To address fixed-time consensus problems of a class of leader-follower second-order nonlinear multi-agent systems with uncertain external disturbances,the event-triggered fixed-time consensus protocol is proposed.Firs...To address fixed-time consensus problems of a class of leader-follower second-order nonlinear multi-agent systems with uncertain external disturbances,the event-triggered fixed-time consensus protocol is proposed.First,the virtual velocity is designed based on the backstepping control method to achieve the system consensus and the bound on convergence time only depending on the system parameters.Second,an event-triggered mechanism is presented to solve the problem of frequent communication between agents,and triggered condition based on state information is given for each follower.It is available to save communication resources,and the Zeno behaviors are excluded.Then,the delay and switching topologies of the system are also discussed.Next,the system stabilization is analyzed by Lyapunov stability theory.Finally,simulation results demonstrate the validity of the presented method.展开更多
This article deals with the consensus problem of multi-agent systems by developing a fixed-time consensus control approach with a dynamic event-triggered rule. First, a new fixedtime stability condition is obtained wh...This article deals with the consensus problem of multi-agent systems by developing a fixed-time consensus control approach with a dynamic event-triggered rule. First, a new fixedtime stability condition is obtained where the less conservative settling time is given such that the theoretical settling time can well reflect the real consensus time. Second, a dynamic event-triggered rule is designed to decrease the use of chip and network resources where Zeno behaviors can be avoided after consensus is achieved, especially for finite/fixed-time consensus control approaches. Third, in terms of the developed dynamic event-triggered rule, a fixed-time consensus control approach by introducing a new item is proposed to coordinate the multi-agent system to reach consensus. The corresponding stability of the multi-agent system with the proposed control approach and dynamic eventtriggered rule is analyzed based on Lyapunov theory and the fixed-time stability theorem. At last, the effectiveness of the dynamic event-triggered fixed-time consensus control approach is verified by simulations and experiments for the problem of magnetic map construction based on multiple mobile robots.展开更多
We analyse the fixed-time consensus problem for multi-agent systems with leaderfollower mode. Based on a follower’s observation structure for the leader’s information, it is proved that the estimation errors can be ...We analyse the fixed-time consensus problem for multi-agent systems with leaderfollower mode. Based on a follower’s observation structure for the leader’s information, it is proved that the estimation errors can be converged to zero at a fixed time. From this stability and a sliding mode structure, we derive a control input of followers, which provides a critical support for fixed-time consensus. The simulation results demonstrate that this control approach does conduce to the implementation of the fixed-time synchronization.展开更多
This paper investigates the sliding-mode-based fixed-time distributed average tracking (DAT) problem for multiple Euler-Lagrange systems in the presence of external distur-bances. The primary objective is to devise co...This paper investigates the sliding-mode-based fixed-time distributed average tracking (DAT) problem for multiple Euler-Lagrange systems in the presence of external distur-bances. The primary objective is to devise controllers for each agent, enabling them to precisely track the average of multiple time-varying reference signals. By averaging these signals, we can mitigate the influence of errors and uncertainties arising dur-ing measurements, thereby enhancing the robustness and stabi-lity of the system. A distributed fixed-time average estimator is proposed to estimate the average value of global reference sig-nals utilizing local information and communication with neigh-bors. Subsequently, a fixed-time sliding mode controller is intro-duced incorporating a state-dependent sliding mode function coupled with a variable exponent coefficient to achieve dis-tributed average tracking of reference signals, and rigorous ana-lytical methods are employed to substantiate the fixed-time sta-bility. Finally, numerical simulation results are provided to vali-date the effectiveness of the proposed methodology, offering insights into its practical application and robust performance.展开更多
In this paper,fixed-time consensus tracking for mul-tiagent systems(MASs)with dynamics in the form of strict feed-back affine nonlinearity is addressed.A fixed-time antidistur-bance consensus tracking protocol is prop...In this paper,fixed-time consensus tracking for mul-tiagent systems(MASs)with dynamics in the form of strict feed-back affine nonlinearity is addressed.A fixed-time antidistur-bance consensus tracking protocol is proposed,which consists of a distributed fixed-time observer,a fixed-time disturbance observer,a nonsmooth antidisturbance backstepping controller,and the fixed-time stability analysis is conducted by using the Lyapunov theory correspondingly.This paper includes three main improvements.First,a distributed fixed-time observer is developed for each follower to obtain an estimate of the leader’s output by utilizing the topology of the communication network.Second,a fixed-time disturbance observer is given to estimate the lumped disturbances for feedforward compensation.Finally,a nonsmooth antidisturbance backstepping tracking controller with feedforward compensation for lumped disturbances is designed.In order to mitigate the“explosion of complexity”in the tradi-tional backstepping approach,we have implemented a modified nonsmooth command filter to enhance the performance of the closed-loop system.The simulation results show that the pro-posed method is effective.展开更多
