributed average tracking (DAT) problem for multiple Euler-Lagrange systems in the presence of external distur-bances. The primary objective is to devise controllers for each agent, enabling them to precisely track the average of multiple time-varying reference signals. By averaging these signals, we can mitigate the influence of errors and uncertainties arising dur-ing measurements, thereby enhancing the robustness and stabi-lity of the system. A distributed fixed-time average estimator is proposed to estimate the average value of global reference sig-nals utilizing local information and communication with neigh-bors. Subsequently, a fixed-time sliding mode controller is intro-duced incorporating a state-dependent sliding mode function coupled with a variable exponent coefficient to achieve dis-tributed average tracking of reference signals, and rigorous ana-lytical methods are employed to substantiate the fixed-time sta-bility. Finally, numerical simulation results are provided to vali-date the effectiveness of the proposed methodology, offering insights into its practical application and robust performance.
基金supported by Central Government to Guide local scientific and Technological Development of Hebei Province(No.216Z1902G)Major Program of National Natural Science Foundation of China(U20A20332)+1 种基金Natural Science Foundation of Hebei Province(A2022203024)Provincial Key Laboratory Performance Subsidy Project(22567612H).
文摘An anti-saturation fault-tolerant adaptive torsional vibration control method with fixed-time prescribed performance for the rolling mill main drive system(RMMDS)was investigated,which is affected by control input saturation,actuator faults,sensor measurement errors,and parameter perturbations.First,we gave a continuously differentiable saturation function to approximate the control input saturation characteristic of the RMMDS,translating the saturation characteristic into the matched uncertainty and unknown time-varying gain in the system.Then,an RMMDS mathematical model with unmatched uncertainty and unknown time-varying gain was developed,taking into account the presence of control input saturation,actuator faults,sensor measurement errors,and parameter perturbations.Based on the established mathematical model,an error transformation model of the roll speed tracking was constructed by the equivalent error transformation method.According to the error transformation model,a barrier Lyapunov function and a novel adaptive controller were studied to ensure that the roll speed tracking error always evolves inside a fixed-time asymmetric constraint.Finally,numerical simulations were performed in Matlab/Simulink to verify the effectiveness and superiority of the proposed control method in suppressing the RMMDS torsional vibration.
基金supported by the National Natural Science Foundation of China(62003305)the Natural Science Foundation of Zhejiang Province(LQ21F030015)+1 种基金the Key Research and Development Program of Zhejiang Province(2022C03029)the Public Welfare Application Research Project of Huzhou City(2022GZ15).
文摘This paper proposes a novel fixed-time sliding mode control approach for trajectory-tracking tasks of a mecanum-wheeled omnidirectional mobile robot.First,the idea of two-phase attractors is introduced into the domain of sliding mode control,and a new fixed-time sliding surface is proposed.Then,according to this sliding surface,a new type of nonsingular fast terminal sliding mode control algorithm is designed for the omnidirectional mobile robot,which can realize a fast fixed-time convergence property.The stability of the control system is proven scrupulously,and a guideline for control-parameter tuning is expounded.Finally,experiments are implemented to test the trajectory-tracking performance of the robot.Experimental results demonstrate the superiority of the proposed sliding surface and the corresponding control scheme in comparison with benchmark controllers.
基金supported by the National Nature Science Foundation of China (62063011,62273169, 61922037, 61873115)Yunnan Fundamental Research Projects(202001AV070001)+1 种基金Yunnan Major Scientific and Technological Projects(202202AG050002)partially supported by the Open Foundation of Key Laboratory in Software Engineering of Yunnan Province (2020SE502)。
文摘The modular system can change its physical structure by self-assembly and self-disassembly between modules to dynamically adapt to task and environmental requirements. Recognizing the adaptive capability of modular systems, we introduce a modular reconfigurable flight array(MRFA) to pursue a multifunction aircraft fitting for diverse tasks and requirements,and investigate the attitude control and the control allocation problem by using the modular reconfigurable flight array as a platform. First, considering the variable and irregular topological configuration of the modular array, a center-of-mass-independent flight array dynamics model is proposed to allow control allocation under over-actuated situations. Secondly, in order to meet the stable, fast and accurate attitude tracking performance of the MRFA, a fixed-time convergent sliding mode controller with state-dependent variable exponent coefficients is proposed to ensure fast convergence rate both away from and near the system equilibrium point without encountering the singularity. It is shown that the controller also has fixed-time convergent characteristics even in the presence of external disturbances. Finally,simulation results are provided to demonstrate the effectiveness of the proposed modeling and control strategies.
