It is a matter of course that Kolmogorov’s probability theory is a very useful mathematical tool for the analysis of statistics. However, this fact never means that statistics is based on Kolmogorov’s probability th...It is a matter of course that Kolmogorov’s probability theory is a very useful mathematical tool for the analysis of statistics. However, this fact never means that statistics is based on Kolmogorov’s probability theory, since it is not guaranteed that mathematics and our world are connected. In order that mathematics asserts some statements concerning our world, a certain theory (so called “world view”) mediates between mathematics and our world. Recently we propose measurement theory (i.e., the theory of the quantum mechanical world view), which is characterized as the linguistic turn of quantum mechanics. In this paper, we assert that statistics is based on measurement theory. And, for example, we show, from the pure theoretical point of view (i.e., from the measurement theoretical point of view), that regression analysis can not be justified without Bayes’ theorem. This may imply that even the conventional classification of (Fisher’s) statistics and Bayesian statistics should be reconsidered.展开更多
In this paper, we study the principle of equal probability (i.e., unless we have sufficient reason to regard one possible case as more probable than another, we treat them as equally probable) in measurement theory (i...In this paper, we study the principle of equal probability (i.e., unless we have sufficient reason to regard one possible case as more probable than another, we treat them as equally probable) in measurement theory (i.e., the theory of quantum mechanical world view), which is characterized as the linguistic turn of quantum mechanics with the Copenhagen interpretation. This turn from physics to language does not only realize theremarkable extensionof quantum mechanicsbut alsoestablish the method of science. Our study will be executed in the easy example of the Monty Hall problem. Although our argument is simple, we believe that it is worth pointing out the fact that the principle of equal probability can be, for the first time, clarified in measurement theory (based on the dualism) and not the conventional statistics (based on Kolmogorov’s probability theory).展开更多
Background: The Poisson and the Negative Binomial distributions are commonly used to model count data. The Poisson is characterized by the equality of mean and variance whereas the Negative Binomial has a variance lar...Background: The Poisson and the Negative Binomial distributions are commonly used to model count data. The Poisson is characterized by the equality of mean and variance whereas the Negative Binomial has a variance larger than the mean and therefore both models are appropriate to model over-dispersed count data. Objectives: A new two-parameter probability distribution called the Quasi-Negative Binomial Distribution (QNBD) is being studied in this paper, generalizing the well-known negative binomial distribution. This model turns out to be quite flexible for analyzing count data. Our main objectives are to estimate the parameters of the proposed distribution and to discuss its applicability to genetics data. As an application, we demonstrate that the QNBD regression representation is utilized to model genomics data sets. Results: The new distribution is shown to provide a good fit with respect to the “Akaike Information Criterion”, AIC, considered a measure of model goodness of fit. The proposed distribution may serve as a viable alternative to other distributions available in the literature for modeling count data exhibiting overdispersion, arising in various fields of scientific investigation such as genomics and biomedicine.展开更多
文摘It is a matter of course that Kolmogorov’s probability theory is a very useful mathematical tool for the analysis of statistics. However, this fact never means that statistics is based on Kolmogorov’s probability theory, since it is not guaranteed that mathematics and our world are connected. In order that mathematics asserts some statements concerning our world, a certain theory (so called “world view”) mediates between mathematics and our world. Recently we propose measurement theory (i.e., the theory of the quantum mechanical world view), which is characterized as the linguistic turn of quantum mechanics. In this paper, we assert that statistics is based on measurement theory. And, for example, we show, from the pure theoretical point of view (i.e., from the measurement theoretical point of view), that regression analysis can not be justified without Bayes’ theorem. This may imply that even the conventional classification of (Fisher’s) statistics and Bayesian statistics should be reconsidered.
文摘In this paper, we study the principle of equal probability (i.e., unless we have sufficient reason to regard one possible case as more probable than another, we treat them as equally probable) in measurement theory (i.e., the theory of quantum mechanical world view), which is characterized as the linguistic turn of quantum mechanics with the Copenhagen interpretation. This turn from physics to language does not only realize theremarkable extensionof quantum mechanicsbut alsoestablish the method of science. Our study will be executed in the easy example of the Monty Hall problem. Although our argument is simple, we believe that it is worth pointing out the fact that the principle of equal probability can be, for the first time, clarified in measurement theory (based on the dualism) and not the conventional statistics (based on Kolmogorov’s probability theory).
文摘Background: The Poisson and the Negative Binomial distributions are commonly used to model count data. The Poisson is characterized by the equality of mean and variance whereas the Negative Binomial has a variance larger than the mean and therefore both models are appropriate to model over-dispersed count data. Objectives: A new two-parameter probability distribution called the Quasi-Negative Binomial Distribution (QNBD) is being studied in this paper, generalizing the well-known negative binomial distribution. This model turns out to be quite flexible for analyzing count data. Our main objectives are to estimate the parameters of the proposed distribution and to discuss its applicability to genetics data. As an application, we demonstrate that the QNBD regression representation is utilized to model genomics data sets. Results: The new distribution is shown to provide a good fit with respect to the “Akaike Information Criterion”, AIC, considered a measure of model goodness of fit. The proposed distribution may serve as a viable alternative to other distributions available in the literature for modeling count data exhibiting overdispersion, arising in various fields of scientific investigation such as genomics and biomedicine.