The Internet of Things(IoT)has gained substantial attention in both academic research and real-world applications.The proliferation of interconnected devices across various domains promises to deliver intelligent and ...The Internet of Things(IoT)has gained substantial attention in both academic research and real-world applications.The proliferation of interconnected devices across various domains promises to deliver intelligent and advanced services.However,this rapid expansion also heightens the vulnerability of the IoT ecosystem to security threats.Consequently,innovative solutions capable of effectively mitigating risks while accommodating the unique constraints of IoT environments are urgently needed.Recently,the convergence of Blockchain technology and IoT has introduced a decentralized and robust framework for securing data and interactions,commonly referred to as the Internet of Blockchained Things(IoBT).Extensive research efforts have been devoted to adapting Blockchain technology to meet the specific requirements of IoT deployments.Within this context,consensus algorithms play a critical role in assessing the feasibility of integrating Blockchain into IoT ecosystems.The adoption of efficient and lightweight consensus mechanisms for block validation has become increasingly essential.This paper presents a comprehensive examination of lightweight,constraint-aware consensus algorithms tailored for IoBT.The study categorizes these consensus mechanisms based on their core operations,the security of the block validation process,the incorporation of AI techniques,and the specific applications they are designed to support.展开更多
The research and development of new traditional Chinese medicine(TCM)drugs have progressively established a novel system founded on the integration of TCM theory,human experience,and clinical trials(termed the“Three ...The research and development of new traditional Chinese medicine(TCM)drugs have progressively established a novel system founded on the integration of TCM theory,human experience,and clinical trials(termed the“Three Combinations”).However,considering TCM's distinctive features of“syndrome differentiation and treatment”and“multicomponent formulations and complex mechanisms”,current TCM drug development faces challenges such as insufficient understanding of the material basis and the overall mechanism of action and an incomplete evidence chain system.Moreover,significant obstacles persist in gathering human experience data,evaluating clinical efficacy,and controlling the quality of active ingredients,which impede the innovation process in TCM drug development.Network pharmacology,centered on the“network targets”theory,transcends the limitations of the conventional“single target”reductionist research model.It emphasizes the comprehensive effects of disease or syndrome biological networks as targets to elucidate the overall regulatory mechanism of TCM prescriptions.This approach aligns with the holistic perspective of TCM,offering a novel method consistent with TCM's holistic view for investigating the complex mechanisms of TCM and developing new TCM drugs.It is internationally recognized as a“next-generation drug research model”.To advance the research of new tools,methods,and standards for TCM evaluation and to overcome fundamental,critical,and cutting-edge technical challenges in TCM regulation,this consensus aims to explore the characteristics,progress,challenges,applicable pathways,and specific applications of network pharmacology as a new theory,method,and tool in TCM drug development.The goal is to enhance the quality of TCM drug research and development and accelerate the efficiency of developing new TCM products.展开更多
Early correction of childhood malocclusion is timely managing morphological,structural,and functional abnormalities at different dentomaxillofacial developmental stages.The selection of appropriate imaging examination...Early correction of childhood malocclusion is timely managing morphological,structural,and functional abnormalities at different dentomaxillofacial developmental stages.The selection of appropriate imaging examination and comprehensive radiological diagnosis and analysis play an important role in early correction of childhood malocclusion.This expert consensus is a collaborative effort by multidisciplinary experts in dentistry across the nation based on the current clinical evidence,aiming to provide general guidance on appropriate imaging examination selection,comprehensive and accurate imaging assessment for early orthodontic treatment patients.展开更多
This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only b...This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only be obtained by some USVs.In order to achieve semi-encirclement tracking of noncooperative targets under maritime security conditions,a fixed-time tracking control method based on dynamic surface control(DSC)is proposed in this paper.Firstly,a novel TACC architecture with decoupled kinematic control law and decoupled kinetic control law was designed to reduce the complexity of control system design.Secondly,the proposed DSC-based target-guided kinematic control law including tracking points pre-allocation strategy and sigmoid artificial potential functions(SigAPFs)can avoid collisions during tracking process and optimize kinematic control output.Finally,a fixed-time TACC system was proposed to achieve fast convergence of kinematic and kinetics errors.The effectiveness of the proposed TACC approach in improving target tracking safety and reducing control output chattering was verified by simulation comparison results.展开更多
Dear Editor,This letter studies output consensus problem of heterogeneous linear multiagent systems over directed graphs. A novel adaptive dynamic event-triggered controller is presented based only on the feedback com...Dear Editor,This letter studies output consensus problem of heterogeneous linear multiagent systems over directed graphs. A novel adaptive dynamic event-triggered controller is presented based only on the feedback combination of the agent's own state and neighbors' output,which can achieve exponential output consensus through intermittent communication. The controller is obtained by solving two linear matrix equations, and Zeno behavior is excluded.展开更多
This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of ...This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of FxTS is independent of the initial values and parameters of the CNs,a modified fixed-time(FxT)stability theorem is proposed,where the ST is determined by an arbitrary positive number given in advance.Then,continuous controller and discontinuous controller are designed to realize the modified FxTS target of CNs.In addition,based on the designed controllers,CNs can achieve synchronization at any given time,or even earlier.And control strategies effectively solve the problem of ST related to the parameters of CNs.Finally,an appropriate simulation example is conducted to examine the effectiveness of the designed control strategies.展开更多
