Junior English for China’ is based on the ’Five-Step’ teachingmethod: Revision, Presentation, Drilling, Practice, Consolidation. Each step has itsown particular methodology and requires the teacher to adopt a certa...Junior English for China’ is based on the ’Five-Step’ teachingmethod: Revision, Presentation, Drilling, Practice, Consolidation. Each step has itsown particular methodology and requires the teacher to adopt a certain role. Thispaper is a discussion of the "Five-Step Method".展开更多
The construction of the double-lane five-step ship lock of the Three Gorges Project (TGP) wascommenced in 1994, the excavation of the ship lock was completed by the end of 1999, and the ship lockwas put in operation...The construction of the double-lane five-step ship lock of the Three Gorges Project (TGP) wascommenced in 1994, the excavation of the ship lock was completed by the end of 1999, and the ship lockwas put in operation in June 2003. The side slopes of the ship lock are characterized by great height(170 m), steepness (70 m in height of upright slope), and great length (over 7000 m in total length). Inassociation with the ship lock, the surrounding rocks in slope have a high potential to deform, withwhich the magnitude of deformation is restricted. Monitoring results show that the deformation of thefive-step ship lock high slopes of the TGP primarily occurred in excavation period, and deformationtended to be stable and convergent during operation period, suggesting the allowable ranges of deformation.At present, the slopes and lock chambers are stable, and the ship lock works well under normaloperation condition, enabling the social and economic benefits of the TGP. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
<span style="font-family:Verdana;"> <p class="MsoNormal"> <span lang="EN-US" style="" color:black;"="">Recently, the life of worldwide human bei...<span style="font-family:Verdana;"> <p class="MsoNormal"> <span lang="EN-US" style="" color:black;"="">Recently, the life of worldwide human beings has been endangering by the spreading of </span><span style="font-variant-ligatures:normal;font-variant-caps:normal;orphans:2;text-align:start;widows:2;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;word-spacing:0px;">pneu</span><span style="font-variant-ligatures:normal;font-variant-caps:normal;orphans:2;text-align:start;widows:2;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;word-spacing:0px;">- </span><span style="font-variant-ligatures:normal;font-variant-caps:normal;orphans:2;text-align:start;widows:2;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;word-spacing:0px;">monia</span><span style="font-variant-ligatures:normal;font-variant-caps:normal;orphans:2;text-align:start;widows:2;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;word-spacing:0px;">-</span><span style="font-variant-ligatures:normal;font-variant-caps:normal;orphans:2;text-align:start;widows:2;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;word-spacing:0px;">causing virus, such as Coronavirus, COVID-19, and H1N1. To develop effective </span><span style="font-variant-ligatures:normal;font-variant-caps:normal;orphans:2;text-align:start;widows:2;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;word-spacing:0px;">drugs against Coronavirus, knowledge of protein subcellular localization is prerequisite. In 2019, a predictor called “pLoc_bal-mEuk” was developed for identifying the subcellular localization of eukaryotic proteins. Its predicted results are significantly better than its counterparts, particularly for those proteins that may simultaneously occur or move between two or more subcellular location sites. However, more efforts are definitely needed to further improve its power since pLoc_bal-mEuk was still not trained by a “deep learning”, a very powerful technique developed recently. The present study was devoted to incorporating the “deep</span><span style="font-variant-ligatures:normal;font-variant-caps:normal;orphans:2;text-align:start;widows:2;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;word-spacing:0px;">- </span><span style="font-variant-ligatures:normal;font-variant-caps:normal;orphans:2;text-align:start;widows:2;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;word-spacing:0px;">learning” technique and develop</span><span style="font-variant-ligatures:normal;font-variant-caps:normal;orphans:2;text-align:start;widows:2;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;word-spacing:0px;">ed</span><span style="font-variant-ligatures:normal;font-variant-caps:normal;orphans:2;text-align:start;widows:2;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;word-spacing:0px;"> a new predictor called “pLoc_Deep-mEuk”. The