基金supported by Social Science Fund of Hunan province(Grant No.22JD074)the Research Foundation of Education Bureau of Hunan province(Grant No.22B0912).
文摘In this paper, a class of discontinuous neutral-type neural networks (NTNNs) with proportional delays is considered. The targets of the paper are to study the problem of periodic solutions and fixed-time (FXT) stabilization of the addressed neural networks. In order to complete the targets, based on set-valued map, differential inclusions theory, coincidence theorem and Hölder inequality technique, some new proportional delay-dependent criteria shown by the inequalities are derived. Based on the fact of the existence of solution, further by applying the FXT stability lemmas and equivalent transformation, the zero solution of closed-loop system achieves FXT stabilization and the corresponding settling-times are estimated. Some previous related works on NTNNs are extended. Finally, one typical example is provided to show the effectiveness of the established results.
基金supported by the National Natural Science Foundation of China(Nos.61720106010,62003041)Science and Technology on Space Intelligent Control Laboratory,China(No.KGJZDSYS-2018-05)General Project of Ningxia Natural Science Fund,China(No.2020AAC03234)。
文摘This paper investigates the distributed fixed-time attitude coordinated control problem for multiple spacecraft subject to actuator saturation under the directed topology. First, a distributed fixed-time observer is presented for each follower spacecraft to estimate the leader spacecraft’s states. Compared with the commonly used fixed-time observer, the settling time of the proposed fixed-time observer can be easily adjusted by some free design parameters. Next, a distributed fixed-time control scheme is derived by using the estimates of the leader spacecraft’s states and the adding a power integrator technique. When considering actuator saturation, an auxiliary system is utilized to compensate the saturation. Further, a rigorous theoretical proof is provided to show that the practical fixed-time stability of the closed-loop system is ensured. Finally, simulation results illustrate the benefits and effectiveness of the developed control scheme.
基金co-supported by the National Defense Basic Scientific Research Project,China(No.JCKY2020903B002)the National Natural Science Foundation of China(Nos.61973100,62273118 and 12150008)。
文摘Focusing on the non-concave trajectory constraint,a sliding-mode-based nonsingular feedback fast fixed-time three-dimensional terminal guidance of rotor unmanned aerial vehicle landing,planetary landing and spacecraft rendezvous and docking terminal phase with external disturbance is investigated in this paper.Firstly,a fixed-time observer based on real-time differentiator is developed to compensate for the external disturbance,whose estimation error can converge to zero after a time independent of the initial state.Then,a sliding surface ensuring fixed-time convergence is presented.This sliding surface can guarantee that the vehicle achieves a non-concave trajectory,which is better for avoiding collision and maintaining the visibility of the landing site or docking port.Next,the nonsingular guidance ensuring the fixed-time convergence of the sliding surface is proposed,which is continuous and chatter free.At last,three numerical simulations of Mars landing are performed to validate the effectiveness and correctness of the designed scheme.
基金supported by the National Natural Science Foundation of China(U1808205)the Fundamental Research Funds for the Central Universities(N2023011)+1 种基金the Youth Foundation of Hebei Educational Committee(QN2020522)the Natural Science Foundation of Hebei Province(F2020501018)。
文摘This paper investigates the heading tracking problem of surface vehicles with unknown model parameters.Based on finite/fixed-time control theories and in the context of command filtered control,two novel adaptive control laws are developed by which the vehicle can track the desired heading within settling time with all signals of the closed-loop system are uniformly bounded.The effectiveness and performance of the schemes are demonstrated by simulations and comparison studies.
基金This work was supported by the National Natural Science Foundation of China(62003131,62073121,62173125)the Natural Science Foundation of Jiangsu Province(BK20200520).
文摘This paper studies the fixed-time output-feedback control for a class of linear systems subject to matched uncertainties.To estimate the uncertainties and system states,we design a composite observer which consists of a high-order sliding mode observer and a Luenberger observer.Then,a robust output-feedback controller with fixed-time convergence guarantee is constructed.Rigorous theoretical proof shows that with the proposed controller,the system states can converge to zero in fixed-time free of the initial conditions.Finally,simulation comparison with existing algorithms is given.Simulation results verify the effectiveness of the proposed controller in terms of its fixed-time convergence and perfect disturbance rejection.