Dear Editor,This letter studies the bipartite consensus tracking problem for heterogeneous multi-agent systems with actuator faults and a leader's unknown time-varying control input. To handle such a problem, the ...Dear Editor,This letter studies the bipartite consensus tracking problem for heterogeneous multi-agent systems with actuator faults and a leader's unknown time-varying control input. To handle such a problem, the continuous fault-tolerant control protocol via observer design is developed. In addition, it is strictly proved that the multi-agent system driven by the designed controllers can still achieve bipartite consensus tracking after faults occur.展开更多
This paper mainly focuses on the velocity-constrained consensus problem of discrete-time heterogeneous multi-agent systems with nonconvex constraints and arbitrarily switching topologies,where each agent has first-ord...This paper mainly focuses on the velocity-constrained consensus problem of discrete-time heterogeneous multi-agent systems with nonconvex constraints and arbitrarily switching topologies,where each agent has first-order or second-order dynamics.To solve this problem,a distributed algorithm is proposed based on a contraction operator.By employing the properties of the stochastic matrix,it is shown that all agents’position states could converge to a common point and second-order agents’velocity states could remain in corresponding nonconvex constraint sets and converge to zero as long as the joint communication topology has one directed spanning tree.Finally,the numerical simulation results are provided to verify the effectiveness of the proposed algorithms.展开更多
This paper presents a fixed-time cooperative gui-dance method with impact angle constraints for multiple flight vehicles (MFV) to address the challenges of intercepting large maneuvering targets with difficulty and lo...This paper presents a fixed-time cooperative gui-dance method with impact angle constraints for multiple flight vehicles (MFV) to address the challenges of intercepting large maneuvering targets with difficulty and low precision. A coopera-tive guidance model is proposed, transforming the cooperative interception problem into a consensus problem based on the remaining flight time of the flight vehicles. First, the impact angle constraint is converted into the line of sight (LOS) angle con-straint, and a new fixed-time convergent non-singular terminal sliding surface is introduced, which resolves the singularity issue of the traditional sliding surfaces. With this approach, LOS angle rate and normal overloads can converge in fixed time, ensuring that the upper bound of the system convergence time is not affected by the initial value of the system. Furthermore, the maneuvering movement of the target is considered as a system disturbance, and an extended state observer is employed to estimate and compensate for it in the guidance law. Lastly, by applying consensus theory and distributed communication topology, the remaining flight time of each flight vehicle is syn-chronized to ensure that they intercept the target simulta-neously with different impact angles. Simulation experiments are conducted to validate the effectiveness of the proposed cooper-ative interception and guidance method.展开更多
This paper focuses on the problem of leaderfollowing consensus for nonlinear cascaded multi-agent systems.The control strategies for these systems are transformed into successive control problem schemes for lower-orde...This paper focuses on the problem of leaderfollowing consensus for nonlinear cascaded multi-agent systems.The control strategies for these systems are transformed into successive control problem schemes for lower-order error subsystems.A distributed consensus analysis for the corresponding error systems is conducted by employing recursive methods and virtual controllers,accompanied by a series of Lyapunov functions devised throughout the iterative process,which solves the leaderfollowing consensus problem of a class of nonlinear cascaded multi-agent systems.Specific simulation examples illustrate the effectiveness of the proposed control algorithm.展开更多
Traditional Internet of Things(IoT)architectures that rely on centralized servers for data management and decision-making are vulnerable to security threats and privacy leakage.To address this issue,blockchain has bee...Traditional Internet of Things(IoT)architectures that rely on centralized servers for data management and decision-making are vulnerable to security threats and privacy leakage.To address this issue,blockchain has been advocated for decentralized data management in a tamper-resistance,traceable,and transparent manner.However,a major issue that hinders the integration of blockchain and IoT lies in that,it is rather challenging for resource-constrained IoT devices to perform computation-intensive blockchain consensuses such as Proof-of-Work(PoW).Furthermore,the incentive mechanism of PoW pushes lightweight IoT nodes to aggregate their computing power to increase the possibility of successful block generation.Nevertheless,this eventually leads to the formation of computing power alliances,and significantly compromises the decentralization and security of BlockChain-aided IoT(BC-IoT)networks.To cope with these issues,we propose a lightweight consensus protocol for BC-IoT,called Proof-of-Trusted-Work(PoTW).The goal of the proposed consensus is to disincentivize the centralization of computing power and encourage the independent participation of lightweight IoT nodes in blockchain consensus.First,we put forth an on-chain reputation evaluation rule and a reputation chain for PoTW to enable the verifiability and traceability of nodes’reputations based on their contributions of computing power to the blockchain consensus,and we incorporate the multi-level block generation difficulty as a rewards for nodes to accumulate reputations.Second,we model the block generation process of PoTW and analyze the block throughput using the continuous time Markov chain.Additionally,we define and optimize the relative throughput gain to quantify and maximize the capability of PoTW that suppresses the computing power centralization(i.e.,centralization suppression).Furthermore,we investigate the impact of the computing power of the computing power alliance and the levels of block generation difficulty on the centralization suppression capability of PoTW.Finally,simulation results demonstrate the consistency of the analytical results in terms of block throughput.In particular,the results show that PoTW effectively reduces the block generation proportion of the computing power alliance compared with PoW,while simultaneously improving that of individual lightweight nodes.This indicates that PoTW is capable of suppressing the centralization of computing power to a certain degree.Moreover,as the levels of block generation difficulty in PoTW increase,its centralization suppression capability strengthens.展开更多