global absolute true rate achieved by the new predictor is over 81% and its local accuracy is over 90%. Both are overwhelmingly superior to its counterparts. Moreover, a user-friendly web-</span><span style="font-variant-ligatures:normal;font-variant-caps:normal;orphans:2;text-align:start;widows:2;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;word-spacing:0px;"> </span><span style="font-variant-ligatures:normal;font-variant-caps:normal;orphans:2;text-align:start;widows:2;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;word-spacing:0px;">server for the new predictor has been well established at <a href="http://www.jci-bioinfo.cn/pLoc_Deep-mEuk/">http://www.jci-bioinfo.cn/pLoc_Deep-mEuk/</a>, by which the majority of experimental scientists can easily get their desired data.</span> </p> </span>展开更多
<p class="MsoNormal"> <span lang="EN-US" style="" color:black;"="">The recent worldwide spreading of pneumonia-causing virus, such as Coronavirus, </span>...<p class="MsoNormal"> <span lang="EN-US" style="" color:black;"="">The recent worldwide spreading of pneumonia-causing virus, such as Coronavirus, </span><span "="" style="font-variant-ligatures:normal;font-variant-caps:normal;orphans:2;text-align:start;widows:2;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;word-spacing:0px;">COVID-19, and H1N1, has been endangering the life of human beings all around the world. In order to really understand the biological process within a cell level and provide useful clues to develop antiviral drugs, information of virus protein subcellular localization is vitally important. In view of this, a CNN based virus protein subcellular localization predictor called “pLoc_Deep-mVirus” was developed. The predictor is particularly useful in dealing with the multi-sites systems in which some proteins may simultaneously occur in two or more different organelles that are the current focus of pharmaceutical industry. The global absolute true rate achieved by the new predictor is over 97% and its local accuracy is over 98%. Both are transcending other existing state-of-the-art predictors significantly. It has not escaped our notice that the deep-learning treatment can be used to deal with many other biological systems as well. To maximize the convenience for most experimental scientists, a user-friendly web-server for the new predictor has been established at <a href="http://www.jci-bioinfo.cn/pLoc_Deep-mVirus/">http://www.jci-bioinfo.cn/pLoc_Deep-mVirus/</a>.</span> </p>展开更多
Recently, the life of human beings around the entire world has been endangering by the spreading of pneumonia-causing virus, such as Coronavirus, COVID-19, and H1N1. To develop effective drugs against Coronavirus, kno...Recently, the life of human beings around the entire world has been endangering by the spreading of pneumonia-causing virus, such as Coronavirus, COVID-19, and H1N1. To develop effective drugs against Coronavirus, knowledge of protein subcellular localization is indispensable. In 2019, a predictor called “pLoc_bal-mHum” was developed for identifying the subcellular localization of human proteins. Its predicted results are significantly better than its counterparts, particularly for those proteins that may simultaneously occur or move between two or more subcellular location sites. However, more efforts are definitely needed to further improve its power since pLoc_bal-mHum was still not trained by a “deep learning”, a very powerful technique developed recently. The present study was devoted to incorporate the “deep-learning” technique and develop a new predictor called “pLoc_Deep-mHum”. The global absolute true rate achieved by the new predictor is over 81% and its local accuracy is over 90%. Both are overwhelmingly superior to its counterparts. Moreover, a user-friendly web-server for the new predictor has been well established at http://www.jci-bioinfo.cn/pLoc_Deep-mHum/, which will become a very useful tool for fighting pandemic coronavirus and save the mankind of this planet.展开更多
Current coronavirus pandemic has endangered mankind life. The reported cases are increasing exponentially. Information of plant protein subcellular localization can provide useful clues to develop antiviral drugs. To ...Current coronavirus pandemic has endangered mankind life. The reported cases are increasing exponentially. Information of plant protein subcellular localization can provide useful clues to develop antiviral drugs. To cope with such a catastrophe, a CNN based plant protein subcellular localization predictor called “pLoc_Deep-mPlant” was developed. The predictor is particularly useful in dealing with the multi-sites systems in which some proteins may simultaneously occur in two or more different organelles that are the current focus of pharmaceutical industry. The global absolute true rate achieved by the new predictor is over 95% and its local accuracy is about 90%?-?100%. Both have substantially exceeded the?other existing state-of-the-art predictors. To maximize the convenience for most?experimental scientists, a user-friendly web-server for the new predictor has been established?at?http://www.jci-bioinfo.cn/pLoc_Deep-mPlant/, by which the majority of experimental?scientists can easily obtain their desired data without the need to go through the?mathematical details.展开更多
