Ice particles could form under the continuous impingement of incoming supercooled droplets in icing conditions,which will change the surface roughness to enhance the further heat and mass transfer during icing process...Ice particles could form under the continuous impingement of incoming supercooled droplets in icing conditions,which will change the surface roughness to enhance the further heat and mass transfer during icing process.A fixed-grid porous enthalpy method based on the improved Discrete Phase Model(DPM)and Volume of Fluid(VOF)integrated algorithm is developed to solve the multiphase heat transfer problem to give more detailed demonstration of the formation of initial ice roughness.The algorithms to determine the criterion of transformation from DPM to VOF and the allocation of source items during transformation are improved to the general DPM-VOF algorithm.Two verification cases,namely two glycerine-solution droplets impact and single droplet freeze,are conducted to verify the accuracy and reliability of the enthalpy-DPMVOF method,where the simulation results match well with experiment phenomena.Ice roughness on a NACA0012 airfoil is precisely captured and the effects on convective heat transfer characteristics are preliminarily revealed.The results illustrate that the enthalpy-DPM-VOF method could successfully capture the characteristics of motion and the phase change process of droplet,as well as balance the calculation accuracy and efficiency.展开更多
基金supported by the National Natural Science Foundation of China(No.51706244)National Science and Technology Major Projects of China(No.2017-VIII-0003-0114)。
文摘Ice particles could form under the continuous impingement of incoming supercooled droplets in icing conditions,which will change the surface roughness to enhance the further heat and mass transfer during icing process.A fixed-grid porous enthalpy method based on the improved Discrete Phase Model(DPM)and Volume of Fluid(VOF)integrated algorithm is developed to solve the multiphase heat transfer problem to give more detailed demonstration of the formation of initial ice roughness.The algorithms to determine the criterion of transformation from DPM to VOF and the allocation of source items during transformation are improved to the general DPM-VOF algorithm.Two verification cases,namely two glycerine-solution droplets impact and single droplet freeze,are conducted to verify the accuracy and reliability of the enthalpy-DPMVOF method,where the simulation results match well with experiment phenomena.Ice roughness on a NACA0012 airfoil is precisely captured and the effects on convective heat transfer characteristics are preliminarily revealed.The results illustrate that the enthalpy-DPM-VOF method could successfully capture the characteristics of motion and the phase change process of droplet,as well as balance the calculation accuracy and efficiency.