In this paper, a class of discontinuous neutral-type neural networks (NTNNs) with proportional delays is considered. The targets of the paper are to study the problem of periodic solutions and fixed-time (FXT) stabili...In this paper, a class of discontinuous neutral-type neural networks (NTNNs) with proportional delays is considered. The targets of the paper are to study the problem of periodic solutions and fixed-time (FXT) stabilization of the addressed neural networks. In order to complete the targets, based on set-valued map, differential inclusions theory, coincidence theorem and Hölder inequality technique, some new proportional delay-dependent criteria shown by the inequalities are derived. Based on the fact of the existence of solution, further by applying the FXT stability lemmas and equivalent transformation, the zero solution of closed-loop system achieves FXT stabilization and the corresponding settling-times are estimated. Some previous related works on NTNNs are extended. Finally, one typical example is provided to show the effectiveness of the established results.展开更多
Intelligent blockchain is an emerging field that integrates Artificial Intelligence(AI)techniques with blockchain networks,with a particular emphasis on improving the performance of blockchain,especially in cryptocurr...Intelligent blockchain is an emerging field that integrates Artificial Intelligence(AI)techniques with blockchain networks,with a particular emphasis on improving the performance of blockchain,especially in cryptocurrencies exchanges.Meanwhile,arbitrage bots are widely deployed and increasing in intelligent blockchain.These bots exploit the characteristics of cryptocurrencies exchanges to engage in frontrunning,generating substantial profits at the expense of ordinary users.In this paper,we address this issue by proposing a more efficient asynchronous Byzantine ordered consensus protocol,which can be used to prevent arbitrage bots from changing the order of the transactions for profits in intelligent blockchain-based cryptocurrencies.Specifically,we present two signal asynchronous common subset protocols,the more optimal one with only constant time complexity.We implement both our protocol and the optimal existing solution Chronos with Go language in the same environment.The experiment results indicate that our protocols achieve a threefold improvement over Chronos in consensus latency and nearly a tenfold increase in throughput.展开更多
Blockchain-based spectrum sharing with consensus is the key technology for sixth-generation mobile communication to realize dynamic spectrum management.In order to avoid the waste of computing and communication resour...Blockchain-based spectrum sharing with consensus is the key technology for sixth-generation mobile communication to realize dynamic spectrum management.In order to avoid the waste of computing and communication resources,a spectrum sharing policy-based consensus mechanism is proposed in this paper.Firstly,a spectrum sharing algorithm based on graph neural network is designed in the satelliteterrestrial spectrum sharing networks under the underlay model.It avoids high computational overhead of the traditional iterative optimization algorithm when the wireless channel condition and network topology are highly dynamic.Secondly,a consensus mechanism based on spectrum sharing strategy is designed,which converts the traditional meaningless hash problem into the graph neural network training.Miners compete for accounting rights by training a graph neutral network model that meets the spectrum sharing requirement.Finally,the consensus delay,communication and storage overhead of the proposed consensus mechanism are analyzed theoretically.The simulation results show that the proposed consensus mechanism can effectively improve spectrum efficiency with excellent scalability and generalization performance.展开更多
Continuous control protocols are extensively utilized in traditional MASs,in which information needs to be transmitted among agents consecutively,therefore resulting in excessive consumption of limited resources.To de...Continuous control protocols are extensively utilized in traditional MASs,in which information needs to be transmitted among agents consecutively,therefore resulting in excessive consumption of limited resources.To decrease the control cost,based on ISC,several LFC problems are investigated for second-order MASs without and with time delay,respectively.Firstly,an intermittent sampled controller is designed,and a sufficient and necessary condition is derived,under which state errors between the leader and all the followers approach zero asymptotically.Considering that time delay is inevitable,a new protocol is proposed to deal with the time-delay situation.The error system’s stability is analyzed using the Schur stability theorem,and sufficient and necessary conditions for LFC are obtained,which are closely associated with the coupling gain,the system parameters,and the network structure.Furthermore,for the case where the current position and velocity information are not available,a distributed protocol is designed that depends only on the sampled position information.The sufficient and necessary conditions for LFC are also given.The results show that second-order MASs can achieve the LFC if and only if the system parameters satisfy the inequalities proposed in the paper.Finally,the correctness of the obtained results is verified by numerical simulations.展开更多
基金National Natural Science Foundation of China(No.62073296)Natural Science Foundation of Zhejiang Province,China(No.LZ23F030010)Key Laboratory of Intelligent Manufacturing Quality Big Data Tracing and Analysis of Zhejiang Province,China Jiliang University(No.ZNZZSZ-CJLU2022-03)Rights and permissions。
文摘To address fixed-time consensus problems of a class of leader-follower second-order nonlinear multi-agent systems with uncertain external disturbances,the event-triggered fixed-time consensus protocol is proposed.First,the virtual velocity is designed based on the backstepping control method to achieve the system consensus and the bound on convergence time only depending on the system parameters.Second,an event-triggered mechanism is presented to solve the problem of frequent communication between agents,and triggered condition based on state information is given for each follower.It is available to save communication resources,and the Zeno behaviors are excluded.Then,the delay and switching topologies of the system are also discussed.Next,the system stabilization is analyzed by Lyapunov stability theory.Finally,simulation results demonstrate the validity of the presented method.