The recent worldwide spreading of pneumonia-causing virus, such as Coronavirus, COVID-19, and H1N1, has been endangering the life of human beings all around the world. In order to really understand the biological proc...The recent worldwide spreading of pneumonia-causing virus, such as Coronavirus, COVID-19, and H1N1, has been endangering the life of human beings all around the world. In order to really understand the biological process within a cell level and provide useful clues to develop antiviral drugs, information of Gram negative bacterial protein subcellular localization is vitally important. In view of this, a CNN based protein subcellular localization predictor called “pLoc_Deep-mGnet” was developed. The predictor is particularly useful in dealing with the multi-sites systems in which some proteins may simultaneously occur in two or more different organelles that are the current focus of pharmaceutical industry. The global absolute true rate achieved by the new predictor is over 98% and its local accuracy is around 94% - 100%. Both are transcending other existing state-of-the-art predictors significantly. To maximize the convenience for most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/pLoc_Deep-mGneg/, which will become a very useful tool for fighting pandemic coronavirus and save the mankind of this planet.展开更多
Recently, a very useful method called “pLoc_Deep-mHum” has been proposed for finding against the Pandemic COVID-19. Illustrated in this short report is a step-by-step guide for how to use its web-server.
The recent worldwide spreading of pneumonia-causing virus, such as Coronavirus, COVID-19, and H1N1, has been endangering the life of human beings all around the world. In order to really understand the biological proc...The recent worldwide spreading of pneumonia-causing virus, such as Coronavirus, COVID-19, and H1N1, has been endangering the life of human beings all around the world. In order to really understand the biological process within a cell level and provide useful clues to develop antiviral drugs, information of Gram positive bacteria protein subcellular localization is vitally important. In view of this, a CNN based protein subcellular localization predictor called “pLoc_Deep-mGpos” was developed. The predictor is particularly useful in dealing with the multi-sites systems in which some proteins may simultaneously occur in two or more different organelles that are the current focus of pharmaceutical industry. The global absolute true rate achieved by the new predictor is over 99% and its local accuracy is around 92% - 99%. Both are transcending other existing state-of-the-art predictors significantly. To maximize the convenience for most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/pLoc_Deep-mGpos/, which will become a very powerful tool for developing effective drugs to fight pandemic coronavirus and save the mankind of this planet.展开更多
The recent worldwide spreading of pneumonia-causing virus, such as Coronavirus, COVID-19, and H1N1, has been endangering the life of human beings all around the world. To provide useful clues for developing antiviral ...The recent worldwide spreading of pneumonia-causing virus, such as Coronavirus, COVID-19, and H1N1, has been endangering the life of human beings all around the world. To provide useful clues for developing antiviral drugs, information of anatomical therapeutic chemicals is vitally important. In view of this, a CNN based predictor called “iATC_Deep-mISF” has been developed. The predictor is particularly useful in dealing with the multi-label systems in which some chemicals may occur in two or more different classes. To maximize the convenience for most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/iATC_Deep-mISF/, which will become a very powerful tool for developing effective drugs to fight pandemic coronavirus and save the mankind of this planet.展开更多
Recently, a very useful method called “pLoc_Deep-mEuk” has been proposed for finding against the Pandemic COVID-19. Illustrated in this short report is a step-by-step guide for how to use its web-server.
