The minimax path location problem is to find a path P in a graph G such that the maximum distance d_(G)(v,P)from every vertex v∈V(G)to the path P is minimized.It is a well-known NP-hard problem in network optimizatio...The minimax path location problem is to find a path P in a graph G such that the maximum distance d_(G)(v,P)from every vertex v∈V(G)to the path P is minimized.It is a well-known NP-hard problem in network optimization.This paper studies the fixed-parameter solvability,that is,for a given graph G and an integer k,to decide whether there exists a path P in G such that max v∈V(G)d_(G)(v,P)≤k.If the answer is affirmative,then graph G is called k-path-eccentric.We show that this decision problem is NP-complete even for k=1.On the other hand,we characterize the family of 1-path-eccentric graphs,including the traceable,interval,split,permutation graphs and others.Furthermore,some polynomially solvable special graphs are discussed.展开更多
Kernelization algorithms for graph modification problems are important ingredients in parameterized computation theory. In this paper, we survey the kernelization algorithms for four types of graph modification proble...Kernelization algorithms for graph modification problems are important ingredients in parameterized computation theory. In this paper, we survey the kernelization algorithms for four types of graph modification problems, which include vertex deletion problems, edge editing problems, edge deletion problems, and edge completion problems. For each type of problem, we outline typical examples together with recent results, analyze the main techniques, and provide some suggestions for future research in this field.展开更多
Computational Social Choice is an interdisciplinary research area involving Economics, Political Science,and Social Science on the one side, and Mathematics and Computer Science(including Artificial Intelligence and ...Computational Social Choice is an interdisciplinary research area involving Economics, Political Science,and Social Science on the one side, and Mathematics and Computer Science(including Artificial Intelligence and Multiagent Systems) on the other side. Typical computational problems studied in this field include the vulnerability of voting procedures against attacks, or preference aggregation in multi-agent systems. Parameterized Algorithmics is a subfield of Theoretical Computer Science seeking to exploit meaningful problem-specific parameters in order to identify tractable special cases of in general computationally hard problems. In this paper, we propose nine of our favorite research challenges concerning the parameterized complexity of problems appearing in this context. This work is dedicated to Jianer Chen, one of the strongest problem solvers in the history of parameterized algorithmics,on the occasion of his 60 th birthday.展开更多
Phylogenetic trees have been widely used in the study of evolutionary biology for representing the tree-like evolution of a collection of species. However, different data sets and different methods often lead to the c...Phylogenetic trees have been widely used in the study of evolutionary biology for representing the tree-like evolution of a collection of species. However, different data sets and different methods often lead to the construction of different phylogenetic trees for the same set of species. Therefore, comparing these trees to determine similarities or, equivalently, dissimilarities, becomes the fundamental issue. Typically, Tree Bisection and Reconnection(TBR)and Subtree Prune and Regraft(SPR) distances have been proposed to facilitate the comparison between different phylogenetic trees. In this paper, we give a survey on the aspects of computational complexity, fixed-parameter algorithms, and approximation algorithms for computing the TBR and SPR distances of phylogenetic trees.展开更多
文摘The minimax path location problem is to find a path P in a graph G such that the maximum distance d_(G)(v,P)from every vertex v∈V(G)to the path P is minimized.It is a well-known NP-hard problem in network optimization.This paper studies the fixed-parameter solvability,that is,for a given graph G and an integer k,to decide whether there exists a path P in G such that max v∈V(G)d_(G)(v,P)≤k.If the answer is affirmative,then graph G is called k-path-eccentric.We show that this decision problem is NP-complete even for k=1.On the other hand,we characterize the family of 1-path-eccentric graphs,including the traceable,interval,split,permutation graphs and others.Furthermore,some polynomially solvable special graphs are discussed.
基金supported by the National Natural Science Foundation of China (Nos. 61070224, 61232001, and 61173051)the China Postdoctoral Science Foundation (No. 2012M521551)
文摘Kernelization algorithms for graph modification problems are important ingredients in parameterized computation theory. In this paper, we survey the kernelization algorithms for four types of graph modification problems, which include vertex deletion problems, edge editing problems, edge deletion problems, and edge completion problems. For each type of problem, we outline typical examples together with recent results, analyze the main techniques, and provide some suggestions for future research in this field.
基金supported by the Deutsche Forschungsgemeinschaft, project PAWS (NI 369/10)supported by the Studienstiftung des Deutschen Volkes+2 种基金supported by DFG "Cluster of Excellence Multimodal Computing and Interaction"supported by DIAMANT (a mathematics cluster of the Netherlands Organization for Scientific Research NWO)the Alexander von Humboldt Foundation, Bonn, Germany
文摘Computational Social Choice is an interdisciplinary research area involving Economics, Political Science,and Social Science on the one side, and Mathematics and Computer Science(including Artificial Intelligence and Multiagent Systems) on the other side. Typical computational problems studied in this field include the vulnerability of voting procedures against attacks, or preference aggregation in multi-agent systems. Parameterized Algorithmics is a subfield of Theoretical Computer Science seeking to exploit meaningful problem-specific parameters in order to identify tractable special cases of in general computationally hard problems. In this paper, we propose nine of our favorite research challenges concerning the parameterized complexity of problems appearing in this context. This work is dedicated to Jianer Chen, one of the strongest problem solvers in the history of parameterized algorithmics,on the occasion of his 60 th birthday.
基金supported by the National Natural Science Foundation of China (Nos.61103033,61173051, 61232001,and 70921001)
文摘Phylogenetic trees have been widely used in the study of evolutionary biology for representing the tree-like evolution of a collection of species. However, different data sets and different methods often lead to the construction of different phylogenetic trees for the same set of species. Therefore, comparing these trees to determine similarities or, equivalently, dissimilarities, becomes the fundamental issue. Typically, Tree Bisection and Reconnection(TBR)and Subtree Prune and Regraft(SPR) distances have been proposed to facilitate the comparison between different phylogenetic trees. In this paper, we give a survey on the aspects of computational complexity, fixed-parameter algorithms, and approximation algorithms for computing the TBR and SPR distances of phylogenetic trees.