基金supported in part by the National Natural Science Foundation of China (62073108)the Zhejiang Provincial Natural Science Foundation(LZ23F030004)+1 种基金the Key Research and Development Project of Zhejiang Province (2019C04018)the Fundamental Research Funds for the Provincial Universities of Zhejiang (GK229909299001-004)。
文摘This article deals with the consensus problem of multi-agent systems by developing a fixed-time consensus control approach with a dynamic event-triggered rule. First, a new fixedtime stability condition is obtained where the less conservative settling time is given such that the theoretical settling time can well reflect the real consensus time. Second, a dynamic event-triggered rule is designed to decrease the use of chip and network resources where Zeno behaviors can be avoided after consensus is achieved, especially for finite/fixed-time consensus control approaches. Third, in terms of the developed dynamic event-triggered rule, a fixed-time consensus control approach by introducing a new item is proposed to coordinate the multi-agent system to reach consensus. The corresponding stability of the multi-agent system with the proposed control approach and dynamic eventtriggered rule is analyzed based on Lyapunov theory and the fixed-time stability theorem. At last, the effectiveness of the dynamic event-triggered fixed-time consensus control approach is verified by simulations and experiments for the problem of magnetic map construction based on multiple mobile robots.
基金Supported by the National Natural Science Foundation of China(11401577,11671011)
文摘We analyse the fixed-time consensus problem for multi-agent systems with leaderfollower mode. Based on a follower’s observation structure for the leader’s information, it is proved that the estimation errors can be converged to zero at a fixed time. From this stability and a sliding mode structure, we derive a control input of followers, which provides a critical support for fixed-time consensus. The simulation results demonstrate that this control approach does conduce to the implementation of the fixed-time synchronization.
基金supported by the National Natural Science Foundation of China(61673130).
文摘This paper investigates the sliding-mode-based fixed-time distributed average tracking (DAT) problem for multiple Euler-Lagrange systems in the presence of external distur-bances. The primary objective is to devise controllers for each agent, enabling them to precisely track the average of multiple time-varying reference signals. By averaging these signals, we can mitigate the influence of errors and uncertainties arising dur-ing measurements, thereby enhancing the robustness and stabi-lity of the system. A distributed fixed-time average estimator is proposed to estimate the average value of global reference sig-nals utilizing local information and communication with neigh-bors. Subsequently, a fixed-time sliding mode controller is intro-duced incorporating a state-dependent sliding mode function coupled with a variable exponent coefficient to achieve dis-tributed average tracking of reference signals, and rigorous ana-lytical methods are employed to substantiate the fixed-time sta-bility. Finally, numerical simulation results are provided to vali-date the effectiveness of the proposed methodology, offering insights into its practical application and robust performance.
基金supported by the National Defense Basic Scientific Research Project(JCKY2020130C025)the National Science and Technology Major Project(J2019-III-0020-0064,J2019-V-0014-0109)。
文摘In this paper,fixed-time consensus tracking for mul-tiagent systems(MASs)with dynamics in the form of strict feed-back affine nonlinearity is addressed.A fixed-time antidistur-bance consensus tracking protocol is proposed,which consists of a distributed fixed-time observer,a fixed-time disturbance observer,a nonsmooth antidisturbance backstepping controller,and the fixed-time stability analysis is conducted by using the Lyapunov theory correspondingly.This paper includes three main improvements.First,a distributed fixed-time observer is developed for each follower to obtain an estimate of the leader’s output by utilizing the topology of the communication network.Second,a fixed-time disturbance observer is given to estimate the lumped disturbances for feedforward compensation.Finally,a nonsmooth antidisturbance backstepping tracking controller with feedforward compensation for lumped disturbances is designed.In order to mitigate the“explosion of complexity”in the tradi-tional backstepping approach,we have implemented a modified nonsmooth command filter to enhance the performance of the closed-loop system.The simulation results show that the pro-posed method is effective.
文摘The Internet of Things(IoT)has gained substantial attention in both academic research and real-world applications.The proliferation of interconnected devices across various domains promises to deliver intelligent and advanced services.However,this rapid expansion also heightens the vulnerability of the IoT ecosystem to security threats.Consequently,innovative solutions capable of effectively mitigating risks while accommodating the unique constraints of IoT environments are urgently needed.Recently,the convergence of Blockchain technology and IoT has introduced a decentralized and robust framework for securing data and interactions,commonly referred to as the Internet of Blockchained Things(IoBT).Extensive research efforts have been devoted to adapting Blockchain technology to meet the specific requirements of IoT deployments.Within this context,consensus algorithms play a critical role in assessing the feasibility of integrating Blockchain into IoT ecosystems.The adoption of efficient and lightweight consensus mechanisms for block validation has become increasingly essential.This paper presents a comprehensive examination of lightweight,constraint-aware consensus algorithms tailored for IoBT.The study categorizes these consensus mechanisms based on their core operations,the security of the block validation process,the incorporation of AI techniques,and the specific applications they are designed to support.