The general design and layout of the double-line five-step ship-lock,the water delivery technique for high head ship-lock,the key technical problems of fully lined ship-lock and the monitoring techniques for large-sca...The general design and layout of the double-line five-step ship-lock,the water delivery technique for high head ship-lock,the key technical problems of fully lined ship-lock and the monitoring techniques for large-scale miter gates and hoisting equipment under complicated operation conditions of Three Gorges Project (TGP) are introduced.Since the operation of ship-lock in 2003,the operation practice has proved that the design techniques are advanced,rational and reliable.The design and construction of the fully lined ship-lock promotes the development of design theory and practice of ship-lock projects,which makes the construction technology of ship-lock in the world reach a new level.展开更多
Besides the legislative and administrative efforts made by China to tackle food safety issues, a raft of measures is being introduced to punish errant producers and enforce stricter
文摘Junior English for China’ is based on the ’Five-Step’ teachingmethod: Revision, Presentation, Drilling, Practice, Consolidation. Each step has itsown particular methodology and requires the teacher to adopt a certain role. Thispaper is a discussion of the "Five-Step Method".
文摘The construction of the double-lane five-step ship lock of the Three Gorges Project (TGP) wascommenced in 1994, the excavation of the ship lock was completed by the end of 1999, and the ship lockwas put in operation in June 2003. The side slopes of the ship lock are characterized by great height(170 m), steepness (70 m in height of upright slope), and great length (over 7000 m in total length). Inassociation with the ship lock, the surrounding rocks in slope have a high potential to deform, withwhich the magnitude of deformation is restricted. Monitoring results show that the deformation of thefive-step ship lock high slopes of the TGP primarily occurred in excavation period, and deformationtended to be stable and convergent during operation period, suggesting the allowable ranges of deformation.At present, the slopes and lock chambers are stable, and the ship lock works well under normaloperation condition, enabling the social and economic benefits of the TGP. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
文摘<span style="font-family:Verdana;"> <p class="MsoNormal"> <span lang="EN-US" style="" color:black;"="">Recently, the life of worldwide human beings has been endangering by the spreading of </span><span style="font-variant-ligatures:normal;font-variant-caps:normal;orphans:2;text-align:start;widows:2;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;word-spacing:0px;">pneu</span><span style="font-variant-ligatures:normal;font-variant-caps:normal;orphans:2;text-align:start;widows:2;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;word-spacing:0px;">- </span><span style="font-variant-ligatures:normal;font-variant-caps:normal;orphans:2;text-align:start;widows:2;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;word-spacing:0px;">monia</span><span style="font-variant-ligatures:normal;font-variant-caps:normal;orphans:2;text-align:start;widows:2;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;word-spacing:0px;">-</span><span style="font-variant-ligatures:normal;font-variant-caps:normal;orphans:2;text-align:start;widows:2;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;word-spacing:0px;">causing virus, such as Coronavirus, COVID-19, and H1N1. To develop effective </span><span style="font-variant-ligatures:normal;font-variant-caps:normal;orphans:2;text-align:start;widows:2;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;word-spacing:0px;">drugs against Coronavirus, knowledge of protein subcellular localization is prerequisite. In 2019, a predictor called “pLoc_bal-mEuk” was developed for identifying the subcellular localization of eukaryotic proteins. Its predicted results are significantly better than its counterparts, particularly for those proteins that may simultaneously occur or move between two or more subcellular location sites. However, more efforts are definitely needed to further improve its power since pLoc_bal-mEuk was still not trained by a “deep learning”, a very powerful technique developed recently. The present study was devoted to incorporating the “deep</span><span