基金supported by the National Medical Products Administration Commissioned Research Project (No.20211440216)the National Administration of Traditional Chinese Medicine Science and Technology Project (No.GZY-KJS-2024-03)+3 种基金the State Key Laboratory of Drug Regulatory Science Project (No.2023SKLDRS0104)the Basic Research Program Natural Science Fund-Frontier Leading Technology Basic Research Special Project of Jiangsu Province (No.BK20232014)the Programs Foundation for Leading Talents in National Administration of Traditional Chinese Medicine of China“Qihuang scholars”Projectthe Tianjin Administration for Market Regulation Science and Technology Key Projects (No.2022-W35)。
文摘The research and development of new traditional Chinese medicine(TCM)drugs have progressively established a novel system founded on the integration of TCM theory,human experience,and clinical trials(termed the“Three Combinations”).However,considering TCM's distinctive features of“syndrome differentiation and treatment”and“multicomponent formulations and complex mechanisms”,current TCM drug development faces challenges such as insufficient understanding of the material basis and the overall mechanism of action and an incomplete evidence chain system.Moreover,significant obstacles persist in gathering human experience data,evaluating clinical efficacy,and controlling the quality of active ingredients,which impede the innovation process in TCM drug development.Network pharmacology,centered on the“network targets”theory,transcends the limitations of the conventional“single target”reductionist research model.It emphasizes the comprehensive effects of disease or syndrome biological networks as targets to elucidate the overall regulatory mechanism of TCM prescriptions.This approach aligns with the holistic perspective of TCM,offering a novel method consistent with TCM's holistic view for investigating the complex mechanisms of TCM and developing new TCM drugs.It is internationally recognized as a“next-generation drug research model”.To advance the research of new tools,methods,and standards for TCM evaluation and to overcome fundamental,critical,and cutting-edge technical challenges in TCM regulation,this consensus aims to explore the characteristics,progress,challenges,applicable pathways,and specific applications of network pharmacology as a new theory,method,and tool in TCM drug development.The goal is to enhance the quality of TCM drug research and development and accelerate the efficiency of developing new TCM products.
基金supports by the National Natural Science Foundation of China(Nos.82201135)"2015"Cultivation Program for Reserve Talents for Academic Leaders of Nanjing Stomatological School,Medical School of Nanjing University(No.0223A204).
文摘Early correction of childhood malocclusion is timely managing morphological,structural,and functional abnormalities at different dentomaxillofacial developmental stages.The selection of appropriate imaging examination and comprehensive radiological diagnosis and analysis play an important role in early correction of childhood malocclusion.This expert consensus is a collaborative effort by multidisciplinary experts in dentistry across the nation based on the current clinical evidence,aiming to provide general guidance on appropriate imaging examination selection,comprehensive and accurate imaging assessment for early orthodontic treatment patients.
文摘This paper presents an investigation on the target-guided coordinated control(TACC)of unmanned surface vehicles(USVs).In the scenario of tracking non-cooperative targets,the status information of the target can only be obtained by some USVs.In order to achieve semi-encirclement tracking of noncooperative targets under maritime security conditions,a fixed-time tracking control method based on dynamic surface control(DSC)is proposed in this paper.Firstly,a novel TACC architecture with decoupled kinematic control law and decoupled kinetic control law was designed to reduce the complexity of control system design.Secondly,the proposed DSC-based target-guided kinematic control law including tracking points pre-allocation strategy and sigmoid artificial potential functions(SigAPFs)can avoid collisions during tracking process and optimize kinematic control output.Finally,a fixed-time TACC system was proposed to achieve fast convergence of kinematic and kinetics errors.The effectiveness of the proposed TACC approach in improving target tracking safety and reducing control output chattering was verified by simulation comparison results.
基金supported by the National Science and Technology Innovation 2030-Major Program(2022ZD 0115403)the National Natural Science Foundation of China(61991414)+1 种基金Chongqing Natural Science Foundation(CSTB2023NSCQJQX0018)Beijing Natural Science Foundation(L221005)
文摘Dear Editor,This letter studies output consensus problem of heterogeneous linear multiagent systems over directed graphs. A novel adaptive dynamic event-triggered controller is presented based only on the feedback combination of the agent's own state and neighbors' output,which can achieve exponential output consensus through intermittent communication. The controller is obtained by solving two linear matrix equations, and Zeno behavior is excluded.
基金Supported by the National Natural Science Foundation of China(62476082)。
文摘This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of FxTS is independent of the initial values and parameters of the CNs,a modified fixed-time(FxT)stability theorem is proposed,where the ST is determined by an arbitrary positive number given in advance.Then,continuous controller and discontinuous controller are designed to realize the modified FxTS target of CNs.In addition,based on the designed controllers,CNs can achieve synchronization at any given time,or even earlier.And control strategies effectively solve the problem of ST related to the parameters of CNs.Finally,an appropriate simulation example is conducted to examine the effectiveness of the designed control strategies.
基金supported by the National Natural Science Foundation of China(62325304,U22B2046,62073079,62376029)the Jiangsu Provincial Scientific Research Center of Applied Mathematics(BK20233002)the China Postdoctoral Science Foundation(2023M730255,2024T171123)
文摘Dear Editor,This letter studies the bipartite consensus tracking problem for heterogeneous multi-agent systems with actuator faults and a leader's unknown time-varying control input. To handle such a problem, the continuous fault-tolerant control protocol via observer design is developed. In addition, it is strictly proved that the multi-agent system driven by the designed controllers can still achieve bipartite consensus tracking after faults occur.
基金2024 Jiangsu Province Youth Science and Technology Talent Support Project2024 Yancheng Key Research and Development Plan(Social Development)projects,“Research and Application of Multi Agent Offline Distributed Trust Perception Virtual Wireless Sensor Network Algorithm”and“Research and Application of a New Type of Fishery Ship Safety Production Monitoring Equipment”。
文摘This paper mainly focuses on the velocity-constrained consensus problem of discrete-time heterogeneous multi-agent systems with nonconvex constraints and arbitrarily switching topologies,where each agent has first-order or second-order dynamics.To solve this problem,a distributed algorithm is proposed based on a contraction operator.By employing the properties of the stochastic matrix,it is shown that all agents’position states could converge to a common point and second-order agents’velocity states could remain in corresponding nonconvex constraint sets and converge to zero as long as the joint communication topology has one directed spanning tree.Finally,the numerical simulation results are provided to verify the effectiveness of the proposed algorithms.
基金supported by the National Natural Science Foundation of China(61903099)the Natural Science Foundation of Heilongjiang Province(LH2020F025)+2 种基金the Project of Science and Technology Research Program of Chongqing Education Commission of China(KJZD-K20200470)the Postdoctoral Science Foundation of China(2021M690812)the Postdoctoral Science Fund of Heilongjiang Province(LBH-Z21048).
文摘This paper presents a fixed-time cooperative gui-dance method with impact angle constraints for multiple flight vehicles (MFV) to address the challenges of intercepting large maneuvering targets with difficulty and low precision. A coopera-tive guidance model is proposed, transforming the cooperative interception problem into a consensus problem based on the remaining flight time of the flight vehicles. First, the impact angle constraint is converted into the line of sight (LOS) angle con-straint, and a new fixed-time convergent non-singular terminal sliding surface is introduced, which resolves the singularity issue of the traditional sliding surfaces. With this approach, LOS angle rate and normal overloads can converge in fixed time, ensuring that the upper bound of the system convergence time is not affected by the initial value of the system. Furthermore, the maneuvering movement of the target is considered as a system disturbance, and an extended state observer is employed to estimate and compensate for it in the guidance law. Lastly, by applying consensus theory and distributed communication topology, the remaining flight time of each flight vehicle is syn-chronized to ensure that they intercept the target simulta-neously with different impact angles. Simulation experiments are conducted to validate the effectiveness of the proposed cooper-ative interception and guidance method.
基金National Natural Science Foundation of China(No.12071370)。
文摘This paper focuses on the problem of leaderfollowing consensus for nonlinear cascaded multi-agent systems.The control strategies for these systems are transformed into successive control problem schemes for lower-order error subsystems.A distributed consensus analysis for the corresponding error systems is conducted by employing recursive methods and virtual controllers,accompanied by a series of Lyapunov functions devised throughout the iterative process,which solves the leaderfollowing consensus problem of a class of nonlinear cascaded multi-agent systems.Specific simulation examples illustrate the effectiveness of the proposed control algorithm.
基金supported in part by National Key R&D Program of China(Grant No.2021YFB1714100)in part by the National Natural Science Foundation of China(NSFC)under Grant 62371239+5 种基金in part by the the Program of Science and Technology Cooperation of Nanjing with International/Hong Kong,Macao and Taiwan(Grant No.202401019)in part by the Guangdong Basic and Applied Basic Research Foundation(Grant No.2024A1515012407)in part by the the Research Center for FinTech and Digital-Intelligent Management at Shenzhen University,in part by the National Natural Science Foundation of China under Grant 62271192in part by the Equipment Pre-Research Joint Research Program of Ministry of Education under Grant 8091B032129in part by the Major Science and Technology Projects of Longmen Laboratory under Grant 231100220300 and 231100220200in part by the Central Plains Leading Talent in Scientific and Technological Innovation Program under Grant 244200510048.
文摘Traditional Internet of Things(IoT)architectures that rely on centralized servers for data management and decision-making are vulnerable to security threats and privacy leakage.To address this issue,blockchain has been advocated for decentralized data management in a tamper-resistance,traceable,and transparent manner.However,a major issue that hinders the integration of blockchain and IoT lies in that,it is rather challenging for resource-constrained IoT devices to perform computation-intensive blockchain consensuses such as Proof-of-Work(PoW).Furthermore,the incentive mechanism of PoW pushes lightweight IoT nodes to aggregate their computing power to increase the possibility of successful block generation.Nevertheless,this eventually leads to the formation of computing power alliances,and significantly compromises the decentralization and security of BlockChain-aided IoT(BC-IoT)networks.To cope with these issues,we propose a lightweight consensus protocol for BC-IoT,called Proof-of-Trusted-Work(PoTW).The goal of the proposed consensus is to disincentivize the centralization of computing power and encourage the independent participation of lightweight IoT nodes in blockchain consensus.First,we put forth an on-chain reputation evaluation rule and a reputation chain for PoTW to enable the verifiability and traceability of nodes’reputations based on their contributions of computing power to the blockchain consensus,and we incorporate the multi-level block generation difficulty as a rewards for nodes to accumulate reputations.Second,we model the block generation process of PoTW and analyze the block throughput using the continuous time Markov chain.Additionally,we define and optimize the relative throughput gain to quantify and maximize the capability of PoTW that suppresses the computing power centralization(i.e.,centralization suppression).Furthermore,we investigate the impact of the computing power of the computing power alliance and the levels of block generation difficulty on the centralization suppression capability of PoTW.Finally,simulation results demonstrate the consistency of the analytical results in terms of block throughput.In particular,the results show that PoTW effectively reduces the block generation proportion of the computing power alliance compared with PoW,while simultaneously improving that of individual lightweight nodes.This indicates that PoTW is capable of suppressing the centralization of computing power to a certain degree.Moreover,as the levels of block generation difficulty in PoTW increase,its centralization suppression capability strengthens.