style="font-variant-ligatures:normal;font-variant-caps:normal;orphans:2;text-align:start;widows:2;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;word-spacing:0px;">- </span><span style="font-variant-ligatures:normal;font-variant-caps:normal;orphans:2;text-align:start;widows:2;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;word-spacing:0px;">learning” technique and develop</span><span style="font-variant-ligatures:normal;font-variant-caps:normal;orphans:2;text-align:start;widows:2;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;word-spacing:0px;">ed</span><span style="font-variant-ligatures:normal;font-variant-caps:normal;orphans:2;text-align:start;widows:2;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;word-spacing:0px;"> a new predictor called “pLoc_Deep-mEuk”. The global absolute true rate achieved by the new predictor is over 81% and its local accuracy is over 90%. Both are overwhelmingly superior to its counterparts. Moreover, a user-friendly web-</span><span style="font-variant-ligatures:normal;font-variant-caps:normal;orphans:2;text-align:start;widows:2;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;word-spacing:0px;"> </span><span style="font-variant-ligatures:normal;font-variant-caps:normal;orphans:2;text-align:start;widows:2;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;word-spacing:0px;">server for the new predictor has been well established at <a href="http://www.jci-bioinfo.cn/pLoc_Deep-mEuk/">http://www.jci-bioinfo.cn/pLoc_Deep-mEuk/</a>, by which the majority of experimental scientists can easily get their desired data.</span> </p> </span>
文摘<p class="MsoNormal"> <span lang="EN-US" style="" color:black;"="">The recent worldwide spreading of pneumonia-causing virus, such as Coronavirus, </span><span "="" style="font-variant-ligatures:normal;font-variant-caps:normal;orphans:2;text-align:start;widows:2;-webkit-text-stroke-width:0px;text-decoration-style:initial;text-decoration-color:initial;word-spacing:0px;">COVID-19, and H1N1, has been endangering the life of human beings all around the world. In order to really understand the biological process within a cell level and provide useful clues to develop antiviral drugs, information of virus protein subcellular localization is vitally important. In view of this, a CNN based virus protein subcellular localization predictor called “pLoc_Deep-mVirus” was developed. The predictor is particularly useful in dealing with the multi-sites systems in which some proteins may simultaneously occur in two or more different organelles that are the current focus of pharmaceutical industry. The global absolute true rate achieved by the new predictor is over 97% and its local accuracy is over 98%. Both are transcending other existing state-of-the-art predictors significantly. It has not escaped our notice that the deep-learning treatment can be used to deal with many other biological systems as well. To maximize the convenience for most experimental scientists, a user-friendly web-server for the new predictor has been established at <a href="http://www.jci-bioinfo.cn/pLoc_Deep-mVirus/">http://www.jci-bioinfo.cn/pLoc_Deep-mVirus/</a>.</span> </p>
文摘Recently, the life of human beings around the entire world has been endangering by the spreading of pneumonia-causing virus, such as Coronavirus, COVID-19, and H1N1. To develop effective drugs against Coronavirus, knowledge of protein subcellular localization is indispensable. In 2019, a predictor called “pLoc_bal-mHum” was developed for identifying the subcellular localization of human proteins. Its predicted results are significantly better than its counterparts, particularly for those proteins that may simultaneously occur or move between two or more subcellular location sites. However, more efforts are definitely needed to further improve its power since pLoc_bal-mHum was still not trained by a “deep learning”, a very powerful technique developed recently. The present study was devoted to incorporate the “deep-learning” technique and develop a new predictor called “pLoc_Deep-mHum”. The global absolute true rate achieved by the new predictor is over 81% and its local accuracy is over 90%. Both are overwhelmingly superior to its counterparts. Moreover, a user-friendly web-server for the new predictor has been well established at http://www.jci-bioinfo.cn/pLoc_Deep-mHum/, which will become a very useful tool for fighting pandemic coronavirus and save the mankind of this planet.