基金supported by Social Science Fund of Hunan province(Grant No.22JD074)the Research Foundation of Education Bureau of Hunan province(Grant No.22B0912).
文摘In this paper, a class of discontinuous neutral-type neural networks (NTNNs) with proportional delays is considered. The targets of the paper are to study the problem of periodic solutions and fixed-time (FXT) stabilization of the addressed neural networks. In order to complete the targets, based on set-valued map, differential inclusions theory, coincidence theorem and Hölder inequality technique, some new proportional delay-dependent criteria shown by the inequalities are derived. Based on the fact of the existence of solution, further by applying the FXT stability lemmas and equivalent transformation, the zero solution of closed-loop system achieves FXT stabilization and the corresponding settling-times are estimated. Some previous related works on NTNNs are extended. Finally, one typical example is provided to show the effectiveness of the established results.
基金supported by the National Key R&D Program of China under Grant(2022YFB2702702)in part by the National Natural Science Foundation of China under Grants(62372020,72031001)+1 种基金in part by the Beijing Natural Science Foundation under Grants(L222050)in part by the Fundamental Research Funds for the Central Universities under Grant(YWF-23-L-1032).
文摘Intelligent blockchain is an emerging field that integrates Artificial Intelligence(AI)techniques with blockchain networks,with a particular emphasis on improving the performance of blockchain,especially in cryptocurrencies exchanges.Meanwhile,arbitrage bots are widely deployed and increasing in intelligent blockchain.These bots exploit the characteristics of cryptocurrencies exchanges to engage in frontrunning,generating substantial profits at the expense of ordinary users.In this paper,we address this issue by proposing a more efficient asynchronous Byzantine ordered consensus protocol,which can be used to prevent arbitrage bots from changing the order of the transactions for profits in intelligent blockchain-based cryptocurrencies.Specifically,we present two signal asynchronous common subset protocols,the more optimal one with only constant time complexity.We implement both our protocol and the optimal existing solution Chronos with Go language in the same environment.The experiment results indicate that our protocols achieve a threefold improvement over Chronos in consensus latency and nearly a tenfold increase in throughput.
基金supported in part by the National Natural Science Foundation of China under Grant 62171020.
文摘Blockchain-based spectrum sharing with consensus is the key technology for sixth-generation mobile communication to realize dynamic spectrum management.In order to avoid the waste of computing and communication resources,a spectrum sharing policy-based consensus mechanism is proposed in this paper.Firstly,a spectrum sharing algorithm based on graph neural network is designed in the satelliteterrestrial spectrum sharing networks under the underlay model.It avoids high computational overhead of the traditional iterative optimization algorithm when the wireless channel condition and network topology are highly dynamic.Secondly,a consensus mechanism based on spectrum sharing strategy is designed,which converts the traditional meaningless hash problem into the graph neural network training.Miners compete for accounting rights by training a graph neutral network model that meets the spectrum sharing requirement.Finally,the consensus delay,communication and storage overhead of the proposed consensus mechanism are analyzed theoretically.The simulation results show that the proposed consensus mechanism can effectively improve spectrum efficiency with excellent scalability and generalization performance.
基金supported by the National Natural Science Foundation of China under Grants 62476138 and 42375016.
文摘Continuous control protocols are extensively utilized in traditional MASs,in which information needs to be transmitted among agents consecutively,therefore resulting in excessive consumption of limited resources.To decrease the control cost,based on ISC,several LFC problems are investigated for second-order MASs without and with time delay,respectively.Firstly,an intermittent sampled controller is designed,and a sufficient and necessary condition is derived,under which state errors between the leader and all the followers approach zero asymptotically.Considering that time delay is inevitable,a new protocol is proposed to deal with the time-delay situation.The error system’s stability is analyzed using the Schur stability theorem,and sufficient and necessary conditions for LFC are obtained,which are closely associated with the coupling gain,the system parameters,and the network structure.Furthermore,for the case where the current position and velocity information are not available,a distributed protocol is designed that depends only on the sampled position information.The sufficient and necessary conditions for LFC are also given.The results show that second-order MASs can achieve the LFC if and only if the system parameters satisfy the inequalities proposed in the paper.Finally,the correctness of the obtained results is verified by numerical simulations.