文摘Current coronavirus pandemic has endangered mankind life. The reported cases are increasing exponentially. Information of plant protein subcellular localization can provide useful clues to develop antiviral drugs. To cope with such a catastrophe, a CNN based plant protein subcellular localization predictor called “pLoc_Deep-mPlant” was developed. The predictor is particularly useful in dealing with the multi-sites systems in which some proteins may simultaneously occur in two or more different organelles that are the current focus of pharmaceutical industry. The global absolute true rate achieved by the new predictor is over 95% and its local accuracy is about 90%?-?100%. Both have substantially exceeded the?other existing state-of-the-art predictors. To maximize the convenience for most?experimental scientists, a user-friendly web-server for the new predictor has been established?at?http://www.jci-bioinfo.cn/pLoc_Deep-mPlant/, by which the majority of experimental?scientists can easily obtain their desired data without the need to go through the?mathematical details.
文摘The recent worldwide spreading of pneumonia-causing virus, such as Coronavirus, COVID-19, and H1N1, has been endangering the life of human beings all around the world. In order to really understand the biological process within a cell level and provide useful clues to develop antiviral drugs, information of Gram negative bacterial protein subcellular localization is vitally important. In view of this, a CNN based protein subcellular localization predictor called “pLoc_Deep-mGnet” was developed. The predictor is particularly useful in dealing with the multi-sites systems in which some proteins may simultaneously occur in two or more different organelles that are the current focus of pharmaceutical industry. The global absolute true rate achieved by the new predictor is over 98% and its local accuracy is around 94% - 100%. Both are transcending other existing state-of-the-art predictors significantly. To maximize the convenience for most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/pLoc_Deep-mGneg/, which will become a very useful tool for fighting pandemic coronavirus and save the mankind of this planet.
文摘Recently, a very useful method called “pLoc_Deep-mHum” has been proposed for finding against the Pandemic COVID-19. Illustrated in this short report is a step-by-step guide for how to use its web-server.
文摘The recent worldwide spreading of pneumonia-causing virus, such as Coronavirus, COVID-19, and H1N1, has been endangering the life of human beings all around the world. In order to really understand the biological process within a cell level and provide useful clues to develop antiviral drugs, information of Gram positive bacteria protein subcellular localization is vitally important. In view of this, a CNN based protein subcellular localization predictor called “pLoc_Deep-mGpos” was developed. The predictor is particularly useful in dealing with the multi-sites systems in which some proteins may simultaneously occur in two or more different organelles that are the current focus of pharmaceutical industry. The global absolute true rate achieved by the new predictor is over 99% and its local accuracy is around 92% - 99%. Both are transcending other existing state-of-the-art predictors significantly. To maximize the convenience for most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/pLoc_Deep-mGpos/, which will become a very powerful tool for developing effective drugs to fight pandemic coronavirus and save the mankind of this planet.
文摘The recent worldwide spreading of pneumonia-causing virus, such as Coronavirus, COVID-19, and H1N1, has been endangering the life of human beings all around the world. To provide useful clues for developing antiviral drugs, information of anatomical therapeutic chemicals is vitally important. In view of this, a CNN based predictor called “iATC_Deep-mISF” has been developed. The predictor is particularly useful in dealing with the multi-label systems in which some chemicals may occur in two or more different classes. To maximize the convenience for most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/iATC_Deep-mISF/, which will become a very powerful tool for developing effective drugs to fight pandemic coronavirus and save the mankind of this planet.
文摘Recently, a very useful method called “pLoc_Deep-mEuk” has been proposed for finding against the Pandemic COVID-19. Illustrated in this short report is a step-by-step guide for how to use its web-server.
文摘The general design and layout of the double-line five-step ship-lock,the water delivery technique for high head ship-lock,the key technical problems of fully lined ship-lock and the monitoring techniques for large-scale miter gates and hoisting equipment under complicated operation conditions of Three Gorges Project (TGP) are introduced.Since the operation of ship-lock in 2003,the operation practice has proved that the design techniques are advanced,rational and reliable.The design and construction of the fully lined ship-lock promotes the development of design theory and practice of ship-lock projects,which makes the construction technology of ship-lock in the world reach a new level.
文摘Besides the legislative and administrative efforts made by China to tackle food safety issues, a raft of measures is being introduced to punish errant producers